Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,420)

Search Parameters:
Keywords = intestinal production

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3011 KiB  
Article
Ameliorative Effects of Soybean Powder Fermented by Bacillus subtilis on Constipation Induced by Loperamide in Rats
by Gi Soo Lee, Su Kang Kim, Ju Yeon Ban and Chung-Hun Oh
Int. J. Mol. Sci. 2025, 26(15), 7615; https://doi.org/10.3390/ijms26157615 - 6 Aug 2025
Abstract
Constipation is a prevalent gastrointestinal disorder that significantly impairs quality of life. While pharmacological agents such as loperamide are widely used to induce constipation in experimental models, there is increasing interest in natural alternatives for alleviating intestinal dysfunction. In this study, we investigated [...] Read more.
Constipation is a prevalent gastrointestinal disorder that significantly impairs quality of life. While pharmacological agents such as loperamide are widely used to induce constipation in experimental models, there is increasing interest in natural alternatives for alleviating intestinal dysfunction. In this study, we investigated the laxative effects of soybean powder fermented by Bacillus subtilis DKU_09 in a loperamide-induced rat model of constipation. The probiotic strain was isolated from cheonggukjang, a traditional Korean fermented soybean paste, and its identity was confirmed through 16S rRNA sequencing. Fermented soybean powder was characterized morphologically via scanning electron microscopy and chemically via HPLC to assess its isoflavone content. Rats were administered loperamide (5 mg/kg) for four days to induce constipation and were then treated with fermented soybean powder at doses of 100, 200, or 300 mg/kg. No pharmacological laxatives (e.g., PEG) were used as a positive control; instead, values from the treatment groups were compared with those from the loperamide-only constipation group. Key outcomes of fecal output, water content, colonic fecal retention, and gastrointestinal transit ratio were measured. The fermented product significantly improved stool frequency and moisture content, reduced colonic fecal retention, and restored gastrointestinal transit in a dose-dependent manner. Notably, the 300 mg/kg group demonstrated nearly complete recovery of fecal parameters without affecting body weight. Statistical analysis was performed using one-way ANOVA followed by Tukey’s post hoc test. These findings suggest that Bacillus subtilis-fermented soybean powder exerts synergistic laxative effects through the combined action of probiotic viability and fermentation-enhanced bioactive compounds such as aglycone isoflavones. This study supports the potential use of fermented soybean-based nutraceuticals as a natural and safe intervention for constipation and gastrointestinal dysregulation. Full article
(This article belongs to the Special Issue Functions and Applications of Natural Products)
Show Figures

Figure 1

26 pages, 3575 KiB  
Article
Antioxidant Power of Brown Algae: Ascophyllum nodosum and Fucus vesiculosus Extracts Mitigate Oxidative Stress In Vitro and In Vivo
by Lea Karlsberger, Georg Sandner, Lenka Molčanová, Tomáš Rýpar, Stéphanie Ladirat and Julian Weghuber
Mar. Drugs 2025, 23(8), 322; https://doi.org/10.3390/md23080322 - 6 Aug 2025
Abstract
Brown algae such as Ascophyllum nodosum (AN) and Fucus vesiculosus (FV) are gaining considerable attention as functional feed additives due to their health-beneficial properties. This study evaluated the antioxidant potential of AN and FV extracts in intestinal epithelial cells and the in vivo [...] Read more.
Brown algae such as Ascophyllum nodosum (AN) and Fucus vesiculosus (FV) are gaining considerable attention as functional feed additives due to their health-beneficial properties. This study evaluated the antioxidant potential of AN and FV extracts in intestinal epithelial cells and the in vivo model Caenorhabditis elegans (C. elegans). Aqueous AN and FV extracts were characterized for total phenolic content (TPC), antioxidant capacity (TEAC, FRAP), and phlorotannin composition using LC-HRMS/MS. Antioxidant effects were assessed in vitro, measuring AAPH-induced ROS production in Caco-2 and IPEC-J2 cells via H2DCF-DA, and in vivo, evaluating the effects of paraquat-induced oxidative stress and AN or FV treatment on worm motility, GST-4::GFP reporter expression, and gene expression in C. elegans. FV exhibited higher total phenolic content, antioxidant capacity (TEAC, FRAP), and a broader phlorotannin profile (degree of polymerization [DP] 2–9) than AN (DP 2–7), as determined by LC-HRMS/MS. Both extracts attenuated AAPH-induced oxidative stress in epithelial cells, with FV showing greater efficacy. In C. elegans, pre-treatment with AN and FV significantly mitigated a paraquat-induced motility decline by 22% and 11%, respectively, compared to PQ-stressed controls. Under unstressed conditions, both extracts enhanced nematode healthspan, with significant effects observed at 400 µg/g for AN and starting at 100 µg/g for FV. Gene expression analysis indicated that both extracts modulated antioxidant pathways in unstressed worms. Under oxidative stress, pre-treatment with AN and FV significantly reduced GST-4::GFP expression. In the nematode, AN was more protective under acute stress, whereas FV better supported physiological function in the absence of stressors. These findings demonstrate that AN and FV counteract oxidative stress in intestinal epithelial cells and in C. elegans, highlighting their potential as stress-reducing agents in animal feed. Full article
Show Figures

