Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (58)

Search Parameters:
Keywords = interferometric wide swath

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3088 KiB  
Article
First In-Orbit Validation of Interferometric GNSS-R Altimetry: Mission Overview and Initial Results
by Yixuan Sun, Yueqiang Sun, Junming Xia, Lingyong Huang, Qifei Du, Weihua Bai, Xianyi Wang, Dongwei Wang, Yuerong Cai, Lichang Duan, Zhenhe Zhai, Bin Guan, Zhiyong Huang, Shizhong Li, Feixiong Huang, Cong Yin and Rui Liu
Remote Sens. 2025, 17(11), 1820; https://doi.org/10.3390/rs17111820 - 23 May 2025
Viewed by 551
Abstract
Sea surface height (SSH) serves as a fundamental geophysical parameter in oceanographic research. In 2023, China successfully launched the world’s first spaceborne interferometric GNSS-R (iGNSS-R) altimeter, which features dual-frequency multi-beam scanning, interferometric processing, and compatibility with three major satellite navigation systems: the BeiDou [...] Read more.
Sea surface height (SSH) serves as a fundamental geophysical parameter in oceanographic research. In 2023, China successfully launched the world’s first spaceborne interferometric GNSS-R (iGNSS-R) altimeter, which features dual-frequency multi-beam scanning, interferometric processing, and compatibility with three major satellite navigation systems: the BeiDou Navigation Satellite System (BDS), the Global Positioning System (GPS), and the Galileo Satellite Navigation System (GAL). This launch marked the first in-orbit validation of the iGNSS-R altimetry technology. This study provides a detailed overview of the iGNSS-R payload design and analyzes its dual-frequency delay mapping (DM) measurements. We developed a refined DM waveform-matching algorithm that precisely extracts the propagation delays between reflected and direct GNSS signals, enabling the retrieval of global sea surface height (SSH) through the interferometric altimetry model. For validation, we employed an inter-satellite crossover approach using Jason-3 and Sentinel-6 radar altimetry as references, achieving an unprecedented SSH accuracy of 17.2 cm at a 40 km resolution. This represents a breakthrough improvement over previous GNSS-R altimetry efforts. The successful demonstration of iGNSS-R technology opens up new possibilities for cost-effective, wide-swath sea level monitoring. It showcases the potential of GNSS-R technology to complement existing ocean observation systems and enhance our understanding of global sea surface dynamics. Full article
(This article belongs to the Section Satellite Missions for Earth and Planetary Exploration)
Show Figures

Figure 1

21 pages, 21704 KiB  
Article
An Efficient PSInSAR Method for High-Density Urban Areas Based on Regular Grid Partitioning and Connected Component Constraints
by Chunshuai Si, Jun Hu, Danni Zhou, Ruilin Chen, Xing Zhang, Hongli Huang and Jiabao Pan
Remote Sens. 2025, 17(9), 1518; https://doi.org/10.3390/rs17091518 - 25 Apr 2025
Viewed by 686
Abstract
Permanent Scatterer Interferometric Synthetic Aperture Radar (PSInSAR), with millimeter-level accuracy and full-resolution capabilities, is essential for monitoring urban deformation. With the advancement of SAR sensors in spatial and temporal resolution and the expansion of wide-swath observation capabilities, the number of permanent scatterers (PSs) [...] Read more.
Permanent Scatterer Interferometric Synthetic Aperture Radar (PSInSAR), with millimeter-level accuracy and full-resolution capabilities, is essential for monitoring urban deformation. With the advancement of SAR sensors in spatial and temporal resolution and the expansion of wide-swath observation capabilities, the number of permanent scatterers (PSs) in high-density urban areas has surged exponentially. To address these computational and memory challenges in high-density urban PSInSAR processing, this paper proposes an efficient method for integrating regular grid partitioning and connected component constraints. First, adaptive dynamic regular grid partitioning was employed to divide monitoring areas into sub-blocks, balancing memory usage and computational efficiency. Second, a weighted least squares adjustment model using common PS points in overlapping regions eliminated systematic inter-sub-block biases, ensuring global consistency. A graph-based connected component constraint mechanism was introduced to resolve multi-component segmentation issues within sub-blocks to preserve discontinuous PS information. Experiments on TerraSAR-X data covering Fuzhou, China (590 km2), demonstrated that the method processed 1.4 × 107 PS points under 32 GB memory constraints, where it achieved a 25-fold efficiency improvement over traditional global PSInSAR. The deformation rates and elevation residuals exhibited high consistency with conventional methods (correlation coefficient ≥ 0.98). This method effectively addresses the issues of memory overflow, connectivity loss between sub-blocks, and cumulative merging errors in large-scale PS networks. It provides an efficient solution for wide-area millimeter-scale deformation monitoring in high-density urban areas, supporting applications such as geohazard early warning and urban infrastructure safety assessment. Full article
(This article belongs to the Special Issue Advances in Surface Deformation Monitoring Using SAR Interferometry)
Show Figures

