Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (57)

Search Parameters:
Keywords = interferon beta-1b

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1016 KiB  
Article
Exploring Molecular Signatures Associated with Inflammation and Angiogenesis in the Aqueous Humor of Patients with Non-Proliferative Diabetic Retinopathy
by Víctor Alegre-Ituarte, Irene Andrés-Blasco, David Peña-Ruiz, Salvatore Di Lauro, Sara Crespo-Millas, Alessio Martucci, Jorge Vila-Arteaga, María Dolores Pinazo-Durán, David Galarreta and Julián García-Feijoo
Int. J. Mol. Sci. 2025, 26(13), 6461; https://doi.org/10.3390/ijms26136461 - 4 Jul 2025
Viewed by 344
Abstract
Type 2 diabetes mellitus (T2DM) is a major public health concern that significantly increases the risk of diabetic retinopathy (DR), a leading cause of visual impairment worldwide. This study aimed to identify molecular markers of inflammation (INF) and angiogenesis (ANG) in the aqueous [...] Read more.
Type 2 diabetes mellitus (T2DM) is a major public health concern that significantly increases the risk of diabetic retinopathy (DR), a leading cause of visual impairment worldwide. This study aimed to identify molecular markers of inflammation (INF) and angiogenesis (ANG) in the aqueous humor (AH) of patients with non-proliferative diabetic retinopathy (NPDR). We conducted an observational, multicenter, case–control study including 116 participants classified into T2DM with NPDR, T2DM without DR, and non-diabetic controls (SCG) undergoing cataract surgery. AH samples were collected intraoperatively and analyzed for 27 cytokines using multiplex immunoassay. Eighteen immune mediators were detected in AH samples, and several were significantly elevated in the NPDR group, including the interleukins (IL) -1β, -6, -8, -15, -17, as well as the granulocyte–macrophage colony stimulating factor (GM-CSF), basic fibroblast growth factor (bFGF), interferon gamma-induced protein (IP-10), macrophage inflammatory protein 1 beta (MIP-1b), monocyte chemoattractant protein-1 (MCP-1), regulated on activation, normal T cell-expressed and -secreted protein (RANTES), and the vascular endothelial growth factor (VEGF). These molecules are involved in retinal INF, blood–retinal barrier breakdown, and pathological neovascularization. Our findings reveal a distinct pro-INF and pro-ANG profile in the AH of NPDR patients, suggesting that these cytokines may serve as early diagnostic/prognostic biomarkers for DR. Targeting these molecules could provide novel therapeutic strategies to mitigate retinal damage and vision loss in diabetic patients. Full article
(This article belongs to the Special Issue Advanced Research in Retina: 3rd Edition)
Show Figures

Figure 1

14 pages, 2600 KiB  
Article
SADS-CoV nsp5 Inhibits Interferon Production by Targeting Kinase IKKε
by Gaoli She, Chunhui Zhong, Yue Pan, Zexin Chen, Jingmin Li, Mingchong Li, Yufang Liu, Yongchang Cao, Xiaona Wei and Chunyi Xue
Microorganisms 2025, 13(7), 1494; https://doi.org/10.3390/microorganisms13071494 - 26 Jun 2025
Viewed by 322
Abstract
Swine acute diarrhea syndrome coronavirus (SADS-CoV), initially identified in China in February 2017, severely impacts the swine industry by causing lethal watery diarrhea in neonatal piglets. Understanding the molecular mechanism employed by SADS-CoV to evade the host’s immune defenses is of utmost importance. [...] Read more.
Swine acute diarrhea syndrome coronavirus (SADS-CoV), initially identified in China in February 2017, severely impacts the swine industry by causing lethal watery diarrhea in neonatal piglets. Understanding the molecular mechanism employed by SADS-CoV to evade the host’s immune defenses is of utmost importance. In this study, using the porcine ileum epithelial cell line IPI-FX as an in vitro model, we investigated the highly pathogenic SADS-CoV GDS04 strain and its nonstructural protein 5 (nsp5) for their roles in inhibiting interferon-beta (IFN-β) production. Our findings indicated that GDS04 inhibited poly(I:C)-induced IFN-β production by impeding the promoter activities of IRF3 and NF-κB. As a 3C-like protease, SADS-CoV nsp5 functioned as an interferon inhibitor by interacting with IKKε, reducing its protein abundance, and inhibiting its phosphorylation. This study enhances our understanding of the interaction between coronaviruses and their hosts, providing novel insights into the evasion of the immune system by coronaviruses. Full article
(This article belongs to the Special Issue Research on Swine Virus Infection and Immunity)
Show Figures