Figure 1

19 pages, 330 KiB  
Review
Biological Function of Medium-Chain Fatty Acids and Their Application in Aquatic Animals: A Review
by Haiyan Liu, Wenzong Zhou, Chenggang Cai, Fengqin Feng, Haiying Cai and Hang Yang
Animals 2025, 15(15), 2294; https://doi.org/10.3390/ani15152294 - 6 Aug 2025
Abstract
Medium-chain fatty acid triglycerides (MCTs) possess antibacterial, antiviral, nutritional, and other biological activities and have demonstrated significant application potential in humans and terrestrial animals. In recent years, with the development of the green aquaculture industry, MCTs have been gradually applied to aquaculture animals, [...] Read more.
Medium-chain fatty acid triglycerides (MCTs) possess antibacterial, antiviral, nutritional, and other biological activities and have demonstrated significant application potential in humans and terrestrial animals. In recent years, with the development of the green aquaculture industry, MCTs have been gradually applied to aquaculture animals, which can enhance growth performance, improve flesh quality, regulate lipid metabolism, boost immune activity, and modulate the intestinal flora, thereby improving the production efficiency of aquaculture. This paper elaborates in detail on the biological activities of MCTs and their applications in aquatic animals, providing a theoretical and practical basis for the application of MCTs in aquaculture. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

16 pages, 666 KiB  
Article
Optimization of the Viability of Microencapsulated Lactobacillus reuteri in Gellan Gum-Based Composites Using a Box–Behnken Design
by Rafael González-Cuello, Joaquín Hernández-Fernández and Rodrigo Ortega-Toro
J. Compos. Sci. 2025, 9(8), 419; https://doi.org/10.3390/jcs9080419 - 5 Aug 2025
Abstract
The growing interest in probiotic bacteria within the food industry is driven by their recognized health benefits for consumers. However, preserving their therapeutic viability and stability during gastrointestinal transit remains a formidable challenge. Hence, this research aimed to enhance the viability of Lactobacillus [...] Read more.
The growing interest in probiotic bacteria within the food industry is driven by their recognized health benefits for consumers. However, preserving their therapeutic viability and stability during gastrointestinal transit remains a formidable challenge. Hence, this research aimed to enhance the viability of Lactobacillus reuteri through microencapsulation using a binary polysaccharide mixture composed of low acyl gellan gum (LAG), high acyl gellan gum (HAG), and calcium for the microencapsulation of L. reuteri. To achieve this, the Box–Behnken design was applied, targeting the optimization of L. reuteri microencapsulated to withstand simulated gastrointestinal conditions. The microcapsules were crafted using the internal ionic gelation method, and optimization was performed using response surface methodology (RSM) based on the Box–Behnken design. The model demonstrated robust predictive power, with R2 values exceeding 95% and a lack of fit greater than p > 0.05. Under optimized conditions—0.88% (w/v) LAG, 0.43% (w/v) HAG, and 24.44 mM Ca—L. reuteri reached a viability of 97.43% following the encapsulation process. After 4 h of exposure to simulated gastric fluid (SGF) and intestinal fluid (SIF), the encapsulated cells maintained a viable count of 8.02 log CFU/mL. These promising results underscore the potential of biopolymer-based microcapsules, such as those containing LAG and HAG, as an innovative approach for safeguarding probiotics during gastrointestinal passage, paving the way for new probiotic-enriched food products. Full article
Show Figures

