Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (879)

Search Parameters:
Keywords = interesting observation points

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
43 pages, 8950 KB  
Article
Development of a Virtual Drone System for Exploring Natural Landscapes and Enhancing Junior High School Students’ Learning of Indigenous Settlement Site Selection
by Pei-Qing Wu, Tsu-Jen Ding, Yu-Jung Wu and Wernhuar Tarng
Drones 2025, 9(11), 742; https://doi.org/10.3390/drones9110742 (registering DOI) - 24 Oct 2025
Viewed by 77
Abstract
This study combined virtual reality technology with drone aerial imagery of Smangus, a remote Atayal tribe situated 1500 m above sea level in Hsinchu County, Taiwan, to develop a virtual drone system. This study aims to investigate the learning effectiveness and operational experience [...] Read more.
This study combined virtual reality technology with drone aerial imagery of Smangus, a remote Atayal tribe situated 1500 m above sea level in Hsinchu County, Taiwan, to develop a virtual drone system. This study aims to investigate the learning effectiveness and operational experience associated with the application of the virtual drone system for exploring tribal natural landscapes and enhancing junior high school students’ learning of Indigenous settlement site selection. A quasi-experimental design was conducted with two seventh-grade classes from a junior high school in Hsinchu County, Taiwan. The experimental group (n = 43) engaged with the virtual drone system to perform settlement site selection tasks, while the control group (n = 42) learned using traditional materials such as PowerPoint slides and maps. The intervention consisted of two instructional sessions, with data collected via achievement tests, questionnaires, and open-ended feedback. The results indicated that students in the experimental group significantly outperformed the control group in learning outcomes. Positive responses were also observed in learning motivation, cognitive load, and system satisfaction. Students reported that the virtual drone system improved students’ understanding of terrain and enhanced their skills in selecting appropriate sites while increasing their interest and motivation in learning. Moreover, the course incorporated the Atayal people’s migration history and field interview data, enriching its cultural authenticity and contextual relevance. Full article
Show Figures

Figure 1

22 pages, 7453 KB  
Article
Comparative Analysis of Cholinergic Machinery in Carcinomas: Discovery of Membrane-Tethered ChAT as Evidence for Surface-Based ACh Synthesis in Neuroblastoma Cells
by Banita Thakur, Samar Tarazi, Lada Doležalová, Homira Behbahani and Taher Darreh-Shori
Int. J. Mol. Sci. 2025, 26(21), 10311; https://doi.org/10.3390/ijms262110311 - 23 Oct 2025
Viewed by 142
Abstract
The cholinergic system is one of the most ancient and widespread signaling systems in the body, implicated in a range of pathological conditions—from neurodegenerative disorders to cancer. Given its broad relevance, there is growing interest in characterizing this system across diverse cellular models [...] Read more.
The cholinergic system is one of the most ancient and widespread signaling systems in the body, implicated in a range of pathological conditions—from neurodegenerative disorders to cancer. Given its broad relevance, there is growing interest in characterizing this system across diverse cellular models to enable drug screening, mechanistic studies, and exploration of new therapeutic avenues. In this study, we investigated four cancer cell lines: one of neuroblastoma origin previously used in cholinergic signaling studies (SH-SY5Y), one non-small cell lung adenocarcinoma line (A549), and two small cell lung carcinoma lines (H69 and H82). We assessed the expression and localization of key components of the cholinergic system, along with the cellular capacity for acetylcholine (ACh) synthesis and release. Whole-cell flow cytometry following membrane permeabilization revealed that all cell lines expressed the ACh-synthesizing enzyme choline acetyltransferase (ChAT). HPLC-MS analysis confirmed that ChAT was functionally active, as all cell lines synthesized and released ACh into the conditioned media, suggesting the presence of autocrine and/or paracrine ACh signaling circuits, consistent with previous reports. The cell lines also demonstrated choline uptake, indicative of functional choline and/or organic cation transporters. Additionally, all lines expressed the ACh-degrading enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), as well as the alfa seven (α7) nicotinic and M1 muscarinic ACh receptor subtypes. Notably, flow cytometry of intact SH-SY5Y cells revealed two novel findings: (1) ChAT was localized to the extracellular membrane, a feature not observed in the lung cancer cell lines, and (2) BChE, rather than AChE, was the predominant membrane-bound ACh-degrading enzyme. These results were corroborated by both whole-cell and surface-confocal microscopy. In conclusion, our findings suggest that a functional cholinergic phenotype is a shared feature of several carcinoma cell lines, potentially serving as a survival checkpoint that could be therapeutically explored. The discovery of extracellular membrane-bound ChAT uniquely in neuroblastoma SH-SY5Y cells points to a novel form of in situ ACh signaling that warrants further investigation. Full article
(This article belongs to the Special Issue New Research Progresses on Multifaceted Cholinergic Signaling)
Show Figures