Graphical abstract

20 pages, 25248 KiB  
Article
SWOT-Based Intertidal Digital Elevation Model Extraction and Spatiotemporal Variation Assessment
by Hongkai Shi, Dongzhen Jia, Xiufeng He, Ole Baltazar Andersen and Xiangtian Zheng
Remote Sens. 2025, 17(9), 1516; https://doi.org/10.3390/rs17091516 - 24 Apr 2025
Viewed by 737
Abstract
Traditional methods for the construction of intertidal digital elevation models (DEMs) require the integration of long-term multi-sensor datasets and struggle to capture the spatiotemporal variation caused by ocean dynamics. The SWOT (surface water and ocean topography) mission, with its wide-swath interferometric altimetry technology, [...] Read more.
Traditional methods for the construction of intertidal digital elevation models (DEMs) require the integration of long-term multi-sensor datasets and struggle to capture the spatiotemporal variation caused by ocean dynamics. The SWOT (surface water and ocean topography) mission, with its wide-swath interferometric altimetry technology, provides instantaneous full-swath elevation data in a single pass, offering a revolutionary data source for high-precision intertidal topographic monitoring. This study presents a framework for SWOT-based intertidal DEM extraction that integrates data preprocessing, topographic slope map construction, and tidal channel masking. The radial sand ridge region along the Jiangsu coast is analyzed using SWOT L2 LR (Low Resolution) unsmoothed data from July 2023 to December 2024. Multisource validation data are used to comprehensively assess the accuracy of sea surface height (SSH) and land elevation derived from LR products. Results show that the root mean square error (RMSE) of SSH at Dafeng, Yanghe, and Gensha tide stations is 0.25 m, 0.19 m, and 0.32 m, respectively. Validation with LiDAR data indicates a land elevation accuracy of ~0.3 m. Additionally, the topographic features captured by LR products are consistent with the patterns observed in the remote sensing imagery. A 16-month time-series analysis reveals significant spatiotemporal variations in the Tiaozini area, particularly concentrated in the tidal channel areas. Furthermore, the Pearson correlation coefficient for the DEMs generated from SWOT data decreased from 0.94 over a one-month interval to 0.84 over sixteen months, reflecting the persistent impact of oceanic dynamic processes on intertidal topography. Full article
Show Figures