Figure 1

23 pages, 3897 KiB  
Article
Design of a Multi-Epitope Vaccine Candidate Against Infectious Laryngotracheitis Virus Affecting Poultry by Computational Approaches
by Periyasamy Ponnusamy, Kuppannan Sukumar, Angamuthu Raja, Sellappan Saravanan, Palani Srinivasan, Kalaivanan Ramya, Mani Selvaraju and Ramasamy Saravanan
Biology 2025, 14(7), 765; https://doi.org/10.3390/biology14070765 - 25 Jun 2025
Viewed by 205
Abstract
Infectious laryngotracheitis (ILT) is a severe upper respiratory disease highly contagious in chickens that causes a huge economic impact on the poultry industry all over the world. The current study aimed to design a multi-epitope-based vaccine candidate using envelope glycoprotein B and glycoprotein [...] Read more.
Infectious laryngotracheitis (ILT) is a severe upper respiratory disease highly contagious in chickens that causes a huge economic impact on the poultry industry all over the world. The current study aimed to design a multi-epitope-based vaccine candidate using envelope glycoprotein B and glycoprotein D of the ILT virus using an immune informatics approach. The glycoproteins B and D are crucial for attachment as well as entry of ILT virus inside the cell, which makes them a potential option for designing vaccine candidates. The prediction of epitopes, viz. helper T lymphocyte, cytotoxic T lymphocyte and interferon-gamma producing epitopes, was performed and high-scoring predicted epitopes were joined in an organized manner using suitable linkers to design the final vaccine candidate. The avian beta-defensin 1 was included as an adjuvant in the amino-terminal of the vaccine design that possesses antimicrobial activity and histidine residues at the carboxy-terminal for the purpose of purification. The final vaccine candidate was evaluated for its physicochemical characteristics, solubility, antigenicity, stability, and allergenicity and validated for its modeling. Molecular docking, binding affinity, and interacting residues between the vaccine candidate and immune receptors, viz. TLR 3, MHC Class I and Class II were assessed. Further, to assess the immune response profile generated by the final vaccine design, an insilico immune simulation study was also performed. The findings of this study revealed that the final vaccine candidate was antigenic, nonallergenic, stable, interacted with immune receptors, and able to produce antibodies as well as cellular immune responses against ILTV infection. Full article
Show Figures

Graphical abstract

21 pages, 5488 KiB  
Article
Germinated Spores of the Probiotic Bacterium Bacillus coagulans JBI-YZ6.3 Support Dynamic Changes in Intestinal Epithelial Communication and Resilience to Mechanical Wounding
by Sage V. McGarry, Earvin A. F. Grinage, Krista Sanchez, Dina Cruickshank, Liang Anderson and Gitte S. Jensen
Microorganisms 2025, 13(7), 1466; https://doi.org/10.3390/microorganisms13071466 - 24 Jun 2025
Viewed by 747
Abstract
The spore-forming probiotic Bacillus coagulans JBI-YZ6.3 interacts with the gut epithelium via its secreted metabolites as well as its cell walls, engaging pattern-recognition receptors on the epithelium. We evaluated its effects on human T84 gut epithelial cells using in vitro co-cultures, comparing metabolically [...] Read more.
The spore-forming probiotic Bacillus coagulans JBI-YZ6.3 interacts with the gut epithelium via its secreted metabolites as well as its cell walls, engaging pattern-recognition receptors on the epithelium. We evaluated its effects on human T84 gut epithelial cells using in vitro co-cultures, comparing metabolically active germinated spores to the isolated metabolite fraction and cell wall fraction under unstressed versus inflamed conditions. Germinated spores affected epithelial communication via chemokines interleukin-8, interferon gamma-induced protein-10, and macrophage inflammatory protein-1 alpha and beta after 2 and 24 h of co-culture. Non-linear dose responses confirmed that bacterial density affected the epigenetic state of the epithelial cells. In contrast, the cell wall fraction increased cytokine and chemokine levels under both normal and inflamed conditions, demonstrating that the intact bacterium had anti-inflammatory properties, regulating pro-inflammatory signals from its cell walls. During recovery from mechanical wounding, germinated spores accelerated healing, both in the absence and presence of LPS-induced inflammation; both the metabolite and cell wall fractions contributed to this effect. The release of zonulin, a regulator of tight junction integrity, was reduced by germinated spores after 2 h. These findings suggest that B. coagulans JBI-YZ6.3 modulates epithelial chemokine signaling, supports barrier integrity, and enhances epithelial resilience, highlighting its potential as an efficacious multi-faceted probiotic for gut health. Full article
(This article belongs to the Special Issue Advances in Host-Gut Microbiota)
Show Figures