Figure 1

14 pages, 535 KB  
Article
Evaluation of Safety and Acceptability of 40 Hz Amplitude-Modulated Auditory Stimulation in Healthy Older People: A Prospective Study from Japan
by Shunsuke Sato, Kazuma Maeda, Hiroki Chinen, Shinzo Hiroi, Keita Tanaka, Eriko Ogura, Hiroki Fukuju, Kentaro Morimoto, Yoshiki Nagatani, Kazuki Takazawa, Taiki Kasai, Yumi Ohta and Manabu Ikeda
Healthcare 2025, 13(20), 2638; https://doi.org/10.3390/healthcare13202638 - 20 Oct 2025
Viewed by 248
Abstract
Background/Objectives: Dysregulated gamma oscillations are associated with cognitive dysfunction. Auditory stimulation at 40 Hz enhances neural activity in brain regions associated with learning, attention, and memory. This study assessed the safety and acceptability of 40 Hz amplitude-modulated auditory stimulation in healthy older people. [...] Read more.
Background/Objectives: Dysregulated gamma oscillations are associated with cognitive dysfunction. Auditory stimulation at 40 Hz enhances neural activity in brain regions associated with learning, attention, and memory. This study assessed the safety and acceptability of 40 Hz amplitude-modulated auditory stimulation in healthy older people. Auditory stimuli were created using popular songs, where vocals and background music were separated and independently amplitude-modulated at 40 Hz with different modulation depths to generate periodic 40 Hz gamma waveforms. Methods: In this open-label, single-arm study, healthy participants aged ≥65 years received 40 Hz amplitude-modulated auditory stimulation daily via a smartphone for 28 days through earphones/headphones. Safety was assessed through adverse event (AE) monitoring and changes in clinical scores for depression, cognitive function, and hearing thresholds. Acceptability was evaluated by adherence rates, listening time, dropout reasons, volume levels, intent for future use, and subjective impressions of the sound source on a 7-point Likert scale. Results: Among 28 participants (mean age 69.1 years, 53.6% female), six reported 12 AEs, with six considered device-related (e.g., ear discomfort, jaw pain, musculoskeletal stiffness). The AEs observed were mild or moderate. Scores for cognitive function, depression, and hearing thresholds did not worsen during the study period. Adherence was observed in 96.4%, with 85.7% expressing interest in continuing. Most participants rated the sounds’ unnaturalness between 2 and 3 and discomfort between 1 and 3 on the 7-point Likert scale. Conclusions: The intervention was well tolerated and acceptable in study participants, with no major safety concerns identified. Auditory stimulation did not cause severe discomfort or reduce acceptability. Further studies should explore the long-term effects and broader clinical applications. Full article
Show Figures

Figure 1

26 pages, 9496 KB  
Article
An Integrated Approach to Identify Functional Areas for Bicycle Use with Spatial–Temporal Information: A Case Study of Seoul, Republic of Korea
by Jiwon Lee and Jiyoung Kim
Land 2025, 14(10), 2069; https://doi.org/10.3390/land14102069 - 16 Oct 2025
Viewed by 214
Abstract
Identifying urban functional areas increasingly relies on data-driven approaches that utilize multimodal spatial information. There is a growing focus on purpose-oriented functional area identification with greater policy relevance. This paper proposes a data-driven methodology to identify functional areas from the perspective of bicycle [...] Read more.
Identifying urban functional areas increasingly relies on data-driven approaches that utilize multimodal spatial information. There is a growing focus on purpose-oriented functional area identification with greater policy relevance. This paper proposes a data-driven methodology to identify functional areas from the perspective of bicycle users. To achieve this, line-based road network units were defined around bicycle stations, and spatial–temporal data such as Origin–Destination flows and Point of Interest information were semantically integrated to delineate functional areas. An experiment was conducted on 2628 public bicycle stations in Seoul, Republic of Korea, for May 2022, and a total of five functional areas were identified via a Co-Matrix Factorization-based fusion approach. Additionally, the proposed method was validated through visual evaluation and comparison with actual bicycle usage data. The results demonstrate that by simultaneously incorporating spatial–temporal information and latent connectivity, this approach identifies bicycle-friendly areas, even with low observed usage, highlighting its potential for policy applications. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