Figure 1

26 pages, 19937 KiB  
Article
NBDNet: A Self-Supervised CNN-Based Method for InSAR Phase and Coherence Estimation
by Hongxiang Li, Jili Wang, Chenguang Ai, Yulun Wu and Xiaoyuan Ren
Remote Sens. 2025, 17(7), 1181; https://doi.org/10.3390/rs17071181 - 26 Mar 2025
Cited by 1 | Viewed by 659
Abstract
Phase denoising constitutes a critical component of the synthetic aperture radar interferometry (InSAR) processing chain, where noise suppression and detail preservation are two mutually constraining objectives. Recently, deep learning has attracted considerable interest due to its promising performance in the field of image [...] Read more.
Phase denoising constitutes a critical component of the synthetic aperture radar interferometry (InSAR) processing chain, where noise suppression and detail preservation are two mutually constraining objectives. Recently, deep learning has attracted considerable interest due to its promising performance in the field of image denoising. In this paper, a Neighbor2Neighbor denoising network (NBDNet) is proposed, which is capable of simultaneously estimating phase and coherence in both single-look and multi-look cases. Specifically, repeat-pass PALSAR real interferograms encompassing a diverse range of coherence, fringe density, and terrain features are used as the training dataset, and the novel Neighbor2Neighbor self-supervised training framework is leveraged. The Neighbor2Neighbor framework eliminates the necessity of noise-free labels, simplifying the training process. Furthermore, rich features can be learned directly from real interferograms. In order to validate the denoising capability and generalization ability of the proposed NBDNet, simulated data, repeat-pass data from Sentinel-1 Interferometric Wide (IW) swath mode, and single-pass data from Hongtu-1 stripmap mode are used for phase denoising experiments. The results demonstrate that NBDNet performs well in terms of noise suppression, detail preservation and computation efficiency, validating its potential for high-precision and high-resolution topography reconstruction. Full article
Show Figures

Figure 1

17 pages, 13258 KiB  
Article
The Characteristics of Submesoscale Eddies near the Coastal Regions of Eastern Japan: Insights from Sentinel-1 Imagery
by Gang Li, Yijun He, Jinghan Wen, Guoqiang Liu, Vladimir Kudryavtsev, Xiaojie Lu and William Perrie
J. Mar. Sci. Eng. 2024, 12(5), 761; https://doi.org/10.3390/jmse12050761 - 30 Apr 2024
Cited by 3 | Viewed by 1856
Abstract
A long-term time series of 319 Sentinel-1 SAR Imagery with Interferometric Wide Swath (IW) mode was used to study the characteristics of submesoscale eddies over Japanese coastal regions from 2015 to 2021, including spatiotemporal eddy properties and possible mechanisms of their formation. The [...] Read more.
A long-term time series of 319 Sentinel-1 SAR Imagery with Interferometric Wide Swath (IW) mode was used to study the characteristics of submesoscale eddies over Japanese coastal regions from 2015 to 2021, including spatiotemporal eddy properties and possible mechanisms of their formation. The results showed that around 98% of the 1499 eddies identified from the SAR snapshots were submesoscale eddies (horizontal scales of O120 km) with a ratio of around 78% cyclones to around 22% anticyclones. Around 8% of the submesoscale eddies were found in these SAR images in winter since the submesoscale current-induced signals are masked by the stronger wind speed, compared with other seasons. Typical features of submesoscale eddies are summarized, providing a preliminary qualitative analysis of potential generation mechanisms specific to the eddy characteristics in this region. This study suggests that Sentinel-1 images are capable of providing insights into the observed submesoscale eddies near the coastal regions of eastern Japan, thereby contributing to the improved understanding of the generation of submesoscale eddies. Full article
(This article belongs to the Special Issue New Advances in Marine Remote Sensing Applications)
Show Figures

