Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,771)

Search Parameters:
Keywords = intestinal development

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4833 KB  
Article
Lactoferrin-Loaded Liposomal Nanoparticles: Enhanced Intestinal Stability and Bioactivity for Mitigating Radiation-Induced Intestinal Injury
by Yingying Lin, Rui Ding, Yuning Zhang, Yimeng Wang, Sijia Song and Huiyuan Guo
Foods 2025, 14(19), 3410; https://doi.org/10.3390/foods14193410 - 2 Oct 2025
Abstract
Radiation-induced intestinal injury (RIII), a severe complication of abdominopelvic radiotherapy, causes intestinal ischemia, ulcers, and necrosis, severely impacting patients’ quality of life. Currently, effective treatments are limited, and a specific cure remains elusive. Our previous research showed that lactoferrin (LF) can promote intestinal [...] Read more.
Radiation-induced intestinal injury (RIII), a severe complication of abdominopelvic radiotherapy, causes intestinal ischemia, ulcers, and necrosis, severely impacting patients’ quality of life. Currently, effective treatments are limited, and a specific cure remains elusive. Our previous research showed that lactoferrin (LF) can promote intestinal stem cell (ISC) proliferation and tissue repair; however, its oral administration is limited by rapid degradation in the gastric environment. In this study, we developed LF-loaded liposomal nanoparticles (Lip-LF) using a simple ethanol injection method. The optimal formulation (cholesterol/egg yolk lecithin ratio 2:8, LF concentration 12.5 mg/mL) achieved a drug-loading capacity of 6.8% and a narrow size distribution (0.2 < PDI < 0.4). In vitro experiments demonstrated that Lip-LF protected LF from pepsin degradation in simulated gastric fluid (SGF), retaining over 80% integrity after 120 min, while releasing in simulated intestinal fluid (SIF). In vivo imaging revealed prolonged gastrointestinal retention of Lip-LF compared to free LF. In a murine model of RIII (12 Gy whole-body irradiation), Lip-LF significantly restored villus counts, increased crypt height, and promoted goblet-cell regeneration. Immunohistochemical and qPCR analyses revealed enhanced ISCs proliferation and upregulation of repair-associated genes, including Pcna and Olfm4. These findings demonstrate that Lip-LF protects LF from gastric degradation and enhances its targeted delivery to the intestine, improving its therapeutic efficacy in repairing RIII. Lip-LF thus offers a promising strategy for managing RIII. Full article
Show Figures

Graphical abstract

22 pages, 3331 KB  
Article
One Function, Many Faces: Functional Convergence in the Gut Microbiomes of European Marine and Freshwater Fish Unveiled by Bayesian Network Meta-Analysis
by Federico Moroni, Fernando Naya-Català, Genciana Terova, Ricardo Domingo-Bretón, Josep Àlvar Calduch-Giner and Jaume Pérez-Sánchez
Animals 2025, 15(19), 2885; https://doi.org/10.3390/ani15192885 - 2 Oct 2025
Abstract
Intestinal microbiota populations are constantly shaped by both intrinsic and extrinsic factors, including diet, environment, and host genetics. As a result, understanding how to assess, monitor, and exploit microbiome–host interplay remains an active area of investigation, especially in aquaculture. In this study, we [...] Read more.
Intestinal microbiota populations are constantly shaped by both intrinsic and extrinsic factors, including diet, environment, and host genetics. As a result, understanding how to assess, monitor, and exploit microbiome–host interplay remains an active area of investigation, especially in aquaculture. In this study, we analyzed the taxonomic structure and functional potential of the intestinal microbiota of European sea bass and rainbow trout, incorporating gilthead sea bream as a final reference. The results showed that the identified core microbiota (40 taxa for sea bass and 20 for trout) held a central role in community organization, despite taxonomic variability, and exhibited a predominant number of positive connections (>60% for both species) with the rest of the microbial community in a Bayesian network. From a functional perspective, core-associated bacterial clusters (75% for sea bass and 81% for sea bream) accounted for the majority of predicted metabolic pathways (core contribution: >75% in sea bass and >87% in trout), particularly those involved in carbohydrate, amino acid, and vitamin metabolism. Comparative analysis across ecological phenotypes highlighted distinct microbial biomarkers, with genera such as Vibrio, Pseudoalteromonas, and Paracoccus enriched in saltwater species (Dicentrarchus labrax and Sparus aurata) and Mycoplasma and Clostridium in freshwater (Oncorhynchus mykiss). Overall, this study underscores the value of integrating taxonomic, functional, and network-based approaches as practical tools to monitor intestinal health status, assess welfare, and guide the development of more sustainable production strategies in aquaculture. Full article
(This article belongs to the Special Issue Gut Microbiota in Aquatic Animals)
Show Figures