15 pages, 1083 KB  
Article
High-Power Laser Therapy Modulates Mitochondrial Function and Redox Balance Without Cytotoxicity: An In Vitro Study in BV-2 Microglial Cells
by Luana Barbosa Dias, Thiago De Marchi, Ana Paula Vargas Visentin, Juliana Maria Chaves, Catia Santos Branco, Fernando Joel Scariot, Matheus Marinho Aguiar Lino, Older Manoel Araújo-Silva, Amanda Lima Pereira, Heliodora Leão Casalechi, Douglas Scott Johnson, Shaiane Silva Tomazoni and Ernesto Cesar Pinto Leal-Junior
Antioxidants 2025, 14(10), 1243; https://doi.org/10.3390/antiox14101243 - 16 Oct 2025
Viewed by 525
Abstract
Background: Recent technological advances have sparked growing interest in high-power laser devices due to their capacity for energy delivery and therapeutic potential, especially in deeper tissues. This promising approach may be comparable to photobiomodulation for modulating inflammatory and redox processes in various tissues. [...] Read more.
Background: Recent technological advances have sparked growing interest in high-power laser devices due to their capacity for energy delivery and therapeutic potential, especially in deeper tissues. This promising approach may be comparable to photobiomodulation for modulating inflammatory and redox processes in various tissues. However, to our knowledge, this is the first study to evaluate the safety profile and redox modulation capacity of high-power laser therapy in BV-2 microglial cells. Methods: This study investigated the cellular responses of BV-2 microglial cells exposed to three laser irradiation protocols using a high-power laser device (650/810/915/980 nm, 657 J total dose), applied at variable distances to simulate in vivo power attenuation. Cell viability, apoptosis, adenosine triphosphate(ATP) levels, mitochondrial membrane potential (MMP), reactive oxygen species (ROS), nitric oxide (NO), and intracellular calcium levels were assessed at multiple time points (5 min to 24 h). Results: Protocol-dependent effects were observed. Protocol A promoted early increases in cell viability and ATP levels, along with decreased apoptotic markers and ROS production, suggesting a protective bioenergetic response. In contrast, Protocol C showed transient increases in oxidative stress and reduced MMP, suggesting possible mitochondrial stress. A selective increase in NO levels under Protocol A also suggests modulation of inflammatory pathways without cytotoxicity. Conclusions: High-power laser therapy modulates redox balance, mitochondrial function, and inflammatory mediators (e.g., NO) in a dual-phase manner in BV-2 microglial cells. These findings contribute to defining safe and effective parameters for potential musculoskeletal and neurological applications. Full article
Show Figures