Figure 1

21 pages, 15023 KiB  
Article
Expected Precision of Gravity Gradient Recovered from Ka-Band Radar Interferometer Observations and Impact of Instrument Errors
by Hengyang Guo, Xiaoyun Wan, Fei Wang and Song Tian
Remote Sens. 2024, 16(3), 576; https://doi.org/10.3390/rs16030576 - 2 Feb 2024
Cited by 1 | Viewed by 1852
Abstract
Full tensor of gravity gradients contains extremely large amounts of information, which is one of the most important sources for research on recovery seafloor topography and underwater matching navigation. The calculation and accuracy of the full tensor of gravity gradients are worth studying. [...] Read more.
Full tensor of gravity gradients contains extremely large amounts of information, which is one of the most important sources for research on recovery seafloor topography and underwater matching navigation. The calculation and accuracy of the full tensor of gravity gradients are worth studying. The Ka-band interferometric radar altimeter (KaRIn) of surface water and ocean topography (SWOT) mission enables high spatial resolution of sea surface height (SSH), which would be beneficial for the calculation of gravity gradients. However, there are no clear accuracy results for the gravity gradients (the gravity gradient tensor represents the second-order derivative of the gravity potential) recovered based on SWOT data. This study evaluated the possible precision of gravity gradients using the discretization method based on simulated SWOT wide-swath data and investigated the impact of instrument errors. The data are simulated based on the sea level anomaly data provided by the European Space Agency. The instrument errors are simulated based on the power spectrum data provided in the SWOT error budget document. Firstly, the full tensor of gravity gradients (SWOT_GGT) is calculated based on deflections of the vertical and gravity anomaly. The distinctions of instrument errors on the ascending and descending orbits are also taken into account in the calculation. The precision of the Tzz component is evaluated by the vertical gravity gradient model provided by the Scripps Institution of Oceanography. All components of SWOT_GGT are validated by the gravity gradients model, which is calculated by the open-source software GrafLab based on spherical harmonic. The Tzz component has the poorest precision among all the components. The reason for the worst accuracy of the Tzz component may be that it is derived by Txx and Tyy, Tzz would have a larger error than Txx and Tyy. The precision of all components is better than 6 E. Among the various errors, the effect of phase error and KaRIn error (random error caused by interferometric radar) on the results is greater than 2 E. The effect of the other four errors on the results is about 0.5 E. Utilizing multi-cycle data for the full tensor of gravity gradients recovery can suppress the effect of errors. Full article
(This article belongs to the Special Issue Remote Sensing in Space Geodesy and Cartography Methods II)
Show Figures

Figure 1

19 pages, 25926 KiB  
Article
Interferometric Calibration Based on a Constrained Evolutionary Algorithm without Ground Control Points for a Tiangong-2 Interferometric Imaging Radar Altimeter
by Lanyu Li, Hong Tan, Bingnan Wang, Maosheng Xiang, Ke Wang and Yachao Wang
Remote Sens. 2023, 15(19), 4789; https://doi.org/10.3390/rs15194789 - 30 Sep 2023
Cited by 1 | Viewed by 1489
Abstract
The interferometric imaging radar altimeter (InIRA), mounted on the Tiangong-2 space laboratory, utilizes a small incidence and a short interferometric baseline to achieve altimetry for wide swathes of ocean surface topography and inland water surface elevation. To obtain a high-precision digital elevation model [...] Read more.
The interferometric imaging radar altimeter (InIRA), mounted on the Tiangong-2 space laboratory, utilizes a small incidence and a short interferometric baseline to achieve altimetry for wide swathes of ocean surface topography and inland water surface elevation. To obtain a high-precision digital elevation model (DEM), calibration of the interferometric system parameters is necessary. Because InIRA utilizes the small-incidence interference system design, serious coupling occurs between the interferometric parameters. Commonly used interferometric calibration methods tend to fall into the local optimal solution for InIRA. Because evolutionary algorithms have a stronger robustness and global search ability, they are better suited to handling the solution space structure under the coupling of complex interferometric parameters. This article establishes an interferometric calibration optimization model for InIRA by utilizing the relative flatness of the lake surface as an inequality constraint. Furthermore, an adaptive penalty coefficient constraint evolutionary algorithm is designed to solve the model. The proposed method was tested on actual InIRA data, and the results indicate that it efficiently adjusts interferometric parameters, enhancing the precision of measurements for Qinghai Lake elevation. Full article
(This article belongs to the Special Issue Spaceborne SAR Calibration Technology)
Show Figures