Figure 1

19 pages, 648 KB  
Review
Research Progress on the Relationship Between the Intestinal Barrier and Macrophages
by Shan Ma, Kecheng Zhu, Yan Liu and Jizhuang Wang
Curr. Issues Mol. Biol. 2025, 47(10), 813; https://doi.org/10.3390/cimb47100813 - 2 Oct 2025
Abstract
The intestinal barrier serves as a crucial defense in the body, and a compromised integrity can lead to systemic health issues. Intestinal macrophages, as key components of the intestinal immune system, have a profound influence on intestinal homeostasis. However, the complex mechanisms underlying [...] Read more.
The intestinal barrier serves as a crucial defense in the body, and a compromised integrity can lead to systemic health issues. Intestinal macrophages, as key components of the intestinal immune system, have a profound influence on intestinal homeostasis. However, the complex mechanisms underlying interactions between the intestinal barrier and intestinal macrophages remain incompletely elucidated. This review systematically summarizes the bidirectional regulatory relationship between them. It specifically focuses on how the intestinal barrier impacts the phenotype, function, and heterogeneity of macrophages while concurrently analyzing the pivotal role of macrophages in maintaining and repairing intestinal barrier function. Furthermore, this review provides an in-depth analysis of the critical influence of this interaction on the pathogenesis and progression of various intestinal disorders and systemic diseases. By synthesizing and summarizing current research advances, this review aims to enhance the understanding of the regulatory mechanisms underlying intestinal immune homeostasis and to lay a theoretical foundation for developing novel strategies for the prevention and treatment of related diseases. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

7 pages, 6824 KB  
Interesting Images
Infrequent, but Not Intricate Radiological and Pathological Diagnosis of Chronic Intestinal Pseudo-Obstruction—Presented in a Two Pediatrics Cases of the Visceral Myopathy
by Monika Kujdowicz, Grażyna Drabik, Damian Młynarski, Katarzyna Jędrzejowska, Wojciech Górecki, Anna Wierdak, Kamila Płachno and Józef Kobos
Diagnostics 2025, 15(19), 2503; https://doi.org/10.3390/diagnostics15192503 - 1 Oct 2025
Abstract
Obstruction differential diagnosis involves tumors, “acute abdomen”, and chronic pseudo-obstruction (CIPO). Pediatric CIPO cases have different backgrounds than adults’ and impairs development. The cases are rare; diagnosis and treatment are still not well established. Diagnosis is complex; clinical, radiological, molecular, and manometric pathologic [...] Read more.
Obstruction differential diagnosis involves tumors, “acute abdomen”, and chronic pseudo-obstruction (CIPO). Pediatric CIPO cases have different backgrounds than adults’ and impairs development. The cases are rare; diagnosis and treatment are still not well established. Diagnosis is complex; clinical, radiological, molecular, and manometric pathologic data are essential. The performance of broad radiological investigations and manometry is cumbersome in a small intestine. Herein, we present cases of a 14-year-old girl and 11-year-old boy with visceral myopathies (VMs). Presented cases show unique hardship in the analysis of standing and contrast bedside X-ray images—the colon distension alone speaks to Hirschsprung, and the clinicians could not confirm suspected short-segment disease for a long time. VMs are usually diagnosed up to 12 months of life and accompanied by other organ dysfunctions, which are herein absent. The key features here were also the involvement of the small intestine, lack of distant colon contraction, and for the long-lasting case in the boy, loss of haustration. The initial diagnosis relied on clinical data (vomiting, malabsorption, >6-month obstruction, and uncharacteristic biochemical tests), radiology (lack of tumor, enlargement of diameter, and fluid in small and large intestines), and manometry (presence of propagation wave and of anal inhibitory reflex in recto–anal manometry). Examination of intestinal muscle biopsies involved hematoxylin-eosin, trichrome-Masson staining, and immunohistochemistry. The characteristics were fibrosis, small vacuoles, muscle layer thinning, and decreased expression of smooth muscle actin and desmin. The localization of biopsies was chosen after X-ray examination, due to interruption and with various degree changes. The final diagnosis was put forward after the analysis of all accessible data. The diagnosis of VM underlines the importance of interdisciplinary co-work. An earlier intestine muscle biopsy and well-designed molecular panel might fasten the process of diagnosis. Deeper exploration of phenotype–genotype correlation of various VM presentations in the future is crucial for personalized treatment. Full article
(This article belongs to the Special Issue Pediatric Gastrointestinal Pathology)
Show Figures