Figure 1

36 pages, 5903 KB  
Article
Impact of Post-Traumatic Stress Disorder Duration on Volumetric and Microstructural Parameters of the Hippo-Campus, Amygdala, and Prefrontal Cortex: A Multiparametric Magnetic Resonance Imaging Study with Correlation Analysis
by Barbara Paraniak-Gieszczyk and Ewa Alicja Ogłodek
J. Clin. Med. 2025, 14(20), 7242; https://doi.org/10.3390/jcm14207242 - 14 Oct 2025
Viewed by 482
Abstract
Introduction. Post-traumatic stress disorder (PTSD) remains one of the best-described yet also one of the most heterogeneous psychiatric disorders. Existing neuroimaging studies point to key changes in the hippocampus, amygdala, and prefrontal cortex, but the role of PTSD duration in modulating these changes [...] Read more.
Introduction. Post-traumatic stress disorder (PTSD) remains one of the best-described yet also one of the most heterogeneous psychiatric disorders. Existing neuroimaging studies point to key changes in the hippocampus, amygdala, and prefrontal cortex, but the role of PTSD duration in modulating these changes has not been fully explained. Objectives. The aim of the study was to assess the impact of PTSD duration (≤5 years vs. >5 years) on volumetric and microstructural brain parameters, using multiple Magnetic Resonance Imaging (MRI) sequences (3D Ax BRAVO, Cube T2 FLAIR, Diffusion Tensor Imaging—DTI) and a set of macroscopic morphometric measurements. Methods. The study included 92 participants: 33 with PTSD of ≤5 years duration, 31 with PTSD > 5 years, and 28 healthy controls. Volume and diffusion parameters of six Regions of Interest (ROIs) (hippocampus, amygdala, prefrontal cortex—right and left) were evaluated, along with their associations with nine brain measurements (including width of the third ventricle, corpus callosum, and lateral fissures). Statistical analyses included the Kruskal–Wallis test with Compact Letter Display (CLD) correction and Spearman correlations. Results. (1) The volume of the right hippocampus was significantly greater in the PTSD > 5 years group compared to controls (p = 0.006), with intermediate values in the PTSD ≤ 5 years group. (2) In the left amygdala, an increase in Fractional Anisotropy (FA) and related anisotropy measures was observed in PTSD > 5 years (p ≈ 0.02), without volumetric changes. (3) In the left prefrontal cortex, diffusivity was reduced in PTSD ≤ 5 years (p = 0.035), partially normalizing after >5 years. (4) Correlation analysis revealed that chronic PTSD strengthens the negative associations between hippocampal microstructure and both the width of the amygdala and the interhemispheric fissure, indicating a progressive reorganization of fronto-limbic networks. Conclusions. PTSD induces region- and time-dependent brain changes: (a) adaptive/hypertrophic protection of the right hippocampus after many years of illness, (b) cumulative microstructural reorganization of the left amygdala, and (c) transient impairment of diffusion in the left prefrontal cortex in early PTSD. These findings highlight the necessity of considering the temporal dimension in planning therapeutic interventions and in the search for biomarkers of PTSD progression. Full article
(This article belongs to the Section Clinical Neurology)
Show Figures

Figure 1

13 pages, 3078 KB  
Article
Firefly Species and Nocturnal Activity Patterns of Adults in Peri-Urban Forests of Dongguan
by Qingqing Huang, Haicong Zeng, Chaodong Yan, Ting Liu, Songsong Liu, Zhenkai Sun, Chang Zhang, Zhenye Chen, Feng Peng, Niansheng Li and Cheng Wang
Forests 2025, 16(10), 1545; https://doi.org/10.3390/f16101545 - 7 Oct 2025
Viewed by 341
Abstract
Against the backdrop of advancing ecological civilization and increasing public interest in reconnecting with nature, this study examines fireflies—iconic insects cherished for their natural charm—as valuable landscape resources. This study was conducted in Dalingshan Forest Park, Dongguan (Pearl River Delta), using the Forest [...] Read more.
Against the backdrop of advancing ecological civilization and increasing public interest in reconnecting with nature, this study examines fireflies—iconic insects cherished for their natural charm—as valuable landscape resources. This study was conducted in Dalingshan Forest Park, Dongguan (Pearl River Delta), using the Forest Science Trail as a sampling site. Surveys combining line transect and point count methods were employed to analyze firefly species composition, adult activity patterns, and flight characteristics. Key findings include: (1) Four species were identified—Asymmetricata circumdata, Pygoluciola qingyu, Aquatica analis, and Luciola satoi—three of which were observed along the trail; (2) Adults appeared sporadically after 19:00, with peak activity occurring between 19:30 and 20:00, showing minor interspecific variation; (3) Although flight height varied slightly among species, most activities concentrated within 0–1.5 m, corresponding to herbaceous and shrub layers; (4) Distinct flight patterns were observed: A. circumdata displayed prolonged intermittent flights, while P. qingyu and L. satoi exhibited shorter perching-based flights. These results provide a scientific basis for firefly habitat conservation, biodiversity promotion, and the sustainable integration of firefly landscapes into nature education and ecotourism. Full article
(This article belongs to the Special Issue Sustainable Urban Forests and Green Environments in a Changing World)
Show Figures