Figure 1

26 pages, 30643 KiB  
Article
Preliminary Results of Marine Gravity Recovery by Tiangong-2 Interferometric Imaging Radar Altimeter
by Meng Sun, Yunhua Zhang, Xiao Dong and Xiaojin Shi
Remote Sens. 2023, 15(19), 4759; https://doi.org/10.3390/rs15194759 - 28 Sep 2023
Cited by 4 | Viewed by 1797
Abstract
This paper presents for the first time the results of marine gravity recovery using the ocean observation data acquired by Tiangong-2 interferometric imaging radar altimeter (TG2 InIRA) which demonstrate not only the balanced accuracies of the north and east components of deflection of [...] Read more.
This paper presents for the first time the results of marine gravity recovery using the ocean observation data acquired by Tiangong-2 interferometric imaging radar altimeter (TG2 InIRA) which demonstrate not only the balanced accuracies of the north and east components of deflection of the vertical (DOV) as envisaged, but also the improved spatial resolutions of DOV compared with that by conventional altimeters (CAs). Moreover, much higher measurement efficiency owing to the wide-swath capability and the great potential in accuracy improvement of marine gravity field are also demonstrated. TG2 InIRA adopts the interferometry with short baseline and takes small incidence angles, by which wide-swath sea surface height (SSH) can be measured with high accuracy. Gravity recovery experiments in the Western Pacific area are conducted to demonstrate the performance, advantages and capability of TG2 InIRA. SSH data processing algorithms and DOV calculation have been designed by taking the wide-swath feature into account, based on which, the gravity anomalies are then calculated using the inverse Vening Meinesz formula. The derived gravity anomalies are compared with both the published gravity models and the shipborne gravity measurements. The results show that the accuracy of TG2 InIRA is equivalent to, or even a little better than, that of CAs. The fused gravity result using equal TG2 InIRA data and CAs data performs better than those using TG2 InIRA data alone or CAs data alone. Due to the signal bandwidth of TG2 InIRA is only 40 MHz which is much smaller than that of CAs, much higher accuracy can be hopefully achieved for future missions if larger signal bandwidth is used. Full article
(This article belongs to the Special Issue Advances in Satellite Altimetry II)
Show Figures

Figure 1

20 pages, 16888 KiB  
Technical Note
Baseline Calibration of L-Band Spaceborne Bistatic SAR TwinSAR-L for DEM Generation
by Jingwen Mou, Yu Wang, Jun Hong, Yachao Wang and Aichun Wang
Remote Sens. 2023, 15(12), 3024; https://doi.org/10.3390/rs15123024 - 9 Jun 2023
Cited by 7 | Viewed by 1987
Abstract
The Terrain Wide-swath Interferometric L-band Synthetic Aperture Radar (TwinSAR-L) mission is a spaceborne bistatic synthetic aperture radar (SAR) mission to derive a high-quality global digital elevation model (DEM). The prerequisite of the high-accuracy DEM is knowing the interferometric baseline with high precision. The [...] Read more.
The Terrain Wide-swath Interferometric L-band Synthetic Aperture Radar (TwinSAR-L) mission is a spaceborne bistatic synthetic aperture radar (SAR) mission to derive a high-quality global digital elevation model (DEM). The prerequisite of the high-accuracy DEM is knowing the interferometric baseline with high precision. The challenging problem is that the baseline of the bistatic system is highly dynamic due to the fast relative motion between the two satellites. In this paper, a pixel-related baseline model based on the geometrical shift is proposed to accurately reflect the position change of satellites. The baseline error is then calibrated using height gradient information and a small number of point targets with a slight incidence angle difference, eliminating the need for low-frequency corner reflectors and avoiding the difficulty of selecting a calibration site. The proposed method has been successfully exploited during the initial Commissioning Phase of TwinSAR-L, demonstrating its effectiveness in evaluating the precise baseline and supporting the generation of high-precision DEM. Full article
Show Figures

Figure 1

22 pages, 14472 KiB  
Article
Performance Analysis of Channel Imbalance Control and Azimuth Ambiguity Suppression in Azimuth Dual Receiving Antenna Mode of LT-1 Spaceborne SAR System
by Zongxiang Xu, Pingping Lu, Yonghua Cai, Yirong Wu and Robert Wang
Remote Sens. 2023, 15(11), 2765; https://doi.org/10.3390/rs15112765 - 26 May 2023
Cited by 6 | Viewed by 1958
Abstract
The LuTan-1(LT-1), known as the L-band differential interferometric synthetic aperture radar (SAR) satellite system, is an essential piece of civil infrastructure in China, providing extensive applications such as surface deformation monitoring and topographic mapping. To achieve high-resolution and wide-swath (HRWS) observation abilities, the [...] Read more.
The LuTan-1(LT-1), known as the L-band differential interferometric synthetic aperture radar (SAR) satellite system, is an essential piece of civil infrastructure in China, providing extensive applications such as surface deformation monitoring and topographic mapping. To achieve high-resolution and wide-swath (HRWS) observation abilities, the LT-1 takes the dual receiving antenna (DRA) imaging mode as its working mode. However, amplitude and phase errors between channels lead to a mismatch between the reconstruction filter and the multichannel echo signal, worsen the reconstructed azimuth spectrum, and introduce ambiguity targets in the final imaging results, seriously affecting the final imaging quality. In order to better evaluate the channel error and azimuth ambiguity performance of the LT-1 system, this paper proposed an advanced channel consistency correction method and conducted many measured data experiments. The experimental results show that the proposed method is effective, and the LT-1 system has excellent channel error control and azimuth ambiguity performance. Full article
(This article belongs to the Special Issue SAR-Based Signal Processing and Target Recognition)
Show Figures

