Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (67)

Search Parameters:
Keywords = intestinal antiviral immunity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 330 KiB  
Review
Biological Function of Medium-Chain Fatty Acids and Their Application in Aquatic Animals: A Review
by Haiyan Liu, Wenzong Zhou, Chenggang Cai, Fengqin Feng, Haiying Cai and Hang Yang
Animals 2025, 15(15), 2294; https://doi.org/10.3390/ani15152294 - 6 Aug 2025
Abstract
Medium-chain fatty acid triglycerides (MCTs) possess antibacterial, antiviral, nutritional, and other biological activities and have demonstrated significant application potential in humans and terrestrial animals. In recent years, with the development of the green aquaculture industry, MCTs have been gradually applied to aquaculture animals, [...] Read more.
Medium-chain fatty acid triglycerides (MCTs) possess antibacterial, antiviral, nutritional, and other biological activities and have demonstrated significant application potential in humans and terrestrial animals. In recent years, with the development of the green aquaculture industry, MCTs have been gradually applied to aquaculture animals, which can enhance growth performance, improve flesh quality, regulate lipid metabolism, boost immune activity, and modulate the intestinal flora, thereby improving the production efficiency of aquaculture. This paper elaborates in detail on the biological activities of MCTs and their applications in aquatic animals, providing a theoretical and practical basis for the application of MCTs in aquaculture. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

28 pages, 1184 KiB  
Review
Immune Modulation by Microbiota and Its Possible Impact on Polyomavirus Infection
by Giorgia Cianci, Gloria Maini, Matteo Ferraresi, Giulia Pezzi, Daria Bortolotti, Sabrina Rizzo, Silvia Beltrami and Giovanna Schiuma
Pathogens 2025, 14(8), 747; https://doi.org/10.3390/pathogens14080747 - 30 Jul 2025
Viewed by 396
Abstract
Polyomaviruses are a family of small DNA viruses capable of establishing persistent infections, and they can pose significant pathogenic risks in immunocompromised hosts. While traditionally studied in the context of viral reactivation and immune suppression, recent evidence has highlighted the gut microbiota as [...] Read more.
Polyomaviruses are a family of small DNA viruses capable of establishing persistent infections, and they can pose significant pathogenic risks in immunocompromised hosts. While traditionally studied in the context of viral reactivation and immune suppression, recent evidence has highlighted the gut microbiota as a critical regulator of host immunity and viral pathogenesis. This review examines the complex interactions between polyomaviruses, the immune system, and intestinal microbiota, emphasizing the role of short-chain fatty acids (SCFAs) in modulating antiviral responses. We explore how dysbiosis may facilitate viral replication, reactivation, and immune escape and also consider how polyomavirus infection can, in turn, alter microbial composition. Particular attention is given to the Firmicutes/Bacteroidetes ratio as a potential biomarker of infection risk and immune status. Therapeutic strategies targeting the microbiota, including prebiotics, probiotics, and fecal microbiota transplantation (FMT), are discussed as innovative adjuncts to immune-based therapies. Understanding these tri-directional interactions may offer new avenues for mitigating disease severity and improving patient outcomes during viral reactivation. Full article
Show Figures

Figure 1

19 pages, 6650 KiB  
Article
Multi-Strain Probiotic Regulates the Intestinal Mucosal Immunity and Enhances the Protection of Piglets Against Porcine Epidemic Diarrhea Virus Challenge
by Xueying Wang, Qi Zhang, Weijian Wang, Xiaona Wang, Baifen Song, Jiaxuan Li, Wen Cui, Yanping Jiang, Weichun Xie and Lijie Tang
Microorganisms 2025, 13(8), 1738; https://doi.org/10.3390/microorganisms13081738 - 25 Jul 2025
Viewed by 379
Abstract
Porcine epidemic diarrhea virus (PEDV) infection induces severe, often fatal, watery diarrhea and vomiting in neonatal piglets, characterized by profound dehydration, villus atrophy, and catastrophic mortality rates approaching 100% in unprotected herds. This study developed a composite probiotic from Min-pig-derived Lactobacillus crispatus LCM233, [...] Read more.
Porcine epidemic diarrhea virus (PEDV) infection induces severe, often fatal, watery diarrhea and vomiting in neonatal piglets, characterized by profound dehydration, villus atrophy, and catastrophic mortality rates approaching 100% in unprotected herds. This study developed a composite probiotic from Min-pig-derived Lactobacillus crispatus LCM233, Ligilactobacillus salivarius LSM231, and Lactiplantibacillus plantarum LPM239, which exhibited synergistic growth, potent acid/bile salt tolerance, and broad-spectrum antimicrobial activity against pathogens. In vitro, the probiotic combination disrupted pathogen ultrastructure and inhibited PEDV replication in IPI-2I cells. In vivo, PEDV-infected piglets administered with the multi-strain probiotic exhibited decreased viral loads in anal and nasal swabs, as well as in intestinal tissues. This intervention was associated with the alleviation of diarrhea symptoms and improved weight gain. Furthermore, the multi-strain probiotic facilitated the repair of intestinal villi and tight junctions, increased the number of goblet cells, downregulated pro-inflammatory cytokines, enhanced the expression of barrier proteins, and upregulated antiviral interferon-stimulated genes. These findings demonstrate that the multi-strain probiotic mitigates PEDV-induced damage by restoring intestinal barrier homeostasis and modulating immune responses, providing a novel strategy for controlling PEDV infections. Full article
(This article belongs to the Special Issue Viral Infection on Swine: Pathogenesis, Diagnosis and Control)
Show Figures

Figure 1

17 pages, 3461 KiB  
Article
DNA from Lactobacillus paragasseri SBT2055 Activates Plasmacytoid Dendritic Cells and Induces IFN-α via TLR9
by Eiji Kobatake and Toshinobu Arai
Microorganisms 2025, 13(7), 1440; https://doi.org/10.3390/microorganisms13071440 - 20 Jun 2025
Viewed by 554
Abstract
Previously, we reported that Lactobacillus paragasseri SBT2055 (LG2055) activates plasmacytoid dendritic cells (pDCs) and induces interferon alpha (IFN-α) in vitro. Our clinical trial suggested that LG2055 intake may enhance pDC activity, supporting immune maintenance and reducing subjective common cold symptoms. However, the precise [...] Read more.
Previously, we reported that Lactobacillus paragasseri SBT2055 (LG2055) activates plasmacytoid dendritic cells (pDCs) and induces interferon alpha (IFN-α) in vitro. Our clinical trial suggested that LG2055 intake may enhance pDC activity, supporting immune maintenance and reducing subjective common cold symptoms. However, the precise mechanisms remain unclear. In this study, we investigated how LG2055 engages with pDCs to stimulate IFN-α production. We evaluated LG2055-induced pDC activation using flow cytometry, ELISA, and phagocytosis assays. Human peripheral blood mononuclear cells (PBMCs) were stimulated with LG2055 and its components to evaluate immune responses. An in vitro M cell model was used to examine LG2055 translocation. We found that DNA extracted from LG2055 activated pDCs and enhanced IFN-α production via Toll-like receptor 9 (TLR9). Phagocytosis assays demonstrated that LG2055 DNA was internalized by PBMC-derived pDCs, enabling TLR9-mediated signaling. Additionally, LG2055 translocated across M cells in vitro, suggesting potential transport into Peyer’s patches, where it may interact with pDCs. These findings demonstrate that intestinal LG2055 can translocate across M cells, interact with pDCs, and exert immune-stimulatory effects to enhance host antiviral immunity. This study provides mechanistic insight into how dietary components support immune health and could inform the development of novel functional foods or therapeutic strategies. Full article
(This article belongs to the Special Issue Interactions Between Probiotics and Host)
Show Figures