Figure 1

24 pages, 1782 KB  
Article
Point Cloud Completion Network Based on Multi-Dimensional Adaptive Feature Fusion and Informative Channel Attention Mechanism
by Di Tian, Jiahang Shi, Jiabo Li and Mingming Gong
Sensors 2025, 25(19), 6173; https://doi.org/10.3390/s25196173 - 5 Oct 2025
Viewed by 609
Abstract
With the continuous advancement of 3D perception technology, point cloud data has found increasingly widespread application. However, the presence of holes in point cloud data caused by device limitations and environmental interference severely restricts algorithmic performance, making point cloud completion a research topic [...] Read more.
With the continuous advancement of 3D perception technology, point cloud data has found increasingly widespread application. However, the presence of holes in point cloud data caused by device limitations and environmental interference severely restricts algorithmic performance, making point cloud completion a research topic of high interest. This study observes that most existing mainstream point cloud completion methods primarily focus on capturing global features, while often underrepresenting local structural details. Moreover, the generation process of complete point clouds lacks effective control over fine-grained features, leading to insufficient detail in the completed outputs and reduced data integrity. To address these issues, we propose a Set Combination Multi-Layer Perceptron (SCMP) module that enables the simultaneous extraction of both local and global features, thereby reducing the loss of local detail information. In addition, we introduce the Squeeze Excitation Pooling Network (SEP-Net) module, an informative channel attention mechanism capable of adaptively identifying and enhancing critical channel features, thus improving the overall feature representation capability. Based on these modules, we further design a novel Feature Fusion Point Fractal Network (FFPF-Net), which fuses multi-dimensional point cloud features to enhance representation capacity and progressively refines the missing regions to generate a more complete point cloud. Extensive experiments conducted on the ShapeNet-Part and MVP datasets compared to L-GAN and PCN showed average prediction error improvements of 1.3 and 1.4, respectively. The average completion errors on the ShapeNet-Part and MVP datasets are 0.783 and 0.824, highlighting the improved fine-detail reconstruction capability of our network. These results indicate that the proposed method effectively enhances point cloud completion performance and can further promote the practical application of point cloud data in various real-world scenarios. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

30 pages, 1643 KB  
Article
Destination (Un)Known: Auditing Bias and Fairness in LLM-Based Travel Recommendations
by Hristo Andreev, Petros Kosmas, Antonios D. Livieratos, Antonis Theocharous and Anastasios Zopiatis
AI 2025, 6(9), 236; https://doi.org/10.3390/ai6090236 - 19 Sep 2025
Viewed by 1043
Abstract
Large language-model chatbots such as ChatGPT and DeepSeek are quickly gaining traction as an easy, first-stop tool for trip planning because they offer instant, conversational advice that once required sifting through multiple websites or guidebooks. Yet little is known about the biases that [...] Read more.
Large language-model chatbots such as ChatGPT and DeepSeek are quickly gaining traction as an easy, first-stop tool for trip planning because they offer instant, conversational advice that once required sifting through multiple websites or guidebooks. Yet little is known about the biases that shape the destination suggestions these systems provide. This study conducts a controlled, persona-based audit of the two models, generating 6480 recommendations for 216 traveller profiles that vary by origin country, age, gender identity and trip theme. Six observable bias families (popularity, geographic, cultural, stereotype, demographic and reinforcement) are quantified using tourism rankings, Hofstede scores, a 150-term cliché lexicon and information-theoretic distance measures. Findings reveal measurable bias in every bias category. DeepSeek is more likely than ChatGPT to suggest off-list cities and recommends domestic travel more often, while both models still favour mainstream destinations. DeepSeek also points users toward culturally more distant destinations on all six Hofstede dimensions and employs a denser, superlative-heavy cliché register; ChatGPT shows wider lexical variety but remains strongly promotional. Demographic analysis uncovers moderate gender gaps and extreme divergence for non-binary personas, tempered by a “protective” tendency to guide non-binary travellers toward countries with higher LGBTQI acceptance. Reinforcement bias is minimal, with over 90 percent of follow-up suggestions being novel in both systems. These results confirm that unconstrained LLMs are not neutral filters but active amplifiers of structural imbalances. The paper proposes a public-interest re-ranking layer, hosted by a body such as UN Tourism, that balances exposure fairness, seasonality smoothing, low-carbon routing, cultural congruence, safety safeguards and stereotype penalties, transforming conversational AI from an opaque gatekeeper into a sustainability-oriented travel recommendation tool. Full article
(This article belongs to the Special Issue AI Bias in the Media and Beyond)
Show Figures