Figure 1

29 pages, 12199 KiB  
Article
Sentinel-1 Interferometry and UAV Aerial Survey for Mapping Coseismic Ruptures: Mts. Sibillini vs. Mt. Etna Volcano
by Marco Menichetti, Matteo Roccheggiani, Giorgio De Guidi, Francesco Carnemolla, Fabio Brighenti, Giovanni Barreca and Carmelo Monaco
Remote Sens. 2023, 15(10), 2514; https://doi.org/10.3390/rs15102514 - 10 May 2023
Cited by 5 | Viewed by 3442
Abstract
The survey and structural analysis of surface coseismic ruptures are essential tools for characterizing seismogenic structures. In this work, a procedure to survey coseismic ruptures using satellite interferometric synthetic aperture radar (InSAR) data, directing the survey using Unmanned Aerial Vehicles (UAV), is proposed [...] Read more.
The survey and structural analysis of surface coseismic ruptures are essential tools for characterizing seismogenic structures. In this work, a procedure to survey coseismic ruptures using satellite interferometric synthetic aperture radar (InSAR) data, directing the survey using Unmanned Aerial Vehicles (UAV), is proposed together with a field validation of the results. The Sentinel-1 A/B Interferometric Wide (IW) Swath TOPSAR mode offers the possibility of acquiring images with a short revisit time. This huge amount of open data is extremely useful for geohazards monitoring, such as for earthquakes. Interferograms show the deformation field associated with earthquakes. Phase discontinuities appearing on wrapped interferograms or loss-of-coherence areas could represent small ground displacements associated with the fault’s ruptures. Low-altitude flight platforms such as UAV permit the acquisition of high resolution images and generate 3D spatial geolocalized clouds of data with centimeter-level accuracy. The generated topography maps and orthomosaic images are the direct products of this technology, allowing the possibility of analyzing geological structures from many viewpoints. We present two case studies. The first one is relative to the 2016 central Italian earthquakes, astride which the InSAR outcomes highlighted quite accurately the field displacement of extensional faults in the Mt. Vettore–M. Bove area. Here, the geological effect of the earthquake is represented by more than 35 km of ground ruptures with a complex pattern composed by subparallel and overlapping synthetic and antithetic fault splays. The second case is relative to the Mt. Etna earthquake of 26 December 2018, following which several ground ruptures were detected. The analysis of the unwrapped phase and the application of edge detector filtering and other discontinuity enhancers allowed the identification of a complex pattern of ground ruptures. In the Pennisi and Fiandaca areas different generation of ruptures can be distinguished, while previously unknown ruptures pertaining to the Acireale and Ragalna faults can be identify and analyzed. Full article
(This article belongs to the Special Issue Earthquake Ground Motion Observation and Modelling)
Show Figures

Figure 1

16 pages, 25263 KiB  
Article
A Novel Method for Interferometric Phase Estimation in Dual-Channel Cancellation
by Long Huang, Aifang Liu, Zuzhen Huang, Hui Xu and Dong Han
Sensors 2022, 22(23), 9356; https://doi.org/10.3390/s22239356 - 1 Dec 2022
Cited by 3 | Viewed by 1790
Abstract
Multichannel SAR systems have grown rapidly over the past decade due to their powerful high-resolution and wide-swath (HRWS) capabilities. Because spatially separated channels also have the potential to suppress jamming, dual-channel cancellation is a general method that is effective regardless of the type [...] Read more.
Multichannel SAR systems have grown rapidly over the past decade due to their powerful high-resolution and wide-swath (HRWS) capabilities. Because spatially separated channels also have the potential to suppress jamming, dual-channel cancellation is a general method that is effective regardless of the type of jamming signal. In this paper, the principle of dual-channel cancellation (DCC) is introduced, and several practical problems using DCC are also discussed. Moreover, this paper emphasizes interferometric phase estimation, which is the key to DCC. If the jamming-to-signal ratio (JSR) is high, the interferometric phase can be estimated accurately from the interferometry of two channel signals, but estimation becomes rather difficult when the JSR decreases. To solve the problem of interferometric phase estimation under a low JSR, a novel interferometric phase estimation method using cosine similarity is proposed in this paper. L-band airborne dual-channel SAR is performed to investigate the applicability of the method. The results not only prove that cosine similarity is an effective method for interferometric phase estimation, but also demonstrate the potential of DCC in the SAR anti-jamming processing. Full article
Show Figures

Figure 1

16 pages, 7672 KiB  
Article
Wind Field Retrieval with Rain Correction from Dual-Polarized Sentinel-1 SAR Imagery Collected during Tropical Cyclones
by Weizeng Shao, Zhengzhong Lai, Ferdinando Nunziata, Andrea Buono, Xingwei Jiang and Juncheng Zuo
Remote Sens. 2022, 14(19), 5006; https://doi.org/10.3390/rs14195006 - 8 Oct 2022
Cited by 28 | Viewed by 2800
Abstract
The purpose of this study is to include rain effects in wind field retrieval from C-band synthetic aperture radar (SAR) imagery collected under tropical cyclone conditions. An effective and operationally attractive approach to detect rain cells in SAR imagery is proposed and verified [...] Read more.
The purpose of this study is to include rain effects in wind field retrieval from C-band synthetic aperture radar (SAR) imagery collected under tropical cyclone conditions. An effective and operationally attractive approach to detect rain cells in SAR imagery is proposed and verified using four Sentinel-1 (S-1) SAR images collected in dual-polarized (vertical-vertical (VV) and vertical-horizontal (VH)) interferometric-wide swath imaging mode during the Satellite Hurricane Observation Campaign. SAR images were collocated with ancillary observations that include sea surface wind and rain rate from the Stepped-Frequency Microwave Radiometer (SFMR) on board of the National Oceanic and Atmospheric Administration aircraft. The winds are inverted from VV- and VH-polarized S-1 image using the CMOD5.N and S1IW.NR geophysical model functions (GMFs), respectively. Location and radius of cyclone’s eye, together with the TC central pressure, are calculated from the VV-polarized SAR-derived wind and a parametric model. A cost function is proposed that consists of the difference between the measured VV-polarized SAR normalized radar cross section (NRCS) and the NRCS predicted using CMOD5.N forced with the wind speed retrieved by the VH-polarized SAR images using S1IW.NR GMF and the wind direction retrieved from the patterns visible in the SAR image. This cost function is related to the SFMR rain rate. Experimental results show that the difference between measured and predicted NRCS values range from 0.5 dB to 5 dB within a distance of 100 km from the cyclone’s eye, while the difference increases spanning from 3 dB to 6 dB for distances larger than 100 km. Following this rationale, first the rain bands are extracted from SAR imagery and, then, the composite wind fields are reconstructed by replacing: (1) dual-polarized SAR-derived winds over the rain-free regions; (2) winds simulated using the radial-vortex model over the rain-affected regions. The validation of the composite wind speed against SFMR winds yields a <2 m s−1 and >0.7 correlation (COR) at all flow directions up to retrieval speeds of 70 m s−1. This result outperforms the winds estimated using the VH-polarized S1IW.NR GMF, which call for high error accuracy, such as about 4 m s−1 with a 0.45 COR ranged from 330° to 360°. Full article
Show Figures

Figure 1

20 pages, 7570 KiB  
Article
Elevation Change of CookE2 Subglacial Lake in East Antarctica Observed by DInSAR and Time-Segmented PSInSAR
by Jihyun Moon, Hoseung Lee and Hoonyol Lee
Remote Sens. 2022, 14(18), 4616; https://doi.org/10.3390/rs14184616 - 15 Sep 2022
Cited by 4 | Viewed by 2373
Abstract
In this study, elevation change and surface morphology of CookE2, one of the most active subglacial lakes in East Antarctica, were analyzed by using Differential Interferometric Synthetic Aperture Radar (DInSAR) and a newly adapted Time-Segmented Persistent Scatterer Interferometric Synthetic Aperture Radar (TS-PSInSAR) techniques. [...] Read more.
In this study, elevation change and surface morphology of CookE2, one of the most active subglacial lakes in East Antarctica, were analyzed by using Differential Interferometric Synthetic Aperture Radar (DInSAR) and a newly adapted Time-Segmented Persistent Scatterer Interferometric Synthetic Aperture Radar (TS-PSInSAR) techniques. Firstly, several DInSAR pairs were used to study the surface morphology of the subglacial lake during the rapid discharge event in 2007 and the subsequent recharge in 2010 by using ALOS PALSAR data and the continuous recharge from 2018 to 2020 by using Sentinel-1 SAR data. For time-series observation from 2018 to 2020, however, simple integration of DInSAR deviates largely from the satellite altimeter data because errors from the horizontal flow of the surrounding ice field or atmospheric phase accumulate. Conventional PSInSAR deviates from the altimeter data if the LOS displacement exceeds 300 mm, i.e., approximately 1/4 of the slant range resolution of the Sentinel-1 SAR in Interferometric Wide-swath (IW) mode, during the time window. Therefore, a series of Time-Segmented PSInSAR with a 4-month time window could accurately distinguish 1.10 ± 0.01 m/year of highly linear (R2 = 0.99) surface rise rate of CookE2 and 0.63 m/year of horizontal deformation rate of the surrounding ice field from 2018 to 2020. Full article
(This article belongs to the Special Issue Remote Sensing of Environmental Changes in Cold Regions Ⅱ)
Show Figures

Graphical abstract

25 pages, 6207 KiB  
Article
Airborne Elevation DBF-TOPS SAR/InSAR Method Based on LOS Motion Compensation and Channel Error Equalization
by Zhiyong Suo, Jingjing Ti, Hongli Xiang, Leru Zhang, Chao Xing and Tingting Wang
Remote Sens. 2022, 14(18), 4542; https://doi.org/10.3390/rs14184542 - 11 Sep 2022
Cited by 1 | Viewed by 2098
Abstract
Digital beamforming (DBF) TOPS SAR in elevation is a new synthetic aperture radar (SAR) system, which has the advantage of wide swath coverage and a high signal-to-noise ratio (SNR). In this paper, considering the phase preservation demand for interferometric SAR (InSAR) processing, the [...] Read more.
Digital beamforming (DBF) TOPS SAR in elevation is a new synthetic aperture radar (SAR) system, which has the advantage of wide swath coverage and a high signal-to-noise ratio (SNR). In this paper, considering the phase preservation demand for interferometric SAR (InSAR) processing, the complete processing chain for DBF-TOPS SAR/InSAR in elevation is proposed with a wide beam angle and channels’ amplitude and phase errors. Firstly, we analyze the airborne motion compensation method along the line-of-sight direction for TOPS SAR with squint angle. Furthermore, for the large-range beam angle of DBF, the sub-swaths division process is presented for the range-dependent radar look angle, and the sub-swaths division criterion is also given in the analytic expression. Then, the relative amplitude and phase errors’ estimation and compensation method between channels is provided in the range frequency domain based on the pivoting filter with coherence weighting, which is convenient for DBF processing and SNR improvement. Finally, the DEMs are generated under different conditions to compare the phase preservation performance. The effectiveness of the proposed processing chain is verified with both simulated data and airborne real DBF-TOPS SAR/InSAR data. Full article
(This article belongs to the Special Issue Advance in SAR Image Despeckling)
Show Figures

Figure 1

Back to TopTop