Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,521)

Search Parameters:
Keywords = interface shear

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 11598 KiB  
Article
Characteristics of Load-Bearing Rupture of Rock–Coal Assemblages with Different Height Ratios and Multivariate Energy Spatiotemporal Evolution Laws
by Bo Wang, Guilin Wu, Guorui Feng, Zhuocheng Yu and Yingshi Gu
Processes 2025, 13(8), 2588; https://doi.org/10.3390/pr13082588 - 15 Aug 2025
Abstract
The destabilizing damage of rock structures in coal beds engineering is greatly influenced by the bearing rupture features and energy evolution laws of rock–coal assemblages with varying height ratios. In this study, we used PFC3D to create rock–coal assemblages with rock–coal height ratios [...] Read more.
The destabilizing damage of rock structures in coal beds engineering is greatly influenced by the bearing rupture features and energy evolution laws of rock–coal assemblages with varying height ratios. In this study, we used PFC3D to create rock–coal assemblages with rock–coal height ratios of 2:8, 4:6, 6:4, and 8:2. Uniaxial compression simulation was then performed, revealing the expansion properties and damage crack dispersion pattern at various bearing phases. The dispersion and migration law of cemented strain energy zoning; the size and location of the destructive energy level and its spatiotemporal evolution characteristics; and the impact of height ratio on the load-bearing characteristics, crack extension, and evolution of multiple energies (strain, destructive, and kinetic energies) were all clarified with the aid of a self-developed destructive energy and strain energy capture and tracking Fish program. The findings indicate that the assemblage’s elasticity modulus and compressive strength slightly increase as the height ratio increases, that the assemblage’s cracks begin in the coal body, and that the number of crack bands inside the coal body increases as the height ratio increases. Also, the phenomenon of crack bands penetrating the rock through the interface between the coal and rock becomes increasingly apparent. The total number of cracks, including both tensile and shear cracks, decreases as the height ratio increases. Among these, tensile cracks are consistently more abundant than shear cracks, and the proportion between the two types remains relatively stable regardless of changes in the height ratio. The acoustic emission ringing counts of the assemblage were not synchronized with the development of bearing stress, and the ringing counts started to increase from the yield stage and reached a peak at the damage stage (0.8σc) after the peak of bearing stress. The larger the rock–coal height ratio, the smaller the peak and the earlier the timing of its appearance. The main body of strain energy accumulation was transferred from the coal body to the rock body when the height ratio exceeded 1.5. The peak values of the assemblage’s strain energy, destructive energy, and kinetic energy curves decreased as the height ratio increased, particularly the energy amplitude of the largest destructive energy event. In order to prevent and mitigate engineering disasters during deep mining of coal resources, the research findings could serve as a helpful reference for the destabilizing properties of rock–coal assemblages. Full article
Show Figures

Figure 1

16 pages, 32413 KiB  
Article
Impact of Streamwise Pressure Gradient on Shaped Film Cooling Hole Using Large Eddy Simulation
by Yifan Yang, Kexin Hu, Can Ma, Xinrong Su and Xin Yuan
Fluids 2025, 10(8), 214; https://doi.org/10.3390/fluids10080214 - 15 Aug 2025
Abstract
In turbine blade environments, the combination of blade curvature and accelerating flow gives rise to streamwise pressure gradients (SPGs), which substantially impact coolant–mainstream interactions. This study investigates the effect of SPGs on film cooling performance using Large Eddy Simulation (LES) for a shaped [...] Read more.
In turbine blade environments, the combination of blade curvature and accelerating flow gives rise to streamwise pressure gradients (SPGs), which substantially impact coolant–mainstream interactions. This study investigates the effect of SPGs on film cooling performance using Large Eddy Simulation (LES) for a shaped cooling hole at a density ratio of DR=1.5 under two blowing ratios: M=0.5 and M=1.6. Both favorable pressure gradient (FPG) and zero pressure gradient (ZPG) conditions are examined. LES predictions are validated against experimental data in the high blowing ratio case, confirming the accuracy of the numerical method. Comparative analysis of the time-averaged flow fields indicates that, at M=1.6, FPG enhances wall attachment of the coolant jet, reduces boundary layer thickness, and suppresses vertical dispersion. Counter-rotating vortex pairs (CVRPs) are also compressed in this process, leading to improved downstream cooling. At M=0.5, however, the ZPG promotes greater lateral coolant spread near the hole exit, resulting in superior near-field cooling performance. Instantaneous flow structures are also analyzed to further explore the unsteady dynamics governing film cooling. The Q criterion exposes the formation and evolution of coherent vortices, including hairpin vortices, shear-layer vortices, and horseshoe vortices. Compared to ZPG, the FPG case exhibits a greater number of downstream hairpin vortices identified by density gradient, and this effect is particularly pronounced at the lower blowing ratio. The shear layer instability is evaluated using the local gradient Ri number, revealing widespread Kelvin–Helmholtz instability near the jet interface. In addition, Fast Fourier Transform (FFT) analysis shows that FPG shifts disturbance energy to lower frequencies with higher amplitudes, indicating enhanced turbulent dissipation and intensified coolant mixing at a low blowing ratio. Full article
(This article belongs to the Special Issue Modelling and Simulation of Turbulent Flows, 2nd Edition)
Show Figures

Figure 1

21 pages, 5547 KiB  
Article
Study of Performance and Engineering Application of D-RJP Jet Grouting Technology in Anchorage Foundation Reinforcement for Deep Suspension Bridge Excavations
by Xiaoliang Zhu, Wenqing Zhao, Sheng Fang, Junchen Zhao, Guoliang Dai, Zhiwei Chen and Wenbo Zhu
Appl. Sci. 2025, 15(16), 8985; https://doi.org/10.3390/app15168985 - 14 Aug 2025
Abstract
To address the critical challenge of ensuring bottom water-inrush stability during the excavation of ultra-deep foundation pits for riverside suspension-bridge anchorages under complex geological conditions involving high-pressure confined groundwater, we investigate the application of D-RJP high-pressure rotary jet grouting pile technology for ground [...] Read more.
To address the critical challenge of ensuring bottom water-inrush stability during the excavation of ultra-deep foundation pits for riverside suspension-bridge anchorages under complex geological conditions involving high-pressure confined groundwater, we investigate the application of D-RJP high-pressure rotary jet grouting pile technology for ground improvement. Its effectiveness is systematically validated through a case study of the South Anchorage Foundation Pit for the North Channel Bridge of the Zhangjinggao Yangtze River Bridge. The D-RJP method led to the successful construction of a composite foundation within the soft soil that satisfies the permeability coefficient, interface friction coefficient, bearing capacity, and shear strength requirements, significantly improving the geotechnical performance of the anchorage foundation. A series of field experiments were conducted to optimize the critical construction parameters, including the lifting speed, water–cement ratio, and stroke spacing. Core sampling and laboratory testing revealed the grout columns to have good structural integrity. The unconfined compressive strength of the high-pressure jet grout columns reached 5.45 MPa in silty clay layers and 8.21 MPa in silty sand layers. The average permeability coefficient ranged from 1.67 × 10−7 to 2.52 × 10−7 cm/s. The average density of the columns was 1.66 g/cm3 in the silty clay layer and 2.08 g/cm3 in the silty sand layer. The cement content in the return slurry varied between 18% and 27%, with no significant soil squeezing effect observed. The foundation interface friction coefficient ranged from 0.44 to 0.52. After excavation, the composite foundation formed by D-RJP columns was subjected to static load and direct shear testing. The results showed a characteristic bearing capacity value of 1200 kPa, the internal friction angle exceeded 24.23°, and the cohesion exceeded 180 kPa. This study successfully verifies the feasibility of applying D-RJP technology to construct high-performance artificial composite foundations in complex strata characterized by deep soft soils and high-pressure confined groundwater, providing valuable technical references and practical insights for similar ultra-deep foundation pit projects involving suspension bridge anchorages. Full article
Show Figures

Figure 1

17 pages, 4175 KiB  
Article
Formulation of Transfer Curves for Reversal Loadings Based on Soil–Concrete Interface Tests and Flat Dilatometer Soundings
by Kamila Mikina and Jakub Konkol
Materials 2025, 18(16), 3798; https://doi.org/10.3390/ma18163798 - 13 Aug 2025
Viewed by 183
Abstract
This study introduces a novel method for evaluating pile–soil interaction based solely on Dilatometer Test (DMT) results, enhancing and extending the established approach originally developed using Menard Pressuremeter Test (PMT) data. Currently, transfer functions utilizing DMT sounding results are in the early stages [...] Read more.
This study introduces a novel method for evaluating pile–soil interaction based solely on Dilatometer Test (DMT) results, enhancing and extending the established approach originally developed using Menard Pressuremeter Test (PMT) data. Currently, transfer functions utilizing DMT sounding results are in the early stages of development. Presented research fills the gap in DMT-based methods for pile design by introducing transfer functions for reversal loadings to calculate the unit shaft friction of screw displacement piles in Controlled Modulus Columns (CMC) technology. The proposed method utilizes DMT-derived soil parameters, offering a practical and accurate alternative to PMT-based models. Testing research fields were located in the Vistula Marshlands, Northern Poland. Site characterization consisted of piezocone (CPTU) and DMT soundings to characterize the soil profile and estimate soil parameters relevant for pile design. CMCs were installed and statically load tested under various loading schemes. Laboratory direct shear tests on smooth and rough soil-concrete interfaces were performed in both forward and backward directions (reversal loading) to simulate pile loading conditions. Results demonstrate improved adaptability of DMT-based transfer curves to local soil conditions and provide a reliable framework for predicting pile performance in soft soils. Proposed DMT-model returns similar ultimate bearing capacities of the pile to CPT 2012 method for first loading, simultaneously offering better agreement for reversal loading, a situation not accounted for in CPTU 2012 or most other CPT-based methods. Full article
(This article belongs to the Special Issue Advanced Geomaterials and Reinforced Structures (Second Edition))
Show Figures

Figure 1

26 pages, 5023 KiB  
Article
Structural-Integrated Electrothermal Anti-Icing Components for UAVs: Interfacial Mechanisms and Performance Enhancement
by Yanchao Cui, Ning Dai and Chuang Han
Aerospace 2025, 12(8), 719; https://doi.org/10.3390/aerospace12080719 - 13 Aug 2025
Viewed by 202
Abstract
Icing represents a significant hazard to the flight safety of unmanned aerial vehicles (UAVs), particularly affecting critical aerodynamic surfaces such as air intakes, wings, and empennages. While conventional adhesive electrothermal de-icing systems are straightforward to operate, they present safety concerns, including a 15–25% [...] Read more.
Icing represents a significant hazard to the flight safety of unmanned aerial vehicles (UAVs), particularly affecting critical aerodynamic surfaces such as air intakes, wings, and empennages. While conventional adhesive electrothermal de-icing systems are straightforward to operate, they present safety concerns, including a 15–25% increase in system weight, elevated anti-/de-icing power consumption, and the risk of interlayer interface delamination. To address the objectives of reducing weight and power consumption, this study introduces an innovative electrothermal–structural–durability co-design strategy. This approach successfully led to the development of a glass fiber-reinforced polymer (GFRP) component that integrates anti-icing functionality with structural load-bearing capacity, achieved through an embedded hot-pressing process. A stress-damage cohesive zone model was utilized to accurately quantify the threshold of mechanical performance degradation under electrothermal cycling conditions, elucidating the evolution of interfacial stress and the mechanism underlying interlayer failure. Experimental data indicate that this novel component significantly enhances heating performance compared to traditional designs. Specifically, the heating rate increased by approximately 202%, electrothermal efficiency improved by about 13.8% at −30 °C, and interlayer shear strength was enhanced by approximately 30.5%. This research offers essential technical support for the structural optimization, strength assessment, and service life prediction of UAV anti-icing and de-icing systems in the aerospace field. Full article
(This article belongs to the Special Issue Deicing and Anti-Icing of Aircraft (Volume IV))
Show Figures

Figure 1

22 pages, 7832 KiB  
Article
Investigation into the Dynamic Evolution Characteristics of Gear Injection Lubrication Based on the CFD-VOF Model
by Yihong Gu, Xinxing Zhang, Lin Li and Qing Yan
Processes 2025, 13(8), 2540; https://doi.org/10.3390/pr13082540 - 12 Aug 2025
Viewed by 206
Abstract
In response to the growing demand for lightweight and high-efficiency industrial equipment, this study addresses the critical issue of lubrication failure in high-speed, heavy-duty gear reducers, which often leads to reduced transmission efficiency and premature mechanical damage. A three-dimensional transient multiphysics-coupled model of [...] Read more.
In response to the growing demand for lightweight and high-efficiency industrial equipment, this study addresses the critical issue of lubrication failure in high-speed, heavy-duty gear reducers, which often leads to reduced transmission efficiency and premature mechanical damage. A three-dimensional transient multiphysics-coupled model of oil-jet lubrication is developed based on computational fluid dynamics (CFD). The model integrates the Volume of Fluid (VOF) multiphase flow method with the shear stress transport (SST) k−ω turbulence model. This framework enables the accurate capture of oil-jet interface fragmentation, reattachment, and turbulence-coupled behavior within the gear meshing region. A parametric study is conducted on oil injection velocities ranging from 20 to 50 m/s to elucidate the coupling mechanisms between geometric configuration and flow dynamics, as well as their impacts on oil film evolution, energy dissipation, and thermal management. The results reveal that the proposed method can reveal the dynamic evolution characteristics of the gear injection lubrication. Adopting an appropriately moderate injection velocity (30 m/s) improves oil film coverage and continuity, with the lubricant transitioning from discrete droplets to a dense wedge-shaped film within the meshing zone. Optimal lubrication performance is achieved at this velocity, where oil shear-carrying capacity and kinetic energy utilization efficiency are maximized, while excessive turbulent kinetic energy dissipation is effectively suppressed. Dynamic monitoring data at point P further corroborate that a well-tuned injection velocity stabilizes lubricant-velocity fluctuations and improves lubricant oil distribution, thereby promoting consistent oil film formation and more efficient heat transfer. The proposed closed-loop collaborative framework—comprising model initialization, numerical solution, and post-processing—together with the introduced quantitative evaluation metrics, provides a solid theoretical foundation and engineering reference for structural optimization, energy control, and thermal reliability design of gearbox lubrication systems. This work offers important insights into precision lubrication of high-speed transmissions and contributes to the sustainable, green development of industrial machinery. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

16 pages, 2443 KiB  
Article
Durability of Concrete Reinforced with GFRP Bars Under Varying Alkalinity and Temperature Conditions
by Ruan Carlos de Araújo Moura, Daniel Véras Ribeiro and Paulo Roberto Lopes Lima
Buildings 2025, 15(16), 2832; https://doi.org/10.3390/buildings15162832 - 9 Aug 2025
Viewed by 299
Abstract
The application of glass fiber reinforced polymer (GFRP) bars offers a promising solution for enhancing the durability of reinforced concrete structures, potentially reducing maintenance costs and associated socioeconomic impacts. However, concerns persist regarding the durability of GFRP bars in the highly alkaline environment [...] Read more.
The application of glass fiber reinforced polymer (GFRP) bars offers a promising solution for enhancing the durability of reinforced concrete structures, potentially reducing maintenance costs and associated socioeconomic impacts. However, concerns persist regarding the durability of GFRP bars in the highly alkaline environment of concrete, which can lead to physical, chemical, and mechanical degradation. This study evaluates the durability of GFRP bars composed of isophthalic polyester, vinyl ester, and epoxy matrices (6.0 mm diameter) under accelerated aging conditions. The bars were exposed to non-carbonated concrete (with and without silica fume) and carbonated concrete at temperatures of 23 °C, 40 °C, and 60 °C for durations of 500, 1000, and 3000 h. Interlaminar shear strength (ISS) was measured before and after aging. SEM and FTIR analyses confirmed degradation in the polymer matrix and fiber–matrix interface. Results indicated that silica fume significantly mitigated alkalinity effects, limiting ISS loss to 11.3%. Similarly, carbonation reduced the concrete’s pH, thereby decreasing ISS degradation to 10.7% after 3000 h. Among the tested materials, GFRP bars with vinyl ester matrix exhibited superior durability, followed by those with epoxy and polyester matrices. These findings emphasize the critical role of matrix selection and concrete mix design in improving GFRP durability. Full article
(This article belongs to the Special Issue Research on the Durability of Reinforced Concrete Structures)
Show Figures

Figure 1

19 pages, 3430 KiB  
Article
Multi-Scale Wind Shear at a Plateau Airport: Insights from Lidar and Radiosonde Observations
by Jianfeng Chen, Chenbo Xie, Jie Ji and Jie Lu
Remote Sens. 2025, 17(16), 2762; https://doi.org/10.3390/rs17162762 - 9 Aug 2025
Viewed by 169
Abstract
Low-level wind shear poses a significant hazard to aviation, especially at airports located on high plateaus and surrounded by complex terrain. In this study, we present a comprehensive analysis integrating Doppler Lidar and radiosonde measurements collected at the Xining Caojiapu Airport, situated on [...] Read more.
Low-level wind shear poses a significant hazard to aviation, especially at airports located on high plateaus and surrounded by complex terrain. In this study, we present a comprehensive analysis integrating Doppler Lidar and radiosonde measurements collected at the Xining Caojiapu Airport, situated on the northeastern Tibetan Plateau, during June 2022. The results indicate a remarkably high frequency of severe wind shear events (|Δv| ≥ 6 m/s), with an overall occurrence rate of 34% during the observation period. These events are predominantly confined to two distinct atmospheric layers: just above the surface and near the top of the convective boundary layer. The diurnal cycle of wind shear is closely associated with boundary-layer dynamics, exhibiting sharp increases after sunrise and pronounced peaks around midday, coinciding with enhanced turbulent mixing and surface heating. Case analyses further reveal that the most intense shear episodes occur at strong thermal inversions, where momentum decoupling produces thin, critical interfaces conducive to turbulence generation. In contrast, well-mixed convective conditions result in more distributed but persistent shear throughout the lower atmosphere. Diagnostic profiles of atmospheric stratification and dynamic instability, characterized by the Brunt–Väisälä frequency and Richardson number, elucidate the intricate interplay between thermal structure and vertical wind gradients. Collectively, these findings provide a robust quantitative basis for improving wind shear risk assessments and early warning systems at airports in mountainous regions, while offering new insights into the complex interactions between turbulence and atmospheric stratification. Full article
(This article belongs to the Section Environmental Remote Sensing)
12 pages, 2566 KiB  
Article
Effects of Electromigration on Sn-Bi Lead-Free Solder Alloy Joints on Copper and Copper with Nickel Surface Finish
by Lohgaindran Jeyeselan and Ervina Efzan Mhd Noor
Materials 2025, 18(16), 3722; https://doi.org/10.3390/ma18163722 - 8 Aug 2025
Viewed by 223
Abstract
Electromigration (EM) is a critical reliability concern in electronic solder joints due to increasing current densities in modern electronic packaging. EM-induced failures often manifest as void formation and microstructural degradation, particularly at the cathode interface. To address this issue, composite solder joints with [...] Read more.
Electromigration (EM) is a critical reliability concern in electronic solder joints due to increasing current densities in modern electronic packaging. EM-induced failures often manifest as void formation and microstructural degradation, particularly at the cathode interface. To address this issue, composite solder joints with elemental additions have been explored to enhance performance under high current stress. This study investigates the effect of Zn addition on the electromigration behavior and mechanical performance of eutectic Sn-Bi solder joints on copper (Cu) and nickel-coated copper (Ni/Cu) substrates. The solder alloys 58Sn-42Bi and Zn-modified Sn-Bi were prepared and reflowed onto the substrates. Electromigration testing was performed under a constant current of 1000 mA at room temperature, with applied voltages of 5 V, 12 V, and 24 V over a 10-day period per sample. Shear tests were conducted at a crosshead speed of 0.1 mm/min to evaluate joint strength. The results revealed that Zn addition influenced the distribution of Bi within the solder matrix, reducing Bi depletion at the cathode and mitigating accumulation at the anode, suggesting improved EM resistance. Zn-containing solder joints also demonstrated enhanced shear strength compared to unmodified Sn-Bi joints. These findings highlight the potential of Zn as a beneficial alloying element for improving the reliability of lead-free solder joints and form a foundation for future studies incorporating phase analysis and predictive EM lifetime modelling. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

21 pages, 8385 KiB  
Article
Hydraulic Fracture Propagation Behavior in Tight Conglomerates and Field Applications
by Zhenyu Wang, Wei Xiao, Shiming Wei, Zheng Fang and Xianping Cao
Processes 2025, 13(8), 2494; https://doi.org/10.3390/pr13082494 - 7 Aug 2025
Viewed by 190
Abstract
The tight conglomerate oil reservoir in Xinjiang’s Mahu area is situated on the northwestern margin of the Junggar Basin. The reservoir comprises five stacked fan bodies, with the Triassic Baikouquan Formation serving as the primary pay zone. To delineate the study scope and [...] Read more.
The tight conglomerate oil reservoir in Xinjiang’s Mahu area is situated on the northwestern margin of the Junggar Basin. The reservoir comprises five stacked fan bodies, with the Triassic Baikouquan Formation serving as the primary pay zone. To delineate the study scope and conduct a field validation, the Ma-X well block was selected for investigation. Through triaxial compression tests and large-scale true triaxial hydraulic fracturing simulations, we analyzed the failure mechanisms of tight conglomerates and identified key factors governing hydraulic fracture propagation. The experimental results reveal several important points. (1) Gravel characteristics control failure modes: Larger gravel size and higher content increase inter-gravel stress concentration, promoting gravel crushing under confining pressure. At low-to-medium confining pressures, shear failure primarily occurs within the matrix, forming bypassing fractures around gravel particles. (2) Horizontal stress differential dominates fracture geometry: Fractures preferentially propagate as transverse fractures perpendicular to the wellbore, with stress anisotropy being the primary control factor. (3) Injection rate dictates fracture complexity: Weakly cemented interfaces in conglomerates lead to distinct fracture morphologies—low rates favor interface activation, while high rates enhance penetration through gravels. (4) Stimulation strategy impacts SRV: Multi-cluster perforations show limited effectiveness in enhancing fracture network complexity. In contrast, variable-rate fracturing significantly increases stimulated reservoir volume (SRV) compared to constant-rate methods, as evidenced by microseismic data demonstrating improved interface connectivity and broader fracture coverage. Full article
(This article belongs to the Special Issue Structure Optimization and Transport Characteristics of Porous Media)
Show Figures

Figure 1

13 pages, 2040 KiB  
Article
Study on the Shear Characteristics of the Frozen Soil–Concrete Interface at Different Roughness Levels
by Ming Xie, Mengqi Xu, Fangbo Xu, Zhangdong Wang, Lie Yin and Xiangdong Wu
Buildings 2025, 15(15), 2783; https://doi.org/10.3390/buildings15152783 - 6 Aug 2025
Viewed by 255
Abstract
The shear characteristics of the frozen soil–concrete interface are core parameters in frost heave resistance design in cold-region engineering, and the influence mechanism of interface roughness on these characteristics is not clear. In this study, the regulatory effect of different roughness levels (R-0 [...] Read more.
The shear characteristics of the frozen soil–concrete interface are core parameters in frost heave resistance design in cold-region engineering, and the influence mechanism of interface roughness on these characteristics is not clear. In this study, the regulatory effect of different roughness levels (R-0 to R-4) on the interfacial freezing strength was quantitatively analyzed for the first time through direct shear tests, and the evolution characteristics of the contribution ratio of the ice cementation strength were revealed. The results show that the peak shear strength of the interface increases significantly with the roughness (when the normal stress is 400 kPa and the water content is 14%, the increase in R-4 is 47.7% compared with R-0); the ice cementation strength increases synchronously and its contribution ratio increases with the increase in roughness. Although the absolute value of the residual strength increase is small, the relative amplitude is larger (178.5% increase under the same working conditions). The peak cohesion increased significantly with the roughness (R-0 to R-4 increased by 268.6%), while the residual cohesion decreased. The peak and residual internal friction angle increased slightly with the roughness. The study clarifies the differential influence mechanism of roughness on the interface’s shear parameters and provides a key quantitative basis for the anti-frost heave design of engineering interfaces in cold regions. Full article
Show Figures

Figure 1

31 pages, 17555 KiB  
Article
Evaluating Performance of Friction Stir Lap Welds Made at Ultra-High Speeds
by Todd Lainhart, Joshua Sheffield, Jeremy Russell, Jeremy Coyne and Yuri Hovanski
J. Manuf. Mater. Process. 2025, 9(8), 263; https://doi.org/10.3390/jmmp9080263 - 6 Aug 2025
Viewed by 357
Abstract
Friction stir lap welding has been utilized across research and industry for over a decade. However, difficulties in welding in the lap configuration without an interface-related defect have prevented the process from moving beyond low feed rates (generally less than 1.5 m per [...] Read more.
Friction stir lap welding has been utilized across research and industry for over a decade. However, difficulties in welding in the lap configuration without an interface-related defect have prevented the process from moving beyond low feed rates (generally less than 1.5 m per minute). As a means of making a huge leap in welding productivity, this study will evaluate friction stir welds made at 10 m per minute (mpm), detailing the changes to tool geometries and weld parameters that result in fully consolidated welds. Characterization of the subsequent material properties, namely through optical microscopy, CT scanning, microhardness testing, tensile and fatigue testing, hermetic seal pressure tests, and electron backscattered diffraction, is presented as a means of demonstrating the quality and repeatability of friction stir lap welds made at 10 mpm. Fully consolidated welds were produced at spindle speeds 5.5% faster and 2.9% slower than nominal values and weld depths ranging from 1% shallower to 8.2% deeper than nominal values. Additionally, the loading direction of the weld had a significant impact on tensile properties, with the advancing side of the weld measured to be 16% stronger in lap-shear tensile and 289% fatigue life improvement under all loading conditions measured when compared to the retreating side. Full article
Show Figures

Figure 1

12 pages, 2764 KiB  
Article
AlxCoCrFeNi High-Entropy Alloys Enable Simultaneous Electrical and Mechanical Robustness at Thermoelectric Interfaces
by Xiaoxia Zou, Wangjie Zhou, Xinxin Li, Yuzeng Gao, Jingyi Yu, Linglu Zeng, Guangteng Yang, Li Liu, Wei Ren and Yan Sun
Materials 2025, 18(15), 3688; https://doi.org/10.3390/ma18153688 - 6 Aug 2025
Viewed by 230
Abstract
The interface between high-performance thermoelectric materials and electrodes critically governs the conversion efficiency and long-term reliability of thermoelectric generators under high-temperature operation. Here, we propose AlxCoCrFeNi high-entropy alloys (HEA) as barrier layers to bond Cu-W electrodes with p-type skutterudite (p-SKD) thermoelectric [...] Read more.
The interface between high-performance thermoelectric materials and electrodes critically governs the conversion efficiency and long-term reliability of thermoelectric generators under high-temperature operation. Here, we propose AlxCoCrFeNi high-entropy alloys (HEA) as barrier layers to bond Cu-W electrodes with p-type skutterudite (p-SKD) thermoelectric materials. The HEA/p-SKD interface exhibited excellent chemical bonding with a stable and controllable reaction layer, forming a dense, defect-free (Fe,Ni,Co,Cr)Sb phase (thickness of ~2.5 μm) at the skutterudites side. The interfacial resistivity achieved a low value of 0.26 μΩ·cm2 and remained at 7.15 μΩ·cm2 after aging at 773 K for 16 days. Moreover, the interface demonstrated remarkable mechanical stability, with an initial shear strength of 88 MPa. After long-term aging for 16 days at 773 K, the shear strength retained 74 MPa (only 16% degradation), ranking among the highest reported for thermoelectric materials/metal joints. Remarkably, the joint maintained a shear strength of 29 MPa even after 100 continuous thermal cycles (623–773 K), highlighting its outstanding thermo-mechanical stability. These results validate the AlxCoCrFeNi high-entropy alloys as an ideal interfacial material for thermoelectric generators, enabling simultaneous optimization of electrical and mechanical performance in harsh environments. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

29 pages, 15691 KiB  
Article
Mechanical Behavior and Response Mechanism of Short Fiber-Reinforced Polymer Structures Under Low-Speed Impact
by Xinke Xiao, Penglei Wang, Anxiao Guo, Linzhuang Han, Yunhao Yang, Yalin He and Xuanming Cai
Materials 2025, 18(15), 3686; https://doi.org/10.3390/ma18153686 - 6 Aug 2025
Viewed by 261
Abstract
Short fiber-reinforced polymer (SFRP) has been extensively applied in structural engineering due to its exceptional specific strength and superior mechanical properties. Its mechanical behavior under medium strain rate conditions has become a key focus of ongoing research. A comprehensive understanding of the response [...] Read more.
Short fiber-reinforced polymer (SFRP) has been extensively applied in structural engineering due to its exceptional specific strength and superior mechanical properties. Its mechanical behavior under medium strain rate conditions has become a key focus of ongoing research. A comprehensive understanding of the response characteristics and underlying mechanisms under such conditions is of critical importance for both theoretical development and practical engineering applications. This study proposes an innovative three-dimensional (3D) multiscale constitutive model that comprehensively integrates mesoscopic fiber–matrix interface effects and pore characteristics. To systematically investigate the dynamic response and damage evolution of SFRP under medium strain rate conditions, 3D-printed SFRP porous structures with volume fractions of 25%, 35%, and 45% are designed and subjected to drop hammer impact experiments combined with multiscale numerical simulations. The experimental and simulation results demonstrate that, for specimens with a 25% volume fraction, the strain rate strengthening effect is the primary contributor to the increase in peak stress. In contrast, for specimens with a 45% volume fraction, the interaction between damage evolution and strain rate strengthening leads to a more complex stress–strain response. The specific energy absorption (SEA) of 25% volume fraction specimens increases markedly with increasing strain rate. However, for specimens with 35% and 45% volume fractions, the competition between these two mechanisms results in non-monotonic variations in energy absorption efficiency (EAE). The dominant failure mode under impact loading is shear-dominated compression, with damage evolution becoming increasingly complex as the fiber volume fraction increases. Furthermore, the damage characteristics transition from fiber pullout and matrix folding at lower volume fractions to the coexistence of brittle and ductile behaviors at higher volume fractions. The numerical simulations exhibit strong agreement with the experimental data. Multi-directional cross-sectional analysis further indicates that the initiation and propagation of shear bands are the principal drivers of structural instability. This study offers a robust theoretical foundation for the impact-resistant design and dynamic performance optimization of 3D-printed short fiber-reinforced polymer (SFRP) porous structures. Full article
Show Figures

Figure 1

18 pages, 3916 KiB  
Article
Bond Behavior Between Fabric-Reinforced Cementitious Matrix (FRCM) Composites and Different Substrates: An Experimental Investigation
by Pengfei Ma, Shangke Yuan and Shuming Jia
J. Compos. Sci. 2025, 9(8), 407; https://doi.org/10.3390/jcs9080407 - 1 Aug 2025
Viewed by 312
Abstract
This study investigates the bond behavior of fabric-reinforced cementitious matrix (FRCM) composites with three common masonry substrates—solid clay bricks (SBs), perforated bricks (PBs), and concrete hollow blocks (HBs)—using knitted polyester grille (KPG) fabric. Through uniaxial tensile tests of the KPG fabric and FRCM [...] Read more.
This study investigates the bond behavior of fabric-reinforced cementitious matrix (FRCM) composites with three common masonry substrates—solid clay bricks (SBs), perforated bricks (PBs), and concrete hollow blocks (HBs)—using knitted polyester grille (KPG) fabric. Through uniaxial tensile tests of the KPG fabric and FRCM system, along with single-lap and double-lap shear tests, the interfacial debonding modes, load-slip responses, and composite utilization ratio were evaluated. Key findings reveal that (i) SB and HB substrates predominantly exhibited fabric slippage (FS) or matrix–fabric (MF) debonding, while PB substrates consistently failed at the matrix–substrate (MS) interface, due to their smooth surface texture. (ii) Prism specimens with mortar joints showed enhanced interfacial friction, leading to higher load fluctuations compared to brick units. PB substrates demonstrated the lowest peak stress (69.64–74.33 MPa), while SB and HB achieved comparable peak stresses (133.91–155.95 MPa). (iii) The FRCM system only achieved a utilization rate of 12–30% in fabric and reinforcement systems. The debonding failure at the matrix–substrate interface is one of the reasons that cannot be ignored, and exploring methods to improve the bonding performance between the matrix–substrate interface is the next research direction. HB bricks have excellent bonding properties, and it is recommended to prioritize their use in retrofit applications, followed by SB bricks. These findings provide insights into optimizing the application of FRCM reinforcement systems in masonry structures. Full article
Show Figures

Figure 1

Back to TopTop