Figure 1

18 pages, 4226 KiB  
Article
Tissue-Specific Transcriptomic Responses to Avian Reovirus Inoculation in Ovo
by Zubair Khalid, Shahna Fathima and Ruediger Hauck
Viruses 2025, 17(5), 646; https://doi.org/10.3390/v17050646 - 29 Apr 2025
Viewed by 603
Abstract
Avian reovirus (ARV) infections significantly impact the global poultry industry, but host responses across infection models remain poorly characterized. Using specific-pathogen-free chicken embryos, this study examined tissue-specific transcriptomic changes following in ovo inoculation with two doses of ARV S1133 at embryonic day 18. [...] Read more.
Avian reovirus (ARV) infections significantly impact the global poultry industry, but host responses across infection models remain poorly characterized. Using specific-pathogen-free chicken embryos, this study examined tissue-specific transcriptomic changes following in ovo inoculation with two doses of ARV S1133 at embryonic day 18. Quantitative PCR confirmed dose- and time-dependent viral replication, with the liver exhibiting the highest viral load at 24 h post-inoculation (hpi), whereas the kidneys, intestines, and bursa were only positive at 48 hpi with the higher viral dose. Transcriptomic profiling revealed the intestines mounted an extensive gene expression response, implicating early immune activation. Liver samples demonstrated strong upregulation of antiviral pathways, including interferon signaling and viral replication inhibition, while kidneys and intestines were enriched for coagulation and wound healing pathways. The bursae exhibited minimal immunity-related responses, suggesting insufficient maturation. Functional analyses confirmed tissue-specific immune and metabolic adaptations to infection. These findings indicate that ARV replication efficiency and host molecular responses are dose-, tissue-, and time-dependent. Notably, intestinal responses suggest preemptive immune engagement, while hepatic antiviral mechanisms may play a critical role in restricting viral spread. This study establishes foundational knowledge of host molecular responses to ARV in late-stage embryos, with implications for in ovo vaccination and early immunity. Full article
(This article belongs to the Special Issue Avian Reovirus)
Show Figures

Figure 1

24 pages, 6743 KiB  
Article
Neuroprotective and Anti-Inflammatory Activity of Undaria pinnatifida Fucoidan In Vivo—A Proteomic Investigation
by Cheng Yang, Corinna Dwan, Barbara C. Wimmer, Maurizio Ronci, Richard Wilson, Luke Johnson and Vanni Caruso
Mar. Drugs 2025, 23(5), 189; https://doi.org/10.3390/md23050189 - 27 Apr 2025
Cited by 1 | Viewed by 2375
Abstract
Undaria pinnatifida fucoidan (UPF), a bioactive sulphated polysaccharide, is widely recognised for its anti-inflammatory, antioxidant, antitumor, anticoagulant, antiviral, and immunomodulatory properties. However, the precise mechanisms by which UPF regulates inflammation and neuronal health remain unclear. This study aimed to investigate the effects of [...] Read more.
Undaria pinnatifida fucoidan (UPF), a bioactive sulphated polysaccharide, is widely recognised for its anti-inflammatory, antioxidant, antitumor, anticoagulant, antiviral, and immunomodulatory properties. However, the precise mechanisms by which UPF regulates inflammation and neuronal health remain unclear. This study aimed to investigate the effects of UPF supplementation on pro-inflammatory cytokines in skeletal muscle, small intestine, and the hypothalamus, as well as plasma cytokine levels. Additionally, a brain proteomic investigation in the nucleus accumbens (NAc) was performed to assess UPF’s impact on neuronal protein expression in mice. A total of 64 C57BL/6J mice were administered either a standard chow or high-fat diet (HFD) with or without UPF (400 mg/kg/day) for 10 weeks. In HFD-fed mice, UPF significantly reduced the expression of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) in skeletal muscle, small intestine, and hypothalamus, while also lowering circulating IL-1α and IL-6 levels. Proteomic analysis of the NAc revealed that UPF modulated proteins involved in oxidative stress, neuroinflammation, neurotransmitter regulation, and endoplasmic reticulum stress. In contrast, in chow-fed mice, UPF had no effect on the neuroinflammatory–oxidative stress markers but influenced the abundance of proteins associated with immune response and innate immunity. These findings suggest that UPF modulates stress-response pathways in a diet-dependent manner, supporting its potential neuroprotective role in inflammation-related disorders and brain health. Full article
Show Figures

Graphical abstract

17 pages, 2138 KiB  
Article
Fucoidan Alleviates Porcine Epidemic Diarrhea Virus-Induced Intestinal Damage in Piglets by Enhancing Antioxidant Capacity and Modulating Arginine Metabolism
by Qian Zhang, Maojing Wang, Zhonghua Li, Di Zhao, Yongqing Hou and Tao Wu
Animals 2025, 15(7), 1001; https://doi.org/10.3390/ani15071001 - 30 Mar 2025
Cited by 1 | Viewed by 573
Abstract
Porcine epidemic diarrhea virus (PEDV) causes severe intestinal damage, posing significant threats to the swine industry. Fucoidan (FUC), a biologically active compound, exhibits antiviral activity against multiple viruses. This study aimed to investigate the protective effects of FUC on PEDV-induced intestinal injury in [...] Read more.
Porcine epidemic diarrhea virus (PEDV) causes severe intestinal damage, posing significant threats to the swine industry. Fucoidan (FUC), a biologically active compound, exhibits antiviral activity against multiple viruses. This study aimed to investigate the protective effects of FUC on PEDV-induced intestinal injury in piglets and explore its underlying mechanisms. A total of 28 healthy crossbred piglets were randomly allocated into four experimental groups using a 2 × 2 factorial design: (1) a control group, (2) an FUC group, (3) a PEDV group, and (4) an FUC+PEDV group. From day 4 to day 10, the piglets in the FUC and FUC+PEDV groups were orally administered fucoidan at a dosage of 20 mg/kg body weight (BW) each day. On day 8, the piglets in the PEDV and FUC+PEDV groups were orally administered PEDV at a dose of 3 × 105.5 TCID50. The results show that FUC supplementation significantly decreased plasma DAO activity (p < 0.05) and increased the villus height, villus area, as well as the villus height/crypt depth (p < 0.05) in the intestine when compared to the PEDV-infected piglets. This indicates that FUC could alleviate the disruption of intestinal morphology and function caused by PEDV infection. FUC enhanced the antioxidant capacity of the piglets by increasing SOD and GSH-Px activity. Transcriptional profiling combined with quantitative analysis revealed that FUC regulates immune responses, substance transport, and arginine metabolism. Notably, FUC downregulated arginase 1 expression, which may redirect arginine toward nitric oxide synthesis, thereby establishing an antiviral state in the host. These findings highlight the potential application of FUC as a natural agent for mitigating PEDV-induced intestinal damage and improving gut health. Additionally, monitoring the health status of piglets is necessary when FUC is applied in practical applications. Full article
(This article belongs to the Special Issue Gastrointestinal Tract Health in Pigs—2nd Edition)
Show Figures

Figure 1

21 pages, 9454 KiB  
Article
Phosphodiesterase Inhibition and Immunotropic Activity of Dipyridamole Dynamic Derivatives
by Artur Martynov, Boris Farber and Alexander Katz
Curr. Issues Mol. Biol. 2025, 47(4), 214; https://doi.org/10.3390/cimb47040214 - 21 Mar 2025
Viewed by 1259
Abstract
Introduction. Many pharmacological properties of dipyridamole (DIP) are associated with its ability to inhibit phosphodiesterases (PDEs). Actually, DIP has interesting properties like antiviral for influenza, SARS-2 COVID-19, and herpesviruses. Our research aimed to design and synthesize the dynamic combinatorial DIP derivatives with more [...] Read more.
Introduction. Many pharmacological properties of dipyridamole (DIP) are associated with its ability to inhibit phosphodiesterases (PDEs). Actually, DIP has interesting properties like antiviral for influenza, SARS-2 COVID-19, and herpesviruses. Our research aimed to design and synthesize the dynamic combinatorial DIP derivatives with more pronounced inhibiting properties in relation to PDE and to carry out the HPLC analysis of the resulting combinatorial derivatives of DIP. This study is aimed at investigating the effect of the dynamic derivative of dipyridamole (DDD) on intestinal dysbiosis syndrome in mice caused by streptomycin against the background of cyclophosphamide-induced cellular immunodeficiency. Materials and methods. For the synthesis of a dynamic combinatorial derivative of dipyridamole, we used a molecular dynamic method for drug design and combinatorial acylation of dipyridamole by succinic and acetic anhydride in different molar ranges of acylation agents. Combinatorial derivatives were analyzed using gradient HPLC with a UV detector. Also, derivatives established the inhibition ability for phosphodiesterase by the spectrophotometric method. Also, we used an in vivo mouse model with immunodeficiency caused by cyclophosphamide for pharmacological study. Results and discussion. Molecular modeling suggests that 18 different dipyridamole derivatives can self-assemble into a stable supramolecular structure with lower total energy. Specific combinatorial molar ratios of the synthesis components were necessary to create a new supramolecular compound with enhanced pharmacological properties. The inhibition of phosphodiesterase in such a dynamic combinatorial derivative already appeared at a concentration of 0.05 μM. In mice with colitis caused by streptomycin treatment, the administration of DDD per os resulted in an antidiarrheal effect and prevention of the animals’ weight loss. Given the cyclophosphamide-induced immunosuppression and streptomycin-associated diarrhea, immunity was completely restored only under the action of DDD. Conclusions. The most effective dipyridamole derivative for phosphodiesterase inhibition was formed only if the number of different derivatives in solution was maximum and consisted of all 18 molecules. With other quantities of modifiers, there was no qualitative change in the inhibitory activity of the combinatorial mixture against phosphodiesterase. According to all parameters, DDD has been proven to be more effective than the pure dipyridamole reference product. Full article
(This article belongs to the Special Issue New Insight: Enzymes as Targets for Drug Development, 2nd Edition)
Show Figures

Figure 1

13 pages, 4558 KiB  
Article
PABPC4 Inhibits SADS-CoV Replication by Degrading the Nucleocapsid Protein Through Selective Autophagy
by Chenchen Zhao, Yan Qin, Haixin Huang, Wei Chen, Yanqing Hu, Xinyu Zhang, Yuying Li, Tian Lan and Wenchao Sun
Vet. Sci. 2025, 12(3), 257; https://doi.org/10.3390/vetsci12030257 - 10 Mar 2025
Viewed by 791
Abstract
Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a novel enteric coronavirus that causes severe clinical diarrhea and intestinal pathological injury in pigs. Selective autophagy is an important mechanism of host defense against virus invasion. However, the mechanism through which SADS-CoV-mediated selective autophagy mediates [...] Read more.
Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a novel enteric coronavirus that causes severe clinical diarrhea and intestinal pathological injury in pigs. Selective autophagy is an important mechanism of host defense against virus invasion. However, the mechanism through which SADS-CoV-mediated selective autophagy mediates the innate immune response remains unknown. Here, we report that the host protein PABPC4 can inhibit SADS-CoV replication through targeting and degrading its N protein. Furthermore, we demonstrate that PABPC4 recruits MARCHF8 (an E3 ubiquitin ligase), which ubiquitinates the N protein and is degraded via NDP52/CALCOCO2 (a selective autophagy cargo receptor). Taken together, these findings reveal a new mechanism by which PABPC4 inhibits virus replication, and reveal a new target for antiviral drug development. Full article
(This article belongs to the Special Issue Viral Infections in Wild and Domestic Animals)
Show Figures

Figure 1

14 pages, 2888 KiB  
Article
Inhibitory Effects of Bovine Lactoferricin-Lactoferrampin on Senecavirus A and Foot-and-Mouth Disease Virus with Recombinant Lactobacillus Oral Treatment in Mice
by Wenyue Zhao, Senhao Zhang, Ling Sui, Xiaona Wang, Jiaxuan Li, Wen Cui, Yanping Jiang, Xinyuan Qiao and Lijie Tang
Vet. Sci. 2025, 12(3), 199; https://doi.org/10.3390/vetsci12030199 - 25 Feb 2025
Viewed by 695
Abstract
Foot-and-mouth disease virus (FMDV) and Senecavirus A (SVA) have similar pathogenic characteristics, and both are important pathogens that harm the livestock industry. Studies have shown that lactoferrin peptides can inhibit the replication of various viruses and enhance the body’s immune functions. Based on [...] Read more.
Foot-and-mouth disease virus (FMDV) and Senecavirus A (SVA) have similar pathogenic characteristics, and both are important pathogens that harm the livestock industry. Studies have shown that lactoferrin peptides can inhibit the replication of various viruses and enhance the body’s immune functions. Based on this, in the present study, we aimed to investigate the effects of bovine lactoferricin-lactoferrampin (LFCA) on replicating FMDV and SVA and to analyze its role in the cellular antioxidant response caused by viral infection; in addition, we fed mice with constructed recombinant Lactobacillus reuteri expressing LFCA. Treatment with LFCA at different stages significantly inhibited the replication of both SVA and FMDV. Pretreatment before SVA infection achieved an inhibition rate of up to 94.9%, while treatment during the FMDV replication stage achieved an inhibition rate of 74.3%. After infection with either virus, intracellular ROS and MDA levels were significantly reduced, as was GSH-Px activity. However, SOD activity showed no significant difference, compared with the virus-exposed group, and remained at a high level, suggesting an increased cellular antioxidant capacity. LFCA treatment significantly increased the transcription levels of the Nrf2, Ho-1, and Nqo1 genes. In mouse experiments, the LFCA-treated group showed significantly lower viral loads in lung and intestinal tissues, compared with the SVA infection group, validating LFCA’s protective effect against SVA infection. These findings demonstrate the potential of LFCA as an antiviral drug. Full article
Show Figures

Figure 1

15 pages, 4078 KiB  
Article
NLRC3 Attenuates Antiviral Innate Immune Response by Targeting IRF7 in Grass Carp (Ctenopharyngodon idelus)
by Lei Zhang, Haitai Chen, Xiang Zhao, Youcheng Chen, Shenpeng Li, Tiaoyi Xiao and Shuting Xiong
Int. J. Mol. Sci. 2025, 26(2), 840; https://doi.org/10.3390/ijms26020840 - 20 Jan 2025
Viewed by 983
Abstract
NLRC3 belongs to the NOD-like receptor family and is recognized as a modulator of innate immune mechanisms. In this study, we firstly report that Ctenopharyngodon idelus NLRC3 (CiNLRC3) acts as a negative regulator in the antiviral immune response. Cinlrc3 is ubiquitously [...] Read more.
NLRC3 belongs to the NOD-like receptor family and is recognized as a modulator of innate immune mechanisms. In this study, we firstly report that Ctenopharyngodon idelus NLRC3 (CiNLRC3) acts as a negative regulator in the antiviral immune response. Cinlrc3 is ubiquitously expressed across tested tissues, displaying particularly high expression in the intestine, spleen, gill and kidney. Notably, Cinlrc3 expression is markedly upregulated following grass carp reovirus (GCRV) infection both in vivo and in vitro. Functional assays reveal that the overexpression of CiNLRC3 hampers cellular antiviral responses, thereby facilitating viral replication. Conversely, the silencing of CiNLRC3 through siRNA transfection enhances these antiviral activities. Additionally, CiNLRC3 substantially diminishes the retinoic acid-inducible gene I (RIG-I)-like receptor (RLR)-mediated interferon (IFN) response in fish. Subsequent molecular investigations indicates that CiNLRC3 interacts with the RLR molecule node, IRF7 but not IRF3, by degrading the IRF7 protein in a proteasome-dependent manner. Furthermore, CiNLRC3 co-localizes with CiIRF7 in the cytoplasm and impedes the IRF7-induced IFN response, resulting in impairing IRF7-mediated antiviral immunity. Summarily, these findings underscore the critical inhibitory role of teleost NLRC3 in innate immunity, offering new perspectives on its regulatory functions and potential as a target for resistant breeding in fish. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

15 pages, 3080 KiB  
Article
Immunologic Effects of a Novel Bovine Lactoferrin-Derived Peptide on the Gut and Clinical Perspectives
by Haiyue Cui, Huan Yang, Xiaoxi Qi, Yang Zhao, Tianle Huang and Liguang Miao
Vet. Sci. 2024, 11(11), 545; https://doi.org/10.3390/vetsci11110545 - 6 Nov 2024
Cited by 1 | Viewed by 1410
Abstract
Bovine lactoferrin is a natural iron-binding glycoprotein known for its antimicrobial, antiviral, antitumor, anti-inflammatory, and immunomodulatory properties. In this study, we artificially recombined a fragment of bovine lactoferrin with immunomodulatory and antimicrobial properties to create a novel peptide named LF-MQL. The primary objective [...] Read more.
Bovine lactoferrin is a natural iron-binding glycoprotein known for its antimicrobial, antiviral, antitumor, anti-inflammatory, and immunomodulatory properties. In this study, we artificially recombined a fragment of bovine lactoferrin with immunomodulatory and antimicrobial properties to create a novel peptide named LF-MQL. The primary objective was to investigate the effects of LF-MQL on the intestinal tract and immune cells in animals. First, we assessed the in vitro activation effects of LF-MQL on mouse peritoneal macrophages. The results indicated that LF-MQL enhanced the macrophage phagocytic activity and increased IL-1β mRNA expression without significantly affecting IL-6 mRNA levels. Next, we examined the effects of LF-MQL on mucosal immunity by administering LF-MQL orally at doses of 300 mg/kg, 30 mg/kg, and 3 mg/kg to mice. The results demonstrated that different doses of LF-MQL modulated IL-6 and IL-10 mRNA levels in the small intestine. Low doses enhanced the intestinal immune response, while higher doses reduced the inflammatory response. In conclusion, LF-MQL exerts immunomodulatory effects rather than simply boosting immune activity in animal models. Full article
(This article belongs to the Section Veterinary Biomedical Sciences)
Show Figures

Figure 1

15 pages, 1267 KiB  
Article
Fucoidan from Undaria pinnatifida Enhances Exercise Performance and Increases the Abundance of Beneficial Gut Bacteria in Mice
by Cheng Yang, Corinna Dwan, Barbara C. Wimmer, Richard Wilson, Luke Johnson and Vanni Caruso
Mar. Drugs 2024, 22(11), 485; https://doi.org/10.3390/md22110485 - 29 Oct 2024
Cited by 5 | Viewed by 2960
Abstract
Fucoidans, known for their diverse biological properties such as anti-inflammatory, antiviral, antitumor, and immune stimulatory effects, have recently gained attention for their potential benefits in exercise endurance, muscle mass, and anti-fatigue. However, the mechanisms by which fucoidans enhance exercise performance are still unclear. [...] Read more.
Fucoidans, known for their diverse biological properties such as anti-inflammatory, antiviral, antitumor, and immune stimulatory effects, have recently gained attention for their potential benefits in exercise endurance, muscle mass, and anti-fatigue. However, the mechanisms by which fucoidans enhance exercise performance are still unclear. To investigate these effects, we administered 400 mg/kg/day of fucoidan extract derived from Undaria pinnatifida to 64 C57BL/6J mice over 10 weeks. We evaluated changes in running activity, mitochondrial-related gene expression in skeletal muscle, and alterations in the intestinal microbiome. Our results showed that fucoidan supplementation significantly increased daily running distance and muscle mass by 25.5% and 10.4%, respectively, in mice on a standard chow diet, and with more modest effects observed in those on a high-fat diet (HFD). Additionally, fucoidan supplementation led to a significant increase in beneficial gut bacteria, including Bacteroides/Prevotella, Akkermansia muciniphila, and Lactobacillus, along with a notable reduction in the Firmicutes/Bacteroidetes ratio, indicating improved gut microbiome health. Mechanistically, fucoidan supplementation upregulated the mRNA expression of key genes related to mitochondrial biogenesis and oxidative capacity, such as COX4, MYH1, PGC-1α, PPAR-γ, and IGF1, in both standard chow and HFD-fed mice. Our findings suggest that fucoidan supplementation enhances exercise performance, improves muscle function, and positively modulates the gut microbiome in mice, regardless of diet. These effects may be attributed to fucoidans’ potential prebiotic role, promoting the abundance of beneficial gut bacteria and contributing to enhanced exercise performance, increased muscle strength, and improved recovery. Full article
(This article belongs to the Special Issue Bioactive Polysaccharides from Seaweeds)
Show Figures

Graphical abstract

9 pages, 924 KiB  
Brief Report
6′-Sialyllactose Enhances Exercise Performance via Increased Muscle Mass and Strength
by Eun-Jung Park, Li-La Kim, Jie-Oh Lee, Hay-Young Lee, Yong-An Kim and Hi-Roe Go
Nutrients 2024, 16(16), 2600; https://doi.org/10.3390/nu16162600 - 7 Aug 2024
Cited by 2 | Viewed by 3143
Abstract
Sialyllactose (SL) is a functional human milk oligosaccharide essential for immune support, brain development, intestinal maturation, and antiviral defense. However, despite its established health benefits, the effect of SL on exercise performance and muscle mass in mice remains unknown. Here, we aimed to [...] Read more.
Sialyllactose (SL) is a functional human milk oligosaccharide essential for immune support, brain development, intestinal maturation, and antiviral defense. However, despite its established health benefits, the effect of SL on exercise performance and muscle mass in mice remains unknown. Here, we aimed to investigate, for the first time, the effects of 6′-SL on muscle functions. Seven-week-old male C57BL/6J mice were administered 100 mg/kg 6′-SL for 12 weeks, after which exhaustive treadmill performance was conducted. Moreover, muscle strength was examined by grip strength, and muscle phenotype characteristics such as muscle mass, muscle fiber size, and muscle protein expression were also examined. The administration of 6′-SL significantly improved exhaustive treadmill performance metrics, including distance and exhaustion time. Grip strength was also increased by 6′-SL administration. Additionally, 6′-SL increased muscle mass in both the gastrocnemius (GAS) and soleus. 6′-SL administration led to an increase in the minimum Feret’s diameter and the protein expression of total myosin heavy chain in the GAS muscle. In conclusion, 6′-SL administration in vivo led to increased running distance and time by increasing muscle mass and strength. These findings collectively indicate that 6′-SL is a potential agent for improving muscle health and exercise performance. Full article
(This article belongs to the Special Issue Sports Nutrition in Endurance Performance)
Show Figures

Graphical abstract

12 pages, 2291 KiB  
Article
Modulation of the Toll-like Receptor 3-Mediated Intestinal Immune Response by Water Kefir
by Stefania Dentice Maidana, Ramiro Ortiz Moyano, Mariano Elean, Yoshiya Imamura, Leonardo Albarracín, Fu Namai, Yoshihito Suda, Keita Nishiyama, Julio Villena and Haruki Kitazawa
Microbiol. Res. 2024, 15(3), 1239-1250; https://doi.org/10.3390/microbiolres15030083 - 20 Jul 2024
Cited by 2 | Viewed by 1522
Abstract
Kefir has been associated with beneficial effects on its host’s health. The previous works examining the impact of kefir on the immune system focused on milk kefir or the exopolysaccharides and bacterial strains derived from it, while water kefir has not been evaluated. [...] Read more.
Kefir has been associated with beneficial effects on its host’s health. The previous works examining the impact of kefir on the immune system focused on milk kefir or the exopolysaccharides and bacterial strains derived from it, while water kefir has not been evaluated. Furthermore, studies have focused on kefir’s ability to modulate immune system hemostasis and exert anti-inflammatory effects, while its specific action on antiviral immunity has not been investigated. Thus, the aim of this work was to examine the potential immunomodulatory effects of water kefir on the intestinal innate antiviral immunity mediated by Toll-like receptor-3 (TLR3). Adult BALB/c mice fed water kefir ad libitum, diluted 1:5, 1:10, or 1:20 in the drinking water, for 6 consecutive days. On day 7, the treated groups and the untreated control mice received an intraperitoneal injection of the TLR3 agonist poly(I:C). Two days after the TLR3 activation, the intestinal damage and the innate immune response were studied. The intraperitoneal administration of poly(I:C) induced inflammatory-mediated intestinal tissue damage, characterized by the upregulation of interferons (IFNs), pro-inflammatory mediators (TNF-α, IL-15, IL-6), and factors involved in epithelial destruction (RAE-1 and NKG2D). The histological analysis of small intestinal samples showed that mice receiving water kefir 1:5 exhibited reduced edema and a lower inflammatory cell infiltration. Kefir-treated mice had significantly lower levels of serum LDH, AST, and ALT as well as intestinal TNF-α, IL-15, IL-6, RAE-1, and NKG2D. This group also showed higher concentrations of intestinal IFN-β, IFN-γ, and IL-10. The treatment with 1:10 of water kefir reduced intestinal damage and modulated cytokines but its effect was significantly lower than the 1:5 treatment, while the water kefir 1:20 did not modify the parameters evaluated compared to control mice. The results indicate that water kefir exerts its immunomodulatory effects in a dose-dependent manner. The in vivo studies allow us to speculate that water kefir can induce two beneficial effects on the intestinal TLR3-mediated immune response: the enhancement of antiviral defenses and the protection against the inflammatory-mediated tissue damage. These protective effects of water kefir require further exploration to understand how water kefir, or its specific molecules/strains, can influence the immune response and to determine the extent of its protection against a real viral challenge. Full article
Show Figures

Figure 1

Back to TopTop