Graphical abstract

28 pages, 740 KB  
Review
Nutritional Status and Dietary Challenges in Patients with Systemic Sclerosis: A Comprehensive Review
by Eleni C. Pardali, Arriana Gkouvi, Maria G. Grammatikopoulou, Alexandros Mitropoulos, Christos Cholevas, Dimitrios Poulimeneas and Markos Klonizakis
Nutrients 2025, 17(19), 3144; https://doi.org/10.3390/nu17193144 - 1 Oct 2025
Abstract
The gastrointestinal (GI) tract is seriously affected by systemic sclerosis (SSc), due to fibrosis and persistent inflammation. Patients with GI involvement frequently exhibit poor nutritional status, which affects disease burden and quality of life. The aim of the present review was to discuss [...] Read more.
The gastrointestinal (GI) tract is seriously affected by systemic sclerosis (SSc), due to fibrosis and persistent inflammation. Patients with GI involvement frequently exhibit poor nutritional status, which affects disease burden and quality of life. The aim of the present review was to discuss all nutritional issues in SSc and serve as a primer for the nutritional assessment of patients with scleroderma. Patients with SSc suffer from GI impairments that affect the oral cavity, esophagus, stomach, and small and large intestines. Symptomatology includes microstomia, xerostomia, dysphagia, reflux, esophageal dysmotility, small intestinal bacterial overgrowth (SIBO), and fecal incontinence, among others, which may contribute to inadequate food intake. As a result, patients often suffer from malnutrition, sarcopenia, and frailty, while presenting with micronutrient deficiencies that impact disease outcomes and worsen their condition. This aggravated nutritional status is related to greater disease severity, organ involvement, reduced physical function, and increased length of hospitalization and mortality. GI involvement is well-documented within the SSc population, yet routine nutritional assessments are lacking in the hospital setting. Currently, there is a lack of specific recommendations from scientific societies regarding the nutritional care of patients with SSc. Given the high risk of nutritional impairments in this population, systematic assessments should be undertaken, and novel tools tailored to their unique needs should be developed and implemented. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Graphical abstract

16 pages, 42318 KB  
Article
Effects of Dietary Carbohydrate Levels on Growth Performance, Antioxidant Capacity, and Hepatointestinal Health in Schizopygopsis younghusbandi
by Tao Ye, Mingfei Luo, Zhihong Liao, Wenrui Zhang, Xingyu Gu, Xuanshu He, Haiqi Pu, Xiaomin Li, Benhe Zeng and Jin Niu
Fishes 2025, 10(10), 489; https://doi.org/10.3390/fishes10100489 - 1 Oct 2025
Abstract
Schizopygopsis younghusbandi is an endemic and ecologically important fish species on the Tibetan Plateau. However, its dietary carbohydrate requirement remains unexplored, limiting the development of cost-effective and physiological-friendly artificial feed. This study investigated the effects of different dietary carbohydrate levels on the growth [...] Read more.
Schizopygopsis younghusbandi is an endemic and ecologically important fish species on the Tibetan Plateau. However, its dietary carbohydrate requirement remains unexplored, limiting the development of cost-effective and physiological-friendly artificial feed. This study investigated the effects of different dietary carbohydrate levels on the growth performance, antioxidant capacity, and hepatointestinal morphology of S.younghusbandi. Six experimental diets were formulated with graded carbohydrate levels of 9% (C9), 12% (C12), 15% (C15), 18% (C18), 21% (C21), and 24% (C24). A total of 720 fish (initial weight 37.49 ± 0.25 g) were randomly allocated to six groups in quadruplicate (30 fish per replicate) and reared in tanks (0.6 m × 0.5 m × 0.4 m) for 8 weeks. Results demonstrated that the diet in the C12 group significantly improved weight gain rate (WGR), specific growth rate (SGR), and feed conversion ratio (FCR) (p < 0.05). Regression fitting analysis on growth performance indicated that the optimal carbohydrate level ranged from 10.42% to 10.49%. Additionally, the C12 group exhibited enhanced total superoxide dismutase (T-SOD) activities and reduced malondialdehyde (MDA) content in the liver, along with reduced interleukin-1β (IL-1β) levels in the serum (p < 0.05). Histological analysis revealed superior hepatointestinal integrity in the C12 group, characterized by lower hepatic lipid droplet accumulation, reduced vacuolation, decreased hepatosomatic index (HSI) (p < 0.05), as well as higher intestinal villus height and muscle thickness (p < 0.05). In conclusion, the C12 group optimally enhanced the growth, antioxidant response, and hepatointestinal health of S. younghusbandi, indicating that the suitable dietary carbohydrate level for this species is 12%. Full article
(This article belongs to the Section Nutrition and Feeding)
Show Figures