Figure 1

17 pages, 2381 KB  
Article
Fibrous Minerals and Naturally Occurring Asbestos (NOA) in the Metacarbonate Hosted Fe Oxide-Cu-Au-Co Mineralized Rocks from the Guelb Moghrein Mine, Akjoujt, Mauritania: Implications for In Situ Hazard Assessment and Mitigation Protocols
by Jessica Shaye Schapira and Robert Bolhar
Minerals 2025, 15(9), 991; https://doi.org/10.3390/min15090991 - 18 Sep 2025
Viewed by 454
Abstract
The awareness of the potential risks associated with the environmental exposition of asbestos is on the rise and has facilitated a new interest in in situ identification and assessment of the hazards of fibrous minerals. The mineralised metacarbonate rocks of the Guelb Moghrein [...] Read more.
The awareness of the potential risks associated with the environmental exposition of asbestos is on the rise and has facilitated a new interest in in situ identification and assessment of the hazards of fibrous minerals. The mineralised metacarbonate rocks of the Guelb Moghrein deposit have not been studied regarding the identification and characterisation of fibrous minerals occurrences. Thus, the aim of this study was to collect samples from different lithotypes with visually identifiable fibrous minerals and to examine the geological–structural features pertaining to their mode of occurrence and formation. The mineral fibre components of the rock samples demonstrate that fibrous and asbestiform mineralisation occurred via several modes, including fracture fill, slip-fibre recrystallisation and replacement. The geological diversity of fibrous amphibole mineralisation points to the chemistry of the rocks in this area and open space being the major factors controlling the presence of NOA in this deposit. The variability of NOA due to different fibrous mineral intergrowths is investigated by determining the bulk mineralogical and geochemical properties of the fibrous mineral content of each sample. A novel observation was pointed out in this study, showing the coexistence of fibrous siderite and anthophyllite. The identification of the asbestiform features exhibited by siderite, anthophyllite and talc in the mineralised metacarbonate of the Guelb Moghrein deposit underlines the necessity for further mineralogical research to enhance our understanding of fibrous minerals and how we assess their potential hazards to health. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Figure 1

15 pages, 3138 KB  
Article
The Novel Flax Cultivar Silesia Shows High Morphogenetic Capacity in Tissue Cultures
by Mateusz Lipiński, Kinga Pilarska-Dudziak, Tadeusz Czuj, Anna Prescha, Wojciech Łaba, Katarzyna Skórkowska-Telichowska and Magdalena Wróbel-Kwiatkowska
Int. J. Mol. Sci. 2025, 26(18), 8847; https://doi.org/10.3390/ijms26188847 - 11 Sep 2025
Viewed by 518
Abstract
The aim of the present study was to evaluate the morphogenetic efficiency of the new flax (Linum usitatissimum L.) cultivar Silesia. The plant material consisted of five ecotypes of Silesia seeds selected by determining the fatty acid composition in individual plants. Thus, [...] Read more.
The aim of the present study was to evaluate the morphogenetic efficiency of the new flax (Linum usitatissimum L.) cultivar Silesia. The plant material consisted of five ecotypes of Silesia seeds selected by determining the fatty acid composition in individual plants. Thus, five ecotypes with different fatty acid compositions were applied for germination, and the resulting seedlings were used for callus induction. The observed in vitro morphogenic response of explants to the used callus induction medium was 100%, followed by varying development of shoots, with the highest value being 17 shoots per callus, with an average length of 7.15 cm (for ecotype 1). The biochemical analyses showed photosynthetic pigments were significantly affected by the tested ecotypes. The main conclusion is that the selection of plant material as a source of tissue cultures is crucial for efficient regeneration and organogenesis. One factor potentially influencing these processes is fatty acid composition and the ratio of linoleic to α-linolenic acid. A ratio ranging from 1.36 to 1.68 in the source material (seeds) used for initiation of tissue cultures resulted in the highest efficiency of shoot regeneration and number of obtained shoots per callus. A strong negative correlation (−0.78) was observed between shoot regeneration efficiency and the ratio of linoleic to α-linolenic acid in seeds from which the explants were obtained. Moreover, an efficient protocol of micropropagation from callus tissue was established for the new flax cultivar Silesia. An interesting insight into the metabolism of the obtained regenerants allowed us to determine the relationship between the content of chlorophyll and rhizogenesis efficiency. For these two parameters, the calculated correlation coefficient was 0.66. A strong relationship (high correlation coefficient: 0.79) was also established between flavonoid content and length of obtained regenerants, pointing to the developmental role of flavonoids. Full article
(This article belongs to the Special Issue Focus on Plant Biotechnology and Molecular Breeding)
Show Figures