Figure 1

13 pages, 3316 KiB  
Article
Inhibition of Retinoblastoma Cell Growth by Boswellic Acid Through Activation of the Suppressing Nuclear Factor—κB Activation
by Semih Doğan, Mehmet Cudi Tuncer and İlhan Özdemir
Medicina 2025, 61(3), 480; https://doi.org/10.3390/medicina61030480 - 10 Mar 2025
Cited by 1 | Viewed by 698
Abstract
Background and Objectives: Despite the development of treatment methods and the emergence of alternative new approaches in recent years, the visual prognosis of retinoblastoma contains deficiencies and this situation increases the need for the development of new treatment approaches. The cytotoxic and apoptosis-inducing [...] Read more.
Background and Objectives: Despite the development of treatment methods and the emergence of alternative new approaches in recent years, the visual prognosis of retinoblastoma contains deficiencies and this situation increases the need for the development of new treatment approaches. The cytotoxic and apoptosis-inducing effects of the combination of boswellic acid (BA), which has been determined to have significant potential in preclinical and clinical studies of various diseases, and Cisplatin (Cis), a potent chemotherapy agent, were investigated on the human retinoblastoma cell line (Y79). Materials and Methods: The cytotoxic effect of BA and Cis on Y79 cells was determined by the water soluble tetrazolium-1 (WST-1) test, the apoptotic rate of the cells was determined by annexin V staining, and the gene expressions of Protein53 (p53), Caspase-3 and Nuclear factor kappa B (NF-κB), which play an important role in apoptosis, were determined by RT-qPCR analysis. Interleukin 1-beta (IL1-β), tumor necrosis factor-α (TNF-α) and interferon γ (IFN-γ) levels were analyzed in cell lysates obtained from the experimental groups. Results: The combination of BA and Cis selectively inhibited the growth of Y79 cells and modulated NF-κB signaling, potentially through post-translational regulatory mechanisms. Moreover, it induced apoptosis by increasing p53 and Caspase-3 expressions, confirming its pro-apoptotic effects. Additionally, the combination treatment was associated with a reduction in inflammatory cytokine levels (TNF-α, IL1-β), suggesting a potential regulatory effect on inflammation-related pathways rather than direct inhibition of NF-κB activation. Conclusions: These findings suggest that BA combined with Cis inhibits Y79 retinoblastoma cell growth by inducing apoptosis and modulating NF-κB signaling. While NF-κB mRNA levels increased, reduced inflammatory cytokines and enhanced apoptosis suggest potential post-translational regulation. Further studies are needed to confirm NF-κB protein-level effects and in vivo efficacy. Full article
Show Figures

Figure 1

14 pages, 3499 KiB  
Article
High Mitophagy and Low Glycolysis Predict Better Clinical Outcomes in Acute Myeloid Leukemias
by Amreen Salwa, Alessandra Ferraresi, Letizia Vallino, Chinmay Maheshwari, Riccardo Moia, Gianluca Gaidano and Ciro Isidoro
Int. J. Mol. Sci. 2024, 25(21), 11527; https://doi.org/10.3390/ijms252111527 - 27 Oct 2024
Cited by 1 | Viewed by 1792
Abstract
Acute myeloid leukemia (AML) emerges as one of the most common and fatal leukemias. Treatment of the disease remains highly challenging owing to profound metabolic rewiring mechanisms that confer plasticity to AML cells, ultimately resulting in therapy resistance. Autophagy, a highly conserved lysosomal-driven [...] Read more.
Acute myeloid leukemia (AML) emerges as one of the most common and fatal leukemias. Treatment of the disease remains highly challenging owing to profound metabolic rewiring mechanisms that confer plasticity to AML cells, ultimately resulting in therapy resistance. Autophagy, a highly conserved lysosomal-driven catabolic process devoted to macromolecular turnover, displays a dichotomous role in AML by suppressing or promoting disease development and progression. Glycolytic metabolism represents a pivotal strategy for AML cells to sustain increasing energy needs related to uncontrolled growth during disease progression. In this study, we tested the hypothesis that a high glycolytic rate and low autophagy flux could represent an advantage for AML cell proliferation and thus be detrimental for patient’s prognosis, and vice versa. TCGA in silico analysis of the AML cohort shows that the high expression of MAP1LC3B (along with that of BECN1 and with low expression of p62/SQSTM1) and the high expression of BNIP3 (along with that of PRKN and of MAP1LC3B), which together are indicative of increased autophagy and mitophagy, correlate with better prognosis. On the other hand, the high expression of glycolytic markers HK2, PFKM, and PKM correlates with poor prognosis. Most importantly, the association of a low expression of glycolytic markers with a high expression of autophagy–mitophagy markers conferred the longest overall survival for AML patients. Transcriptomic analysis showed that this combined signature correlates with the downregulation of a subset of genes required for the differentiation of myeloid cells, lactate/pyruvate transporters, and cell cycle progression, in parallel with the upregulation of genes involved in autophagy/lysosomal trafficking and proteolysis, anti-tumor responses like beta-interferon production, and positive regulation of programmed cell death. Taken together, our data support the view that enhanced autophagy-mitophagy flux together with low glycolytic rate predisposes AML patients to a better clinical outcome, suggesting that autophagy inducers and glucose restrictors may hold potential as adjuvant therapeutics for improving AML management. Full article
Show Figures

Figure 1

21 pages, 5581 KiB  
Article
Reverse Vaccinology Integrated with Biophysics Techniques for Designing a Peptide-Based Subunit Vaccine for Bourbon Virus
by Taghreed N. Almanaa
Bioengineering 2024, 11(11), 1056; https://doi.org/10.3390/bioengineering11111056 - 23 Oct 2024
Cited by 1 | Viewed by 1608
Abstract
Despite the seriousness of the disease carried by ticks, little is known about the Bourbon virus. Only three US states have recorded human cases of Bourbon virus (BRBV) infection; in all cases, a tick bite was connected with the onset of the illness. [...] Read more.
Despite the seriousness of the disease carried by ticks, little is known about the Bourbon virus. Only three US states have recorded human cases of Bourbon virus (BRBV) infection; in all cases, a tick bite was connected with the onset of the illness. The Bourbon virus (BRBV) belongs to the Orthomyxoviridae family and Thogotovirus genus, originating in the states of the US, i.e., Kansas, Oklahoma and Missouri. The growing rates of BRBV infections in various parts of the US highlight the necessity for a thorough analysis of the virus’s transmission mechanisms, vector types and reservoir hosts. Currently, there are no vaccines or efficient antiviral therapies to stop these infections. It is imperative to produce a vaccination that is both affordable and thermodynamically stable to reduce the likelihood of future pandemics. Various computational techniques and reverse vaccinology methodologies were employed to identify specific B- and T-cell epitopes. After thorough examination, the linker proteins connected the B- and T-cell epitopes, resulting in this painstakingly constructed vaccine candidate. Furthermore, 3D modeling directed the vaccine construct toward molecular docking to determine its binding affinity and interaction with TLR-4. Human beta-defensin was used as an adjuvant and linked to the N-terminus to boost immunogenicity. Furthermore, the C-IMMSIM simulation resulted in high immunogenic activities, with activation of high interferon, interleukins and immunoglobulin. The results of the in silico cloning process for E. coli indicated that the vaccine construct will try its utmost to express itself in the host, with a codon adaptation CAI value of 0.94. A net binding free energy of −677.7 kcal/mol obtained during docking showed that the vaccine has a high binding affinity for immunological receptors. Further validation was achieved via molecular dynamic simulations, inferring the confirmational changes during certain time intervals, but the vaccine remained intact to the binding site for a 100 ns interval. The thermostability determined using an RMSF score predicted certain changes in the mechanistic insights of the loop region with carbon alpha deviations, but no major changes were observed during the simulations. Thus, the results obtained highlight a major concern for researchers to further validate the vaccine’s efficacy using in vitro and in vivo approaches. Full article
Show Figures

Graphical abstract

16 pages, 10396 KiB  
Article
Deoxynivalenol-Induced Spleen Toxicity in Mice: Inflammation, Endoplasmic Reticulum Stress, Macrophage Polarization, and the Dysregulation of LncRNA Expression
by Qingbo Zhao, Weili Feng, Peiyu Gao, Yu Han, Siyi Zhang, Ao Zhou, Liangyu Shi and Jing Zhang
Toxins 2024, 16(10), 432; https://doi.org/10.3390/toxins16100432 - 9 Oct 2024
Cited by 2 | Viewed by 1637
Abstract
The spleen is a primary target of deoxynivalenol (DON) toxicity, but its underlying molecular mechanisms remain unclear. This study investigates the effects of DON on inflammation, splenic macrophage polarization, endoplasmic reticulum (ER) stress, and transcriptome changes (mRNA and lncRNAs) in mouse spleen. We [...] Read more.
The spleen is a primary target of deoxynivalenol (DON) toxicity, but its underlying molecular mechanisms remain unclear. This study investigates the effects of DON on inflammation, splenic macrophage polarization, endoplasmic reticulum (ER) stress, and transcriptome changes (mRNA and lncRNAs) in mouse spleen. We found that DON exposure at doses of 2.5 or 5 mg/kg BW significantly induced inflammation and polarized splenic macrophages towards the M1 phenotype. Additionally, DON activated PERK-eIF2α-ATF4-mediated ER stress and upregulated apoptosis-related proteins (caspase-12, caspase-3). The ER stress inhibitor, 4-Phenylbutyric acid, significantly alleviated DON-induced ER stress, apoptosis, and the M1 polarization of splenic macrophages. Transcriptome analysis identified 1968 differentially expressed (DE) lncRNAs and 2664 DE mRNAs in mouse spleen following DON exposure. Functional enrichment analysis indicated that the upregulated genes were involved in pathways associated with immunity, including Th17 cell differentiation, TNF signaling, and IL-17 signaling, while downregulated mRNAs were linked to cell survival and growth pathways. Furthermore, 370 DE lncRNAs were predicted to target 255 DE target genes associated with immune processes, including the innate immune response, interferon-beta response, cytokine production regulation, leukocyte apoptosis, and NF-κB signaling genes. This study provides new insights into the mechanisms underlying DON toxicity and its effects on the immune system. Full article
(This article belongs to the Special Issue Mitigation and Detoxification Strategies of Mycotoxins)
Show Figures

Figure 1

12 pages, 955 KiB  
Article
The Impact of Modern Bone Markers in Multiple Myeloma: Prospective Analyses Pre and Post-First Line Treatment
by Vlad Stefan Pop, Mihaela Iancu, Adrian Bogdan Țigu, Anda Adam, Gheorghe Tomoaia, Anca Daniela Farcas, Anca Simona Bojan and Andrada Parvu
Curr. Issues Mol. Biol. 2024, 46(9), 9330-9341; https://doi.org/10.3390/cimb46090552 - 24 Aug 2024
Cited by 1 | Viewed by 1882
Abstract
Multiple myeloma, the disease characterized by the malignant proliferation of plasma cells that invades the bone marrow, produces osteolytic lesions and secretes monoclonal proteins. Several biomarkers have been shown to represent important tools in the pathogenesis of myeloma and offer insights into bone [...] Read more.
Multiple myeloma, the disease characterized by the malignant proliferation of plasma cells that invades the bone marrow, produces osteolytic lesions and secretes monoclonal proteins. Several biomarkers have been shown to represent important tools in the pathogenesis of myeloma and offer insights into bone degradation and formation. The objectives of this current study were to assess the associations of modern biomarkers (TNF-α: tumor necrosis factor; IFN: Interferon; FreeRANKL: Free Receptor Activator for Nuclear Factor kappa B Ligand; RANKL: Receptor Activator for Nuclear Factor kappa B Ligand, Beta crosslaps, IL-6: Interleukin 6) with osteolytic lesions status after first-line treatment and to evaluate the correlations between modern and classical biomarkers (LDH: Lactate Dehydrogenase; VSH: Erythrocyte Sedimentation Rate; Hgb: Hemoglobin, Calcium, Albumin, B2microglobulin) stratified by osteolytic lesions status. A total of 35 patients diagnosed with multiple myeloma divided into two groups according to the osteolytic bone lesions, were studied: (1) unchanged status of osteolytic lesions and (2) changed status of osteolytic lesions. After fist-line treatment, we found a significant difference in Albumin (p = 0.0029) and Calcium levels (p = 0.0304), patients with a changed status in osteolytic lesions having higher values of Albumin and Calcium compared to those without changes in status of osteolytic lesions. After first-line treatment, decreased IL-6 values were significantly correlated with elevated values of Albumin (ρ = −0.96, p = 0.0005) in the patients with changed status of osteolytic lesions. Post-treatment values of IFN showed a significant positive correlation with Hemoglobin (ρ = 0.47, p = 0.0124), IL-6 (ρ = 0.55, p = 0.0026) and TNF-alpha values (ρ = 0.54, p = 0.0029). The results obtained from patients with unmodified lytic lesions identified a significant correlation between the biomarkers IL-6, Free RANKL, and IFN-beta with the classical marker LDH. This association highlights the involvement of these markers in promoting bone destruction and the development of osteolytic lesions. Full article
(This article belongs to the Special Issue Multiple Myeloma: From Molecular Mechanism to Diagnosis and Therapy)
Show Figures

Figure 1

20 pages, 2171 KiB  
Review
Targeting Myeloid Differentiation Primary Response Protein 88 (MyD88) and Galectin-3 to Develop Broad-Spectrum Host-Mediated Therapeutics against SARS-CoV-2
by Kamal U. Saikh, Khairul Anam, Halima Sultana, Rakin Ahmed, Simran Kumar, Sanjay Srinivasan and Hafiz Ahmed
Int. J. Mol. Sci. 2024, 25(15), 8421; https://doi.org/10.3390/ijms25158421 - 1 Aug 2024
Cited by 6 | Viewed by 2616
Abstract
Nearly six million people worldwide have died from the coronavirus disease (COVID-19) outbreak caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Although COVID-19 vaccines are largely successful in reducing the severity of the disease and deaths, the decline in vaccine-induced immunity [...] Read more.
Nearly six million people worldwide have died from the coronavirus disease (COVID-19) outbreak caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Although COVID-19 vaccines are largely successful in reducing the severity of the disease and deaths, the decline in vaccine-induced immunity over time and the continuing emergence of new viral variants or mutations underscore the need for an alternative strategy for developing broad-spectrum host-mediated therapeutics against SARS-CoV-2. A key feature of severe COVID-19 is dysregulated innate immune signaling, culminating in a high expression of numerous pro-inflammatory cytokines and chemokines and a lack of antiviral interferons (IFNs), particularly type I (alpha and beta) and type III (lambda). As a natural host defense, the myeloid differentiation primary response protein, MyD88, plays pivotal roles in innate and acquired immune responses via the signal transduction pathways of Toll-like receptors (TLRs), a type of pathogen recognition receptors (PRRs). However, recent studies have highlighted that infection with viruses upregulates MyD88 expression and impairs the host antiviral response by negatively regulating type I IFN. Galectin-3 (Gal3), another key player in viral infections, has been shown to modulate the host immune response by regulating viral entry and activating TLRs, the NLRP3 inflammasome, and NF-κB, resulting in the release of pro-inflammatory cytokines and contributing to the overall inflammatory response, the so-called “cytokine storm”. These studies suggest that the specific inhibition of MyD88 and Gal3 could be a promising therapy for COVID-19. This review presents future directions for MyD88- and Gal3-targeted antiviral drug discovery, highlighting the potential to restore host immunity in SARS-CoV-2 infections. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

12 pages, 2154 KiB  
Article
Cytokines from SARS-CoV-2 Spike-Activated Macrophages Hinder Proliferation and Cause Cell Dysfunction in Endothelial Cells
by Giulia Recchia Luciani, Amelia Barilli, Rossana Visigalli, Valeria Dall’Asta and Bianca Maria Rotoli
Biomolecules 2024, 14(8), 927; https://doi.org/10.3390/biom14080927 - 30 Jul 2024
Cited by 1 | Viewed by 1430
Abstract
Endothelial dysfunction plays a central role in the severity of COVID-19, since the respiratory, thrombotic and myocardial complications of the disease are closely linked to vascular endothelial damage. To address this issue, we evaluate here the effect of conditioned media from spike S1-activated [...] Read more.
Endothelial dysfunction plays a central role in the severity of COVID-19, since the respiratory, thrombotic and myocardial complications of the disease are closely linked to vascular endothelial damage. To address this issue, we evaluate here the effect of conditioned media from spike S1-activated macrophages (CM_S1) on the proliferation of human umbilical endothelial cells (HUVECs), focusing on the specific role of interleukin-1-beta (IL-1β), interleukin-6 (IL-6), interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α). Results obtained demonstrate that the incubation with CM_S1 for 72 h hinders endothelial cell proliferation and induces signs of cytotoxicity. Comparable results are obtained upon exposure to IFN-γ + TNF-α, which are thus postulated to play a pivotal role in the effects observed. These events are associated with an increase in p21 protein and a decrease in Rb phosphorylation, as well as with the activation of IRF-1 and NF-kB transcription factors. Overall, these findings further sustain the pivotal role of a hypersecretion of inflammatory cytokines as a trigger for endothelial activation and injury in the immune-mediated effects of COVID-19. Full article
(This article belongs to the Special Issue Insights of Innate Immunology into Inflammation and Infections)
Show Figures

Figure 1

23 pages, 1682 KiB  
Review
Multiple Sclerosis: Immune Cells, Histopathology, and Therapeutics
by Manisha S. Patil, Linda Y. Lin, Felix Marsh-Wakefield, Elizaveta J. James, Mainthan Palendira, Simon Hawke and Georges E. Grau
Sclerosis 2024, 2(3), 117-139; https://doi.org/10.3390/sclerosis2030009 - 27 Jun 2024
Cited by 2 | Viewed by 6429
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease affecting the central nervous system (CNS). In MS, oligodendrocytes and myelin that surround axons to facilitate transmission of neuronal signals are destroyed by adaptive and innate immune cells, resulting in the formation of demyelinating plaques. [...] Read more.
Multiple sclerosis (MS) is an inflammatory demyelinating disease affecting the central nervous system (CNS). In MS, oligodendrocytes and myelin that surround axons to facilitate transmission of neuronal signals are destroyed by adaptive and innate immune cells, resulting in the formation of demyelinating plaques. For many years, research into MS pathophysiology has identified immune cell populations in lesions such as T cells, B cells, and myeloid and innate lymphoid cells. In this review, we discuss the involvement of these immune cells in MS pathophysiology and demonstrate how findings from histopathology studies and single-cell analyses in animal and human models have identified which immune cell subsets contribute to disease. This knowledge has facilitated the introduction of numerous immune-targeted therapeutics towards CD20, CD52, interferon-beta, sphingosine-1-phosphate receptor, Bruton’s tyrosine kinase, and many more. These treatments have shown effective reduction in new lesion formation and management of symptoms in MS patients. Furthermore, as MS is a chronic disease, these therapeutics slow disease progression, reduce cognitive disabilities, and prevent relapses. Further research is required to develop a cure for MS with limited side effects. The ongoing research that utilises innovative methods to identify and assess MS pathophysiology could transform the treatment landscape for patients in the future. Full article
Show Figures

Figure 1

28 pages, 6424 KiB  
Article
Transforming Growth Factor Beta 2 (TGFB2) mRNA Levels, in Conjunction with Interferon-Gamma Receptor Activation of Interferon Regulatory Factor 5 (IRF5) and Expression of CD276/B7-H3, Are Therapeutically Targetable Negative Prognostic Markers in Low-Grade Gliomas
by Vuong Trieu, Anthony E. Maida and Sanjive Qazi
Cancers 2024, 16(6), 1202; https://doi.org/10.3390/cancers16061202 - 19 Mar 2024
Cited by 2 | Viewed by 3909
Abstract
LGG tumors are characterized by a low infiltration of immune cells, requiring therapeutic interventions to boost the immune response. We conducted a study analyzing mRNA expression datasets from the UCSC Xena web platform. To screen for upregulated genes, we sought to compare normal [...] Read more.
LGG tumors are characterized by a low infiltration of immune cells, requiring therapeutic interventions to boost the immune response. We conducted a study analyzing mRNA expression datasets from the UCSC Xena web platform. To screen for upregulated genes, we sought to compare normal brain tissue with LGG tumor samples. We also used cBioportal to determine the relationship between mRNA expression levels of 513 LGG patients and their overall survival (OS) outcomes. Three tumor-associated macrophage (TAM) markers, MSR1/CD204, CD86, and CD68, exhibited a 6-fold (p < 0.0001), 8.9-fold (p < 0.0001), and 15.6-fold increase in mRNA expression levels, respectively, in LGG tumors. In addition, both TGFB1 (4.1-fold increase, p < 0.0001) and TGFB2 (2.2-fold increase, p < 0.0001) ligands were also upregulated in these tumors compared to normal brain tissue, suggesting that TGFB ligands are pivotal in establishing an immunosuppressive, angiogenic, and pro-tumorigenic TME in gliomas mediated through TAMs. In addition, mRNA upregulation of interferon-gamma receptors, IFNGR1 and IFNGR2, and the downstream signaling molecules STAT1, IRF1, and IRF5, pointed to an essential role for IFN-γ mediated remodeling of the TME. Interestingly, the mRNA expression of a tumor-associated antigen, CD276/B7-H3, showed a significant (p < 0.0001) 4.03-fold increase in tumor tissue, giving further insights into the roles of macrophages and tumor cells in supporting the immunosuppressive TME. Multivariate Cox proportional hazards models investigating the interaction of TGFB2 and activation of IFNGR2, STAT1, IRF1, or IRF5 showed that the prognostic impact of high mRNA levels (25th percentile cut-off) of TGFB2 was independent of IFNGR2, STAT1, IRF1, or IRF5 mRNA levels (TGFB2high HR (95% CI) = 4.07 (2.35–7.06), 6 (3.62–10.11), 4.38 (2.67–7.17), and 4.48 (2.82–7.12) for models with IFNGR2, STAT1, IRF1, or IRF5, respectively) and age at diagnosis. Patients with high levels of TGFB2 and IFNGR2 were over-represented by LGG patients with isocitrate dehydrogenase wild-type (IDHwt) mutation status. The prognostic impact of high levels of TGFB2 and IDH wild-type observed by the increases in hazard ratios for TGFB2 (HR (95% CI range) = 2.02 (1.05–3.89)) and IDH wild-type (HR (95% CI range) = 4.44 (1.9–10.4)) were independent predictors of survival, suggesting that risk stratification of patients identifies LGG patients with IDH wild-type and high levels of TGFB2 in the design of clinical trials. Furthermore, we have additional IRF5 and CD276/B7-H3 as prognostic markers that can also be targeted for combination therapies with TGFB2 inhibitors. In support of these findings, we demonstrated that low levels of gene methylation in TGFB2, IFNGR2, IRF1, IRF5, STAT1, and CD276 were associated with significantly worse overall survival (OS) outcomes. This suggests that potential mechanisms to increase the expression of these prognostic markers occur via the action of demethylation enzymes. Full article
Show Figures

Figure 1

15 pages, 825 KiB  
Article
Childhood Maltreatment and Immune Cell Gene Regulation during Adolescence: Transcriptomics Highlight Non-Classical Monocytes
by Kate R. Kuhlman, Steve W. Cole, Ece N. Tan, James A. Swanson and Uma Rao
Biomolecules 2024, 14(2), 220; https://doi.org/10.3390/biom14020220 - 13 Feb 2024
Cited by 4 | Viewed by 2871
Abstract
Childhood maltreatment has been repeatedly linked to a higher incidence of health conditions with an underlying proinflammatory component, such as asthma, chronic obstructive pulmonary disease, stroke, and cardiovascular disease. Childhood maltreatment has also been linked to elevated systemic inflammation prior to the onset [...] Read more.
Childhood maltreatment has been repeatedly linked to a higher incidence of health conditions with an underlying proinflammatory component, such as asthma, chronic obstructive pulmonary disease, stroke, and cardiovascular disease. Childhood maltreatment has also been linked to elevated systemic inflammation prior to the onset of disease. However, childhood maltreatment is highly comorbid with other risk factors which have also been linked to inflammation, namely major depression. The present analysis addresses this issue by assessing the association of maltreatment with genome-wide transcriptional profiling of immune cells collected from four orthogonal groups of adolescents (aged 13–17): maltreated and not maltreated in childhood, with and without major depressive disorder. Maltreatment and psychiatric history were determined using semi-structured clinical interviews and cross-validated using self-report questionnaires. Dried whole blood spots were collected from each participant (n = 133) and assayed to determine the extent to which maltreatment in childhood was associated with a higher prevalence of transcriptional activity among differentially expressed genes, specific immune cell subtypes, and up- or down-regulation of genes involved in immune function after accounting for current major depression. Maltreatment was associated with increased interferon regulatory factor (IRF) transcriptional activity (p = 0.03), as well as nuclear factor erythroid-2 related factor 1 (NRF1; p = 0.002) and MAF (p = 0.01) among up-regulated genes, and increased activity of nuclear factor kappa beta (NF-κB) among down-regulated genes (p = 0.01). Non-classical CD16+ monocytes were implicated in both the up- and down-regulated genes among maltreated adolescents. These data provide convergent evidence supporting the role of maltreatment in altering intracellular and molecular markers of immune function, as well as implicate monocyte/macrophage functions as mechanisms through which childhood maltreatment may shape lifelong immune development and function. Full article
Show Figures

Figure 1

25 pages, 5726 KiB  
Review
An Overview of Cannabidiol as a Multifunctional Drug: Pharmacokinetics and Cellular Effects
by Nadia Martinez Naya, Jazmin Kelly, Giuliana Corna, Michele Golino, Ariel H. Polizio, Antonio Abbate, Stefano Toldo and Eleonora Mezzaroma
Molecules 2024, 29(2), 473; https://doi.org/10.3390/molecules29020473 - 18 Jan 2024
Cited by 29 | Viewed by 11095
Abstract
Cannabidiol (CBD), a non-psychoactive compound derived from Cannabis Sativa, has garnered increasing attention for its diverse therapeutic potential. This comprehensive review delves into the complex pharmacokinetics of CBD, including factors such as bioavailability, distribution, safety profile, and dosage recommendations, which contribute to the [...] Read more.
Cannabidiol (CBD), a non-psychoactive compound derived from Cannabis Sativa, has garnered increasing attention for its diverse therapeutic potential. This comprehensive review delves into the complex pharmacokinetics of CBD, including factors such as bioavailability, distribution, safety profile, and dosage recommendations, which contribute to the compound’s pharmacological profile. CBD’s role as a pharmacological inhibitor is explored, encompassing interactions with the endocannabinoid system and ion channels. The compound’s anti-inflammatory effects, influencing the Interferon-beta and NF-κB, position it as a versatile candidate for immune system regulation and interventions in inflammatory processes. The historical context of Cannabis Sativa’s use for recreational and medicinal purposes adds depth to the discussion, emphasizing CBD’s emergence as a pivotal phytocannabinoid. As research continues, CBD’s integration into clinical practice holds promise for revolutionizing treatment approaches and enhancing patient outcomes. The evolution in CBD research encourages ongoing exploration, offering the prospect of unlocking new therapeutic utility. Full article
(This article belongs to the Special Issue Naturally Inspired Molecules as Inhibitors in Drug Discovery)
Show Figures

Figure 1

Back to TopTop