Figure 1

13 pages, 1436 KB  
Article
Functional Characterization of Trypsin in the Induction of Biologically Live Bait Feeding in Mandarin Fish (Siniperca chuatsi) Larvae
by Xiaoru Dong, Ke Lu, Jiaqi Wu, Qiuling Wang and Xu-fang Liang
Cells 2025, 14(19), 1537; https://doi.org/10.3390/cells14191537 - 1 Oct 2025
Abstract
The early developmental transition from endogenous to exogenous feeding is a critical period in carnivorous fish larvae, often associated with high mortality rates in aquaculture. Although trypsin, a key protease in protein digestion, is hypothesized to play a pivotal role in initiating exogenous [...] Read more.
The early developmental transition from endogenous to exogenous feeding is a critical period in carnivorous fish larvae, often associated with high mortality rates in aquaculture. Although trypsin, a key protease in protein digestion, is hypothesized to play a pivotal role in initiating exogenous feeding, the expression dynamics and functional contributions of trypsin and isoforms during early development remain poorly characterized in carnivorous species. This study explores the critical role of trypsin in the early feeding process of carnivorous fish, using mandarin fish (Siniperca chuatsi) as a model, which is a commercially valuable species that faces significant challenges during this phase due to its strict dependence on live prey and underdeveloped digestive system. Phylogenetic analysis indicates that, compared to herbivorous and omnivorous fish, carnivorous fish have evolved a greater number of trypsins, with a distinct branch specifically dedicated to try. RNA-seq data revealed the expression profiles of 13 trypsins during the early developmental stages of the mandarin fish. Most trypsins began to be expressed in large quantities with the appearance of the pancreas, reaching a peak prior to feeding. In situ hybridization revealed the spatiotemporal expression pattern of trypsins, starting from the pancreas in early development and later extending to the intestines. Furthermore, inhibition of trypsins activity successfully suppressed early oral feeding in mandarin fish, which was achieved by increasing the expression of cholecystokinin 2 (CCK2) and proopiomelanocortin (POMC) to suppress appetite. These findings enhance our understanding of the adaptive relationship between the ontogeny of the digestive enzyme system and feeding behavior in carnivorous fish. This research may help alleviate bottleneck issues in aquaculture production by improving the survival rate and growth performance of carnivorous fish during critical early life stages. Full article
Show Figures

Figure 1

16 pages, 3427 KB  
Article
From Bioinformatics Analysis to Recombinant Expression: Advancing Public Health with Taenia solium Proteins
by Juana Muñoz, María Camila Jurado Guacaneme, Clemencia Ovalle-Bracho, Julián Trujillo Trujillo, Sofía Duque-Beltrán, Adriana Arévalo and Carlos Franco-Muñoz
Int. J. Mol. Sci. 2025, 26(19), 9585; https://doi.org/10.3390/ijms26199585 - 1 Oct 2025
Abstract
Taeniasis and neurocysticercosis (NCC), caused by Taenia solium, are significant public health concerns recognised by the World Health Organization (WHO) in developing countries across the Americas, Asia, and Africa. Taeniasis occurs in humans after consuming undercooked pork containing the larval stage ( [...] Read more.
Taeniasis and neurocysticercosis (NCC), caused by Taenia solium, are significant public health concerns recognised by the World Health Organization (WHO) in developing countries across the Americas, Asia, and Africa. Taeniasis occurs in humans after consuming undercooked pork containing the larval stage (Cysticerci), which matures into the adult reproductive form in the intestine, releasing eggs through faeces. Accidental ingestion of these eggs by humans is the primary cause of NCC, a principal contributor to acquired epilepsy in endemic regions. Interrupting this transmission cycle is crucial to reducing the incidence of human NCC and porcine cysticercosis, thereby underscoring the need for accurate diagnosis and timely treatment of taeniasis. Current diagnostic tests for taeniasis, including microscopy, serology, copro-DNA, and coproantigen assays, exhibit variability in sensitivity, reproducibility, cross-reactivity, and accessibility. To overcome these limitations, bioinformatics tools were integrated with recombinant DNA technology to identify protein sequences with immunological potential. These sequences were evaluated in silico and used to construct an expression system. Subsequently, the antigens were expressed in a eukaryotic system, yielding two purified recombinant protein variants of 21 and 30 kDa. Their purification validated via Western blotting of the molecular tag, paves the way for the development of a direct immunological assay for the specific detection of Taenia solium carriers. Full article
(This article belongs to the Collection 30th Anniversary of IJMS: Updates and Advances in Biochemistry)
Show Figures

Figure 1

13 pages, 6786 KB  
Article
Morphological Analysis of the Intestine in Yangtze Sturgeon (Acipenser dabryanus) During Development
by Luyun Ni, Xiaoyun Wu, Feiyang Li, Qiaolin Zou, Jun Du, Jiansheng Lai and Ya Liu
Fishes 2025, 10(10), 487; https://doi.org/10.3390/fishes10100487 - 1 Oct 2025
Abstract
This study aimed to investigate the histological features of the intestine of Acipenser dabryanus from 1 to 15 months of age via HE staining, AB-PAS staining, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The intestine of A. dabryanus comprises the duodenum, [...] Read more.
This study aimed to investigate the histological features of the intestine of Acipenser dabryanus from 1 to 15 months of age via HE staining, AB-PAS staining, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The intestine of A. dabryanus comprises the duodenum, spiral valve intestine, and rectum. With age, the duodenal diameter and mucosal/muscular layer thickness increased, the spiral valve intestine’s mucosa thickened and protrusions formed networks, and the rectal diameter enlarged. Abundant mucus cells, predominantly type IV, were found in the duodenum, spiral valve intestine, and rectum of A. dabryanus at different ages by AB-PAS staining. Our study confirmed the presence of ciliated columnar cells (with ‘9 + 2’ cilia structure) with orderly arranged cilia at their apices in the mucosal epithelium of A. dabryanus’s duodenum, spiral valve intestine, and rectum for the first time, as shown by SEM and TEM. The presence of spiral valves and ciliated columnar cells in the intestinal structure of A. dabryanus highlights its unique features and evolutionary significance. These findings highlight A. dabryanus’s unique intestinal features and evolutionary significance, providing a basis for scientific feed formulation and enhancing our understanding of the histological characteristics of the sturgeon intestine. Full article
Show Figures

Graphical abstract

21 pages, 3262 KB  
Perspective
Embryonic Signaling Pathways Shape Colorectal Cancer Subtypes: Linking Gut Development to Tumor Biology
by Kitty P. Toews, Finn Morgan Auld and Terence N. Moyana
Pathophysiology 2025, 32(4), 52; https://doi.org/10.3390/pathophysiology32040052 - 1 Oct 2025
Abstract
The morphogenesis of the primordial gut relies on signaling pathways such as Wnt, FGF, Notch, Hedgehog, and Hippo. Reciprocal crosstalk between the endoderm and mesoderm is integrated into the signaling pathways, resulting in craniocaudal patterning. These pathways are also involved in adult intestinal [...] Read more.
The morphogenesis of the primordial gut relies on signaling pathways such as Wnt, FGF, Notch, Hedgehog, and Hippo. Reciprocal crosstalk between the endoderm and mesoderm is integrated into the signaling pathways, resulting in craniocaudal patterning. These pathways are also involved in adult intestinal homeostasis including cell proliferation and specification of cell fate. Perturbations in this process can cause growth disturbances manifesting as adenomas, serrated lesions, and cancer. Significant differences have been observed between right and left colon cancers in the hindgut, and between the jejunoileum, appendix, and right colon in the midgut. The question is to what extent the embryology of the mid- and hindgut contributes to differences in the underlying tumor biology. This review examines the precursor lesions and consensus molecular subtypes (CMS) of colorectal cancer (CRC) to highlight the significance of embryology and tumor microenvironment (TME) in CRC. The three main precursor lesions, i.e., adenomas, serrated lesions, and inflammatory bowel disease-associated dysplasia, are linked to the CMS classification, which is based on transcriptomic profiling and clinical features. Both embryologic and micro-environmental underpinnings of the mid- and hindgut contribute to the differences in the tumors arising from them, and they may do so by recapitulating embryonic signaling cascades. This manifests in the range of CRC CMS and histologic cancer subtypes and in tumors that show multidirectional differentiation, the so-called stem cell carcinomas. Emerging evidence shows the limitations of CMS particularly in patients on systemic therapy who develop drug resistance. The focus is thus transitioning from CMS to specific components of the TME. Full article
(This article belongs to the Section Systemic Pathophysiology)
Show Figures

Figure 1

21 pages, 10082 KB  
Article
Ulvan-Na, an Ulvan Subjected to Na+ Cation Exchange, Improves Intestinal Barrier Function in Age-Related Leaky Gut
by Yuka Maejima, Yuki Morioka, Yusei Sato, Masanori Hiraoka, Ayumu Onda and Takushi Namba
Mar. Drugs 2025, 23(10), 390; https://doi.org/10.3390/md23100390 - 30 Sep 2025
Abstract
The global increase in life expectancy underscores the need to promote healthy aging, particularly by addressing age-related leaky gut syndrome, which contributes to systemic inflammation and chronic disease. This study focused on the sustainable production and functional development of Ulva meridionalis, a [...] Read more.
The global increase in life expectancy underscores the need to promote healthy aging, particularly by addressing age-related leaky gut syndrome, which contributes to systemic inflammation and chronic disease. This study focused on the sustainable production and functional development of Ulva meridionalis, a fast-growing seaweed, to improve gut health and mitigate the effects of aging. Using land-based aquaculture, a scalable cultivation system for U. meridionalis was established, and its polysaccharide, ulvan, was extracted. Ion exchange treatment enhanced the functionality of ulvan to produce ulvan-Na, which contains high levels of Na+ and conveys superior anti-aging properties. Ulvan-Na restored intestinal barrier integrity in aged mice by reducing serum LPS levels and increasing claudin-1 expression. Ulvan-Na modulated the gut microbiota, increasing beneficial bacteria such as Clostridiales vadin BB60 and suppressing inflammatory bacteria such as Turicibacter. The mechanism was clarified whereby ulvan-Na activates β-catenin to enhance claudin-1 expression. These findings highlight ulvan-Na as a bioactive compound that ameliorates age-related intestinal dysfunction while demonstrating the feasibility of sustainable U. meridionalis production for functional food innovation and environmental conservation. Full article
Show Figures

Figure 1

21 pages, 5504 KB  
Article
Propolis Modulates the Gut Microbiota–Gut Hormone–Liver AMPK Axis to Ameliorate High-Fat Diet-Induced Metabolic Disorders in Rats
by Yanru Sun, Wanwan Huang, Yingying Shang, Mohamed G. Sharaf El-Din, Hua Hang, Peng Wang, Cuiping Zhang, Yuan Huang and Kai Wang
Nutrients 2025, 17(19), 3114; https://doi.org/10.3390/nu17193114 - 30 Sep 2025
Abstract
Objectives: Emerging evidence suggests that propolis possesses significant anti-obesity properties. While gut hormones and microbiota are known to play crucial roles in obesity development, the specific mechanisms through which propolis exerts its effects via the gut hormone axis remain poorly characterized. Methods [...] Read more.
Objectives: Emerging evidence suggests that propolis possesses significant anti-obesity properties. While gut hormones and microbiota are known to play crucial roles in obesity development, the specific mechanisms through which propolis exerts its effects via the gut hormone axis remain poorly characterized. Methods: A high-fat diet (HFD) rat model was established to investigate the regulatory effects of propolis. After 10 weeks of intervention, blood serum, liver, colon tissues, and luminal contents were analyzed for metabolic parameters, gene expression of gut hormones and AMPK pathway markers, microbial community structure, and short-chain fatty acid production. Results: Propolis effectively mitigated HFD-induced metabolic disturbances, including excessive weight gain, adipose tissue accumulation, hyperlipidemia, and hepatic dysfunction. These improvements were associated with significant upregulation of the AMPK pathway. Importantly, propolis enhanced intestinal barrier integrity and differentially modulated gut hormone expression by increasing the mRNA levels of Cck, Gip, and Ghrl, and decreasing Lep and Gcg levels. 16S rRNA sequencing analysis revealed that propolis administration selectively enriched butyrate- and propionate-producing bacterial species. Correlation analysis further identified the Eubacterium brachy group as a pivotal microbial mediator in the propolis-modulated gut microbiota–gut hormone–liver AMPK axis. Conclusions: Our findings establish that propolis ameliorates obesity-related metabolic disorders by orchestrating crosstalk among gut microbiota, enteroendocrine hormones, and hepatic AMPK signaling. These results elucidate a novel mechanistic pathway in rodents; however, their direct translatability to humans requires further clinical investigation. This tripartite axis offers a mechanistic foundation for developing microbiota-targeted anti-obesity therapies. Full article
(This article belongs to the Special Issue Effect of Dietary Components on Gut Homeostasis and Microbiota)
Show Figures

Figure 1

13 pages, 1734 KB  
Article
Chimeric Fimbrial Multiepitope Antigen Fused to Double-Mutant LT (dmLT) Induces Antibodies That Inhibit Enterotoxigenic E. coli Adhesion in Porcine IPEC-J2 Cells
by Jinxin He, Hongrui Liu, Yuexin Li, Jiashu Chang, Yayun Yang and Shaopeng Gu
Animals 2025, 15(19), 2858; https://doi.org/10.3390/ani15192858 - 30 Sep 2025
Abstract
This study focused on utilizing the double-mutant heat-labile toxin (R192G/L211A) (dmLT) as a backbone protein, into which neutralizing epitopes of ETEC (FaeG, FedF, FanC, FasA, and Fim41a) were embedded. A combination of computational modeling and immunogenicity analysis was conducted to evaluate the dmLT [...] Read more.
This study focused on utilizing the double-mutant heat-labile toxin (R192G/L211A) (dmLT) as a backbone protein, into which neutralizing epitopes of ETEC (FaeG, FedF, FanC, FasA, and Fim41a) were embedded. A combination of computational modeling and immunogenicity analysis was conducted to evaluate the dmLT(R192G/L211A) multiepitope fusion antigen (MEFA). Both the computational modeling and experimental results confirmed that all relevant epitopes were clearly exposed on the surface of the MEFA. Subcutaneous immunizations of rabbits with the MEFA protein yielded the development of IgG antibodies that targeted all five fimbriae. Furthermore, these antibodies demonstrated significant inhibition of adhesion for K88+, K99+, 987P+, F18+, and F41+ ETEC strains to porcine small intestinal epithelial cell line IPEC-J2 cells. These results indicated that the dmLT toxoid-based MEFA protein effectively elicits high-titer, functional antibodies capable of neutralizing the attachment of multiple prevalent ETEC fimbrial types, highlighting its potential as a broad-spectrum vaccine candidate. Consequently, it shows promising potential as a broad and effective vaccine against ETEC. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

23 pages, 637 KB  
Article
A Comprehensive Evaluation of Consumer Trends and the Bioactive Content of Extra Virgin Olive Oil: Comparative Insights into Trademarked and Local Products
by Senem Suna and Burcu Erdal
Foods 2025, 14(19), 3384; https://doi.org/10.3390/foods14193384 - 30 Sep 2025
Abstract
This multidisciplinary comparative study investigates consumption patterns, health-related properties, and quality attributes of trademarked and local extra virgin olive oil (EVOO) samples. It highlights the importance of localization in promoting agricultural sustainability, strengthening regional economies, and enhancing socio-economic impacts within EVOO production and [...] Read more.
This multidisciplinary comparative study investigates consumption patterns, health-related properties, and quality attributes of trademarked and local extra virgin olive oil (EVOO) samples. It highlights the importance of localization in promoting agricultural sustainability, strengthening regional economies, and enhancing socio-economic impacts within EVOO production and consumption systems. In terms of quality characteristics, significant differences were observed in color parameters (L*, a*, b*, Chroma, Hue angle) among EVOO samples (p < 0.05). Regarding nutritional and functional properties, total phenolic content (TPC) measured with the Folin–Ciocalteu method ranged from 58.15 to 176.29 mg of gallic acid equivalents/kg of oil, while total antioxidant capacity (TAC) measured by CUPRAC and DPPH assays varied between 3.42 and 6.54 and 8.56–10.71 µmol of Trolox equivalents/g of oil, respectively. TPC and TAC were also evaluated for their stability during in vitro gastro-intestinal digestion, demonstrating that EVOO’s bioactive potential remains stable under gastric and intestinal conditions. Local samples exhibited significantly higher TACs than trademarked products across undigested, gastric, and intestinal phases (p < 0.05). Concurrently, a face-to-face consumer survey assessed purchasing behaviors and preferences, revealing that 71.3% of consumers preferred local EVOO and showed a low tendency to purchase commercial brands (p < 0.05). Cooperatives were identified as the main distribution channel, playing a crucial role in sustaining local production systems. This study offers valuable insights into EVOO’s bioactive content and consumer behavior, providing a foundation for developing both localized and commercial products that support health outcomes. Additionally, the findings contribute to policy development concerning sustainable food systems and geographical indications. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

17 pages, 2004 KB  
Article
A Comparative Study of Soy Protein Isolate-κ-Carrageenan Emulsion Gels and Bigels for the Encapsulation, Protection, and Delivery of Curcumin
by Emmanueline T Gray, Weining Huang, Zhongkai Zhou, Hao Cheng and Li Liang
Gels 2025, 11(10), 782; https://doi.org/10.3390/gels11100782 - 30 Sep 2025
Abstract
Protein-based emulsion gels and bigels serve as ideal delivery systems owing to their distinctive structural properties, high encapsulation efficiency, and adjustable digestive behavior. However, limited research has examined the differences between emulsion gels and bigels as polyphenol delivery systems. In this study, oil-in-water [...] Read more.
Protein-based emulsion gels and bigels serve as ideal delivery systems owing to their distinctive structural properties, high encapsulation efficiency, and adjustable digestive behavior. However, limited research has examined the differences between emulsion gels and bigels as polyphenol delivery systems. In this study, oil-in-water (O/W)-type emulsion gels formulated with soy protein isolate (SPI) and κ-carrageenan (κ-CG) were fabricated using a cold-set gelation method, and then the bigels were prepared through further oil gelation by the addition of glycerol monostearate (GMS). Both SPI-κ-CG emulsion gels and bigels were mainly stabilized by electrostatic and hydrophobic interactions, exhibiting high gel strength, varying from 940 g to 1304 g, and high water holding capacity (~84%). Both the SPI-κ-CG emulsion gels and bigels demonstrated high curcumin encapsulation efficiency, reaching 98~99%. Stability testing revealed that bigels prepared with 15% and 20% GMS exhibited the highest curcumin retention ratios, with a value of around 78% after storage for 21 days at 25 °C, suggesting that denser network structures more effectively prevent the degradation of the encapsulated compound. During the in vitro simulated gastric digestion, higher GMS content significantly delayed curcumin release by over 7%. Increasing GMS concentration from 0% to 20% elevated lipolysis by over 8% and concurrently improved the release of curcumin by more than 18% during the in vitro simulated intestinal digestion. This study provides comparative insights into polyphenol delivery performance between emulsion gels and bigels, offering valuable guidance for developing functional foods based on gel delivery systems. Full article
(This article belongs to the Special Issue Food Gels: Fabrication, Characterization, and Application)
Show Figures

Figure 1

Back to TopTop