Figure 1

26 pages, 1048 KB  
Review
Considering the Effects of Cannabinoids and Exercise on the Brain: A Narrative Review
by Amir Yahya Rajaei, J. Patrick Neary, Elizabeth S. Thompson, Jyotpal Singh and Cameron S. Mang
Sports 2025, 13(9), 320; https://doi.org/10.3390/sports13090320 - 11 Sep 2025
Viewed by 2778
Abstract
Recently, there has been rising interest in the use of cannabis and its derivatives as therapeutic tools to support brain health, particularly in athletes. Cannabis-based substances interact with the endogenous cannabinoid (i.e., endocannabinoid) system, which is involved in widespread physiological processes that contribute [...] Read more.
Recently, there has been rising interest in the use of cannabis and its derivatives as therapeutic tools to support brain health, particularly in athletes. Cannabis-based substances interact with the endogenous cannabinoid (i.e., endocannabinoid) system, which is involved in widespread physiological processes that contribute to brain function. In other work, the benefits of exercise for brain health have been prominently noted. Despite large bodies of work on both cannabinoid and exercise influences on brain function, there is an understudied overlap in their physiological effects that may be especially important in athletic populations regularly engaged in high volumes of exercise. This narrative review describes mechanistic overlaps between cannabinoid and exercise effects on brain function. The literature search was broad, emphasizing research published since 2010 and including randomized clinical trials, observational studies, case studies, preclinical work, both human and animal studies, and information presented in related review articles. The focal point of the current review is the potentially overlapping effects of cannabinoids and exercise on brain function via physiological processes underpinning inflammation, vascular function, and neuroplasticity. Mechanisms are described in detail with consideration of common and contrasting influences of cannabinoids and exercise on the brain. Altogether, the compiled information suggests that indirect and direct interactions between these two therapeutic avenues have potential to introduce additive, synergistic, or opposing effects. Considering such interactions will be critical in optimizing therapeutic strategies involving cannabinoids as they are increasingly applied in the sport sciences and beyond. Full article
Show Figures