Figure 1

15 pages, 3048 KiB  
Article
Hydrogen-Rich Water Attenuates Diarrhea in Weaned Piglets via Oxidative Stress Alleviation
by Pengfei Zhang, Jingyu Yang, Zhuoda Lu, Qianxi Liang, Xing Yang, Junchao Wang, Jinbiao Guo and Yunxiang Zhao
Biology 2025, 14(8), 997; https://doi.org/10.3390/biology14080997 (registering DOI) - 5 Aug 2025
Viewed by 25
Abstract
Early weaning of piglets elicits weaning stress, which in turn induces oxidative stress and consequently impairs growth and development. Hydrogen-rich water (HRW), characterized by selective antioxidant properties, mitigates oxidative stress damage and serves as an ideal intervention. This study aimed to evaluate the [...] Read more.
Early weaning of piglets elicits weaning stress, which in turn induces oxidative stress and consequently impairs growth and development. Hydrogen-rich water (HRW), characterized by selective antioxidant properties, mitigates oxidative stress damage and serves as an ideal intervention. This study aimed to evaluate the effects of HRW on weaned piglets, specifically investigating its impact on growth performance, diarrhea incidence, antioxidant function, intestinal morphology, gut microbiota, and hepatic metabolites. The results demonstrate that HRW significantly increased the average daily feed intake and significantly reduced the diarrhea rate in weaned piglets. Analysis of serum oxidative stress indicators revealed that HRW significantly elevated the activities of total antioxidant capacity and total superoxide dismutase while significantly decreasing malondialdehyde concentration. Assessment of intestinal morphology showed that HRW significantly increased the villus height to crypt depth ratio in the duodenum, jejunum, and ileum. Microbial analysis indicated that HRW significantly increased the abundance of Prevotella in the colon. Furthermore, HRW increased the abundance of beneficial bacteria, such as Akkermansia, in the jejunum and cecum, while concurrently reducing the abundance of harmful bacteria like Escherichia. Hepatic metabolite profiling revealed that HRW significantly altered the metabolite composition in the liver of weaned piglets. Differentially abundant metabolites were enriched in oxidative stress-related KEGG pathways, including ABC transporters; pyruvate metabolism; autophagy; FoxO signaling pathway; glutathione metabolism; ferroptosis; and AMPK signaling pathways. In conclusion, HRW alleviates diarrhea and promotes growth in weaned piglets by enhancing antioxidant capacity. These findings provide a scientific foundation for the application of HRW in swine production and serve as a reference for further exploration into the mechanisms underlying HRW’s effects on animal health and productivity. Full article
Show Figures

Figure 1

19 pages, 5733 KiB  
Article
The Production Optimization of a Thermostable Phytase from Bacillus subtilis SP11 Utilizing Mustard Meal as a Substrate
by Md. Al Muid Khan, Sabina Akhter, Tanjil Arif, Md. Mahmuduzzaman Mian, Md. Arafat Al Mamun, Muhammad Manjurul Karim and Shakila Nargis Khan
Fermentation 2025, 11(8), 452; https://doi.org/10.3390/fermentation11080452 - 3 Aug 2025
Viewed by 228
Abstract
Phytate, an antinutritional molecule in poultry feed, can be degraded by applying phytase, but its use in low- and middle-income countries is often limited due to importation instead of local production. Here, inexpensive raw materials were used to optimize the production of a [...] Read more.
Phytate, an antinutritional molecule in poultry feed, can be degraded by applying phytase, but its use in low- and middle-income countries is often limited due to importation instead of local production. Here, inexpensive raw materials were used to optimize the production of a thermostable phytase from an indigenous strain of Bacillus subtilis SP11 that was isolated from a broiler farm in Dhaka. SP11 was identified using 16s rDNA and the fermentation of phytase was optimized using a Plackett–Burman design and response surface methodology, revealing that three substrates, including the raw material mustard meal (2.21% w/v), caused a maximum phytase production of 436 U/L at 37 °C and 120 rpm for 72 h, resulting in a 3.7-fold increase compared to unoptimized media. The crude enzyme showed thermostability up to 80 °C (may withstand the feed pelleting process) with an optimum pH of 6 (near pH of poultry small-intestine), while retaining 96% activity at 41 °C (the body temperature of the chicken). In vitro dephytinization demonstrated its applicability, releasing 978 µg of inorganic phosphate per g of wheat bran per hour. This phytase has the potential to reduce the burden of phytase importation in Bangladesh by making local production and application possible, contributing to sustainable poultry nutrition. Full article
Show Figures

Figure 1

33 pages, 2639 KiB  
Article
Functional and Safety Profile of Limosilactobacillus vaginalis and Development of Oral Fast-Disintegrating Tablets for Gut Microbiota Modulation
by Barbara Giordani, Federica Monti, Elisa Corazza, Sofia Gasperini, Carola Parolin, Angela Abruzzo, Claudio Foschi, Antonella Marangoni, Monia Lenzi, Barbara Luppi and Beatrice Vitali
Pharmaceutics 2025, 17(8), 1011; https://doi.org/10.3390/pharmaceutics17081011 - 1 Aug 2025
Viewed by 282
Abstract
Background/Objectives: Early gut colonization by bifidobacteria, occurring more favorably in vaginally born infants than in those delivered via C-section, is crucial for maintaining overall health. The study investigated the health-promoting properties of Limosilactobacillus vaginalis BC17 both as viable cells and as postbiotics [...] Read more.
Background/Objectives: Early gut colonization by bifidobacteria, occurring more favorably in vaginally born infants than in those delivered via C-section, is crucial for maintaining overall health. The study investigated the health-promoting properties of Limosilactobacillus vaginalis BC17 both as viable cells and as postbiotics (i.e., cell-free supernatant and heat-killed cells), with the purpose of developing oral formulations to support intestinal health. Methods: The safety, effects on the adhesion of bifidobacteria and enteropathogens to intestinal cells, and anti-inflammatory properties of L. vaginalis BC17 viable cells and postbiotics were evaluated. Fast-disintegrating tablets were formulated by freeze-drying cell-free supernatant in combination with heat-killed or viable cells alongside maltodextrins. Results: The formulations were shown to be non-genotoxic and compatible with intestinal cell lines (Caco-2 and HT-29). BC17 viable cells survived in co-culture with intestinal cells up to 48 h and exhibited moderate adhesion to the cell lines. Notably, both BC17 viable cells and postbiotics enhanced the adhesion of beneficial bifidobacteria to Caco-2 cells by up to 250%, while reducing enteropathogens adhesion by 40–70%. Moreover, they exerted significant anti-inflammatory effects, reducing nitric oxide production in macrophages by 40–50% and protecting intestinal cells from SDS-induced damage. The formulations allowed administration of at least 109 BC17 cells in infants and adults through easy and rapid dispersion in milk or water, or directly in the oral cavity without chewing, and preserved their functional properties for up to 3 months of storage. Conclusions: L. vaginalis BC17 viable cells and postbiotics, as well as fast-disintegrating tablets, showed promising functional and safety profiles. Although further in vivo validation is needed, this approach represents a compelling strategy for promoting gut health. Full article
Show Figures

Graphical abstract

19 pages, 3251 KiB  
Article
Effects of Dietary Cinnamaldehyde Supplementation on Growth Performance, Serum Antioxidant Capacity, Intestinal Digestive Enzyme Activities, Morphology, and Caecal Microbiota in Meat Rabbits
by Dongjin Chen, Yuxiang Lan, Yuqin He, Chengfang Gao, Bin Jiang and Xiping Xie
Animals 2025, 15(15), 2262; https://doi.org/10.3390/ani15152262 - 1 Aug 2025
Viewed by 210
Abstract
Cinnamaldehyde (CA) is a potential substitute for antibiotic growth promoters in animal breeding. In this study, we investigated its effects as a dietary supplement on growth performance, serum antioxidant capacity, intestinal digestive enzyme activities, intestinal morphology, and caecal microbiota in meat rabbits. Weaned [...] Read more.
Cinnamaldehyde (CA) is a potential substitute for antibiotic growth promoters in animal breeding. In this study, we investigated its effects as a dietary supplement on growth performance, serum antioxidant capacity, intestinal digestive enzyme activities, intestinal morphology, and caecal microbiota in meat rabbits. Weaned meat rabbits (n = 450) were randomly assigned to five groups, Groups A, B, C, D, and E, and fed 0, 50, 100, 150, and 200 mg/kg CA diets, respectively, for 47 days. Biological samples including serum (antioxidants), duodenal/caecal content (enzymes), intestinal tissue (morphology), and caecal digesta (microbiota) were collected at day 47 postweaning for analysis. Groups C and D showed significantly higher final body weights than Group A, with Group D (150 mg/kg CA) demonstrating superior growth performance including 11.73% longer duodenal villi (p < 0.05), 28.6% higher microbial diversity (p < 0.01), and 62% lower diarrhoea rate versus controls. Digestive enzyme activity as well as serum antioxidant capacity increased with increasing CA dose, Microbiota analysis revealed CA increased fibre-fermenting Oscillospiraceae (+38%, p < 0.01) while reducing Ruminococcaceae (−27%, p < 0.05). Thus, dietary CA supplementation at 150 mg/kg was identified as the optimal CA dose for improving meat rabbit production. These findings highlight CA as a functional feed additive for promoting sustainable rabbit production. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

13 pages, 1123 KiB  
Article
Protective Effects of Grape Seed Extract on Lipopolysaccharide Exposure and Radiation-Induced Intestinal Mucosal Damage: Insights from an In Vitro Study
by Annamaria Altomare, Michele Fiore, Elena Imperia, Gabriele D’Ercole, Ludovica Spagnuolo, Laura De Gara, Gabriella Pasqua, Michele Cicala, Sara Ramella and Michele Pier Luca Guarino
Microbiol. Res. 2025, 16(8), 176; https://doi.org/10.3390/microbiolres16080176 - 1 Aug 2025
Viewed by 139
Abstract
Backgrounds and aim: Protective effects of natural compounds have been suggested in the prevention and treatment of radiation-induced mucositis or bacterial infections. In this study, the protective effects of proanthocyanidin-rich grape seed extract (GSE) on bacterial Lipopolysaccharide (LPS) and radiation-induced epithelial barrier damage [...] Read more.
Backgrounds and aim: Protective effects of natural compounds have been suggested in the prevention and treatment of radiation-induced mucositis or bacterial infections. In this study, the protective effects of proanthocyanidin-rich grape seed extract (GSE) on bacterial Lipopolysaccharide (LPS) and radiation-induced epithelial barrier damage and Reactive Oxygen Species (ROS) production were investigated in an in vitro model. Methods: Human intestinal epithelial cells Caco-2, previously treated with LPS, GSE, or LPS + GSE, were irradiated with 10 Gy divided into five daily treatments. Epithelial barrier integrity and ROS production were measured before and after each treatment. Results: Irradiation, at different doses, significantly increased intestinal permeability and ROS production; pretreatment with GSE was able to significantly prevent the increased intestinal permeability (4.63 ± 0.76 vs. 15.04 ± 1.5; p < 0.05) and ROS production (12.9 ± 1.08 vs. 1048 ± 0.5; p < 0.0001) induced by irradiation treatment. When the cells were pretreated with LPS, the same results were observed: GSE cotreatment was responsible for preventing permeability alterations (5.36 ± 0.16 vs. 49.26 ± 0.82; p < 0.05) and ROS production (349 ± 1 vs. 7897.67 ± 1.53; p < 0.0001) induced by LPS exposure when added to the irradiation treatment. Conclusions: The results of the present investigation demonstrated, in an in vitro model, that GSE prevents the damage to intestinal permeability and the production of ROS that are induced by LPS and ionizing radiation, suggesting a potential protective effect of this extract on the intestinal mucosa during irradiation treatment. Full article
Show Figures

Figure 1

13 pages, 1801 KiB  
Review
Lactobacillus acidophilus in Aquaculture: A Review
by Lu Zhang, Jian Zhou, Zhipeng Huang, Han Zhao, Zhongmeng Zhao, Chengyan Mou, Yang Feng, Huadong Li, Qiang Li and Yuanliang Duan
Microbiol. Res. 2025, 16(8), 174; https://doi.org/10.3390/microbiolres16080174 - 1 Aug 2025
Viewed by 177
Abstract
Microbial feed additives can effectively promote the healthy development of aquaculture, and Lactobacillus acidophilus can be utilized to mitigate disease risks and enhance productivity while minimizing antibiotic use. This article summarizes research on the application of L. acidophilus in aquaculture, focusing on growth [...] Read more.
Microbial feed additives can effectively promote the healthy development of aquaculture, and Lactobacillus acidophilus can be utilized to mitigate disease risks and enhance productivity while minimizing antibiotic use. This article summarizes research on the application of L. acidophilus in aquaculture, focusing on growth and nutrient utilization, intestinal structure and microbial communities, disease prevention and control in aquatic organisms, and the regulation of water quality. This review holds significant implications for the development of compound feed additives and environmental regulators involving L. acidophilus, as well as for future aquatic food safety. Full article
(This article belongs to the Topic The Role of Microorganisms in Waste Treatment)
Show Figures

Figure 1

33 pages, 1782 KiB  
Review
Synthalin, Buformin, Phenformin, and Metformin: A Century of Intestinal “Glucose Excretion” as Oral Antidiabetic Strategy in Overweight/Obese Patients
by Giuliano Pasquale Ramadori
Livers 2025, 5(3), 35; https://doi.org/10.3390/livers5030035 - 31 Jul 2025
Viewed by 118
Abstract
After the first release of synthalin B (dodecamethylenbiguanide) in 1928 and its later retraction in the 1940s in Germany, the retraction of phenformin (N-Phenethylbiguanide) and of Buformin in the USA (but not outside) because of the lethal complication of acidosis seemed to have [...] Read more.
After the first release of synthalin B (dodecamethylenbiguanide) in 1928 and its later retraction in the 1940s in Germany, the retraction of phenformin (N-Phenethylbiguanide) and of Buformin in the USA (but not outside) because of the lethal complication of acidosis seemed to have put an end to the era of the biguanides as oral antidiabetics. The strongly hygroscopic metformin (1-1-dimethylbiguanide), first synthesized 1922 and resuscitated as an oral antidiabetic (type 2 of the elderly) compound first released in 1959 in France and in other European countries, was used in the first large multicenter prospective long-term trial in England in the UKPDS (1977–1997). It was then released in the USA after a short-term prospective trial in healthy overweight “young” type 2 diabetics (mean age 53 years) in 1995 for oral treatment of type 2 diabetes. It was, however, prescribed to mostly multimorbid older patients (above 60–65 years of age). Metformin is now the most used oral drug for type 2 diabetes worldwide. While intravenous administration of biguanides does not have any glucose-lowering effect, their oral administration leads to enormous increase in their intestinal concentration (up to 300-fold compared to that measured in the blood), to reduced absorption of glucose from the diet, to increased excretion of glucose through the stool, and to decrease in insulin serum level through increased hepatic uptake and decreased production. Intravenously injected F18-labeled glucose in metformin-treated type 2 diabetics accumulates in the small and even more in the large intestine. The densitometry picture observed in metformin-treated overweight diabetics is like that observed in patients after bowel-cleansing or chronically taking different types of laxatives, where the accumulated radioactivity can even reach values observed in colon cancer. The glucose-lowering mechanism of action of metformin is therefore not only due to inhibition of glucose uptake in the small intestine but also to “attraction” of glucose from the hepatocyte into the intestine, possibly through the insulin-mediated uptake in the hepatocyte and its secretion into the bile. Furthermore, these compounds have also a diuretic effect (loss of sodium and water in the urine) Acute gastrointestinal side effects accompanied by fluid loss often lead to the drugs’ dose reduction and strongly limit adherence to therapy. Main long-term consequences are “chronic” dehydration, deficiency of vitamin B12 and of iron, and, as observed for all the biguanides, to “chronic” increase in fasting and postprandial lactate plasma level as a laboratory marker of a clinical condition characterized by hypotension, oliguria, adynamia, and evident lactic acidosis. Metformin is not different from the other biguanides: synthalin B, buformin, and phenformin. The mechanism of action of the biguanides as antihyperglycemic substances and their side effects are comparable if not even stronger (abdominal pain, nausea, vomiting, diarrhea, fluid loss) to those of laxatives. Full article
Show Figures

Figure 1

14 pages, 3364 KiB  
Article
Microbial Load and Diversity of Bacteria in Wild Animal Carcasses Sold as Bushmeat in Ghana
by Daniel Oduro, Winnifred Offih-Kyei, Joanita Asirifi Yeboah, Rhoda Yeboah, Caleb Danso-Coffie, Emmanuel Boafo, Vida Yirenkyiwaa Adjei, Isaac Frimpong Aboagye and Gloria Ivy Mensah
Pathogens 2025, 14(8), 754; https://doi.org/10.3390/pathogens14080754 - 31 Jul 2025
Viewed by 215
Abstract
The demand for wild animal meat, popularly called “bushmeat”, serves as a driving force behind the emergence of infectious diseases, potentially transmitting a variety of pathogenic bacteria to humans through handling and consumption. This study investigated the microbial load and bacterial diversity in [...] Read more.
The demand for wild animal meat, popularly called “bushmeat”, serves as a driving force behind the emergence of infectious diseases, potentially transmitting a variety of pathogenic bacteria to humans through handling and consumption. This study investigated the microbial load and bacterial diversity in bushmeat sourced from a prominent bushmeat market in Kumasi, Ghana. Carcasses of 61 wild animals, including rodents (44), antelopes (14), and African civets (3), were sampled for microbiological analysis. These samples encompassed meat, intestines, and anal and oral swabs. The total aerobic bacteria plate count (TPC), Enterobacteriaceae count (EBC), and fungal counts were determined. Bacterial identification was conducted using MALDI-TOF biotyping. Fungal counts were the highest across all animal groups, with African civets having 11.8 ± 0.3 log10 CFU/g and 11.9 ± 0.2 log10 CFU/g in intestinal and meat samples, respectively. The highest total plate count (TPC) was observed in rodents, both in their intestines (10.9 ± 1.0 log10 CFU/g) and meat (10.9 ± 1.9 log10 CFU/g). In contrast, antelopes exhibited the lowest counts across all categories, particularly in EBC from intestinal samples (6.1 ± 1.5 log10 CFU/g) and meat samples (5.6 ± 1.2 log10 CFU/g). A comprehensive analysis yielded 524 bacterial isolates belonging to 20 genera, with Escherichia coli (18.1%) and Klebsiella spp. (15.5%) representing the most prevalent species. Notably, the detection of substantial microbial contamination in bushmeat underscores the imperative for a holistic One Health approach to enhance product quality and mitigate risks associated with its handling and consumption. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

22 pages, 1916 KiB  
Article
Freeze-Dried Probiotic Fermented Camel Milk Enriched with Ajwa Date Pulp: Evaluation of Functional Properties, Probiotic Viability, and In Vitro Antidiabetic and Anticancer Activities
by Sally S. Sakr and Hassan Barakat
Foods 2025, 14(15), 2698; https://doi.org/10.3390/foods14152698 - 31 Jul 2025
Viewed by 338
Abstract
Noncommunicable diseases (NCDs) like diabetes and cancer drive demand for therapeutic functional foods. This study developed freeze-dried fermented camel milk (FCM) with Ajwa date pulp (ADP), evaluating its physical and functional properties, probiotic survival, and potential benefits for diabetes and cancer. To achieve [...] Read more.
Noncommunicable diseases (NCDs) like diabetes and cancer drive demand for therapeutic functional foods. This study developed freeze-dried fermented camel milk (FCM) with Ajwa date pulp (ADP), evaluating its physical and functional properties, probiotic survival, and potential benefits for diabetes and cancer. To achieve this target, six FCM formulations were prepared using ABT-5 starter culture (containing Lactobacillus acidophilus, Bifidobacterium bifidum, and Streptococcus thermophilus) with or without Lacticaseibacillus rhamnosus B-1937 and ADP (12% or 15%). The samples were freeze-dried, and their functional properties, such as water activity, dispersibility, water absorption capacity, water absorption index, water solubility index, insolubility index, and sedimentation, were assessed. Reconstitution properties such as density, flowability, air content, porosity, loose bulk density, packed bulk density, particle density, carrier index, Hausner ratio, porosity, and density were examined. In addition, color and probiotic survivability under simulated gastrointestinal conditions were analyzed. Also, antidiabetic potential was assessed via α-amylase and α-glucosidase inhibition assays, while cytotoxicity was evaluated using the MTT assay on Caco-2 cells. The results show that ADP supplementation significantly improved dispersibility (up to 72.73% in FCM15D+L). These improvements are attributed to changes in particle size distribution and increased carbohydrate and mineral content, which facilitate powder rehydration and reduce clumping. All FCM variants demonstrated low water activity (0.196–0.226), indicating good potential for shelf stability. The reconstitution properties revealed that FCM powders with ADP had higher bulk and packed densities but lower particle density and porosity than controls. Including ADP reduced interstitial air and increased occluded air within the powders, which may minimize oxidation risks and improve packaging efficiency. ADP incorporation resulted in a significant decrease in lightness (L*) and increases in redness (a*) and yellowness (b*), with greater pigment and phenolic content at higher ADP levels. These changes reflect the natural colorants and browning reactions associated with ADP, leading to a more intense and visually distinct product. Probiotic survivability was higher in ADP-fortified samples, with L. acidophilus and B. bifidum showing resilience in intestinal conditions. The FCM15D+L formulation exhibited potent antidiabetic effects, with IC50 values of 111.43 μg mL−1 for α-amylase and 77.21 μg mL−1 for α-glucosidase activities, though lower than control FCM (8.37 and 10.74 μg mL−1, respectively). Cytotoxicity against Caco-2 cells was most potent in non-ADP samples (IC50: 82.22 μg mL−1 for FCM), suggesting ADP and L. rhamnosus may reduce antiproliferative effects due to proteolytic activity. In conclusion, the study demonstrates that ADP-enriched FCM is a promising functional food with enhanced probiotic viability, antidiabetic potential, and desirable physical properties. This work highlights the potential of camel milk and date synergies in combating some NCDs in vitro, suggesting potential for functional food application. Full article
Show Figures

Figure 1

17 pages, 2436 KiB  
Article
Integrated Cytotoxicity and Metabolomics Analysis Reveals Cell-Type-Specific Responses to Co-Exposure of T-2 and HT-2 Toxins
by Weihua He, Zuoyin Zhu, Jingru Xu, Chengbao Huang, Jianhua Wang, Qinggong Wang, Xiaohu Zhai and Junhua Yang
Toxins 2025, 17(8), 381; https://doi.org/10.3390/toxins17080381 - 30 Jul 2025
Viewed by 186
Abstract
T-2 toxin and HT-2 toxin are commonly found in agricultural products and animal feed, posing serious effects to both humans and animals. This study employed combination index (CI) modeling and metabolomics to assess the combined cytotoxic effects of T-2 and HT-2 on four [...] Read more.
T-2 toxin and HT-2 toxin are commonly found in agricultural products and animal feed, posing serious effects to both humans and animals. This study employed combination index (CI) modeling and metabolomics to assess the combined cytotoxic effects of T-2 and HT-2 on four porcine cell types: intestinal porcine epithelial cells (IPEC-J2), porcine Leydig cells (PLCs), porcine ear fibroblasts (PEFs), and porcine hepatocytes (PHs). Cell viability assays revealed a dose-dependent reduction in viability across all cell lines, with relative sensitivities in the order: IPEC-J2 > PLCs > PEFs > PHs. Synergistic cytotoxicity was observed at low concentrations, while antagonistic interactions emerged at higher doses. Untargeted metabolomic profiling identified consistent and significant metabolic perturbations in four different porcine cell lines under co-exposure conditions. Notably, combined treatment with T-2 and HT-2 resulted in a uniform downregulation of LysoPC (22:6), LysoPC (20:5), and LysoPC (20:4), implicating disruption of membrane phospholipid integrity. Additionally, glycerophospholipid metabolism was the most significantly affected pathway across all cell lines. Ether lipid metabolism was markedly altered in PLCs and PEFs, whereas PHs displayed a unique metabolic response characterized by dysregulation of tryptophan metabolism. This study identified markers of synergistic toxicity and common alterations in metabolic pathways across four homologous porcine cell types under the combined exposure to T-2 and HT-2 toxins. These findings enhance the current understanding of the molecular mechanisms underlying mycotoxin-induced the synergistic toxicity. Full article
Show Figures

Graphical abstract

28 pages, 17610 KiB  
Article
Histological Assessment of Intestinal Changes Induced by Liquid Whey-Enriched Diets in Pigs
by Kamel Mhalhel, Mauro Cavallaro, Lidia Pansera, Leyanis Herrera Ledesma, Maria Levanti, Antonino Germanà, Anna Maria Sutera, Giuseppe Tardiolo, Alessandro Zumbo, Marialuisa Aragona and Giuseppe Montalbano
Vet. Sci. 2025, 12(8), 716; https://doi.org/10.3390/vetsci12080716 - 30 Jul 2025
Viewed by 321
Abstract
Liquid whey (LW) is a nutrient-rich dairy by-product and a promising resource for animal nutrition. However, data regarding its impact on intestinal morphology and endocrine signaling are limited. Therefore, the current study aims to dissect those aspects. An experiment was conducted on 14 [...] Read more.
Liquid whey (LW) is a nutrient-rich dairy by-product and a promising resource for animal nutrition. However, data regarding its impact on intestinal morphology and endocrine signaling are limited. Therefore, the current study aims to dissect those aspects. An experiment was conducted on 14 crossbred pigs divided into control (fed 3% of their body weight pelleted feed) and LW (fed 3% of their body weight supplemented with 1.5 L of LW) groups. The results show a significantly increased body weight gain in LW pigs during the second half of the experiment. Moreover, an increased ileal villus height, deeper crypts, and a thicker muscularis externa in the duodenum and jejunum have been reported in LW-fed pigs. Goblet cell count revealed a significant abundance of these cells in duodenal villi and jejunal crypts of the LW group, suggesting enhanced mucosal defense in all segments of LW-fed pigs. While Cholecystokinin8 and Galanin showed the same expression pattern among both groups and SI segments, the leptin expression was significantly higher in LW swine. These findings indicate that LW promotes growth, gut mucosa remodeling, and neuroendocrine signaling, thus supporting LW use as a functional dietary strategy with attention to the adaptation period. Full article
(This article belongs to the Section Anatomy, Histology and Pathology)
Show Figures

Figure 1

Back to TopTop