Figure 1

33 pages, 4694 KB  
Article
The Influence of Cohesin on the Short-Scale Dynamics of Intact and Damaged Chromatin in Different Phases of the Cell Cycle
by Vladimir S. Viushkov, Nikolai A. Lomov, Polina O. Kalitina, Daria M. Potashnikova, Anastasia S. Shtompel, Sergey V. Ulianov, Sergey V. Razin and Mikhail A. Rubtsov
Int. J. Mol. Sci. 2025, 26(18), 8837; https://doi.org/10.3390/ijms26188837 - 11 Sep 2025
Viewed by 918
Abstract
Cohesin organizes the genome into spatially segregated loops and topologically associated domains by loop extrusion. In addition, it ensures cohesion of sister chromatids after replication. Thus, cohesin is expected to limit chromatin dynamics by ensuring cohesion and compacting chromatin in the interphase. Nonetheless, [...] Read more.
Cohesin organizes the genome into spatially segregated loops and topologically associated domains by loop extrusion. In addition, it ensures cohesion of sister chromatids after replication. Thus, cohesin is expected to limit chromatin dynamics by ensuring cohesion and compacting chromatin in the interphase. Nonetheless, loop extrusion is an example of chromatin dynamics; thus, cohesin could promote the dynamics of genomic loci at the scale of individual loops and contact domains. Moreover, given that the extruding activity of cohesin after replication is supplemented by its cohesive activity, the impact of cohesin on chromatin dynamics in different phases of the cell cycle may vary. Of particular interest is the cohesin’s role in the regulation of the dynamics of damaged chromatin, which remains insufficiently studied. Here, we visualized a genomic locus using the CRISPR-Sirius system in human cells with auxin-induced depletion of the cohesin subunit RAD21. Cohesin depletion increased the local spatial dynamics of the visualized locus on a time scale of fractions of a second to one minute. This effect was observed in both replicated and unreplicated chromatin. However, the increase in the mobility of the visualized locus upon cohesin depletion was more pronounced in the former. In addition, we showed that cohesin depletion did not affect the local mobility of double-strand break repair foci visualized using a fluorescent fragment of the repair factor 53BP1. Cohesin depletion did not affect the local mobility of repair foci in either replicated or unreplicated chromatin. The results indicate that cohesin constrains local spatial dynamics of genomic loci. At the same time, cohesive activity of cohesin is not indispensable for restricting chromatin dynamics, although it enhances the confinement effect. On the other hand, repair foci are less mobile structures than point chromatin loci, and cohesin does not affect their dynamics on the studied time scales. Full article
(This article belongs to the Special Issue Recent Advances in Chromatin Structure and Dynamics)
Show Figures

Figure 1

20 pages, 4975 KB  
Article
Mapping High-Resolution Carbon Emission Spatial Distribution Combined with Carbon Satellite and Muti-Source Data
by Liu Cui, Hui Yang, Maria Martin, Yina Qiao, Veit Ulrich and Alexander Zipf
Remote Sens. 2025, 17(17), 3125; https://doi.org/10.3390/rs17173125 - 8 Sep 2025
Viewed by 906
Abstract
Carbon satellites, as the most direct means of observing carbon dioxide globally, offer credible and scientifically robust methods for estimating carbon emissions. To enhance the accuracy and timeliness of urban-scale carbon emission estimates, this study proposes an innovative model that integrates top-down carbon [...] Read more.
Carbon satellites, as the most direct means of observing carbon dioxide globally, offer credible and scientifically robust methods for estimating carbon emissions. To enhance the accuracy and timeliness of urban-scale carbon emission estimates, this study proposes an innovative model that integrates top-down carbon satellite data with high-resolution spatial proxies, including points of interest, road networks, and population distribution. The K-means clustering method was employed to study the relationship between carbon emissions and XCO2 anomalies. Based on this, the local adaptive carbon emission estimation model was constructed. Further, by integrating the spatial distribution and weights of proxy data, carbon emissions were reallocated to generate a high-resolution urban carbon emission map at a 1 km × 1 km resolution. Taking Urumqi, the XCO2 background concentration ranged from approximately 408 ppm to 415 ppm in 2020, and the corresponding XCO2 ranged from −1.58 ppm to 1.13 ppm. The total carbon emission estimated by the local adaptive model amounted to approximately 58.26718 million tons in 2020, close to the EDGAR dataset, with most monthly relative error within ±10%. The Pearson correlation coefficient between the ODIAC dataset and spatially redistributed carbon emission was 0.192, and their comparison showed that high carbon emission areas in the spatially redistributed carbon emission aligned closely with urban industrial parks and commercial centers, offering a more detailed representation of urban carbon emission spatial characteristics. This method contributed to exploring the potential of carbon satellites for quantitatively measuring anthropogenic emissions and offers improved insights into monitoring urban-scale carbon dioxide emissions. Full article
Show Figures

Figure 1

28 pages, 1166 KB  
Systematic Review
Parkinson’s Disease Through the Lens of Metabolomics: A Targeted Systematic Review on Human Studies (2019–2024)
by Federico Cannas, Karolina Krystyna Kopeć, Natalia Zuddas, Flaminia Cesare Marincola, Giorgio Arcara, Michele Loi, Michele Mussap and Vassilios Fanos
J. Clin. Med. 2025, 14(17), 6277; https://doi.org/10.3390/jcm14176277 - 5 Sep 2025
Viewed by 1448
Abstract
Background: Parkinson’s disease (PD) is a chronic, progressive neurodegenerative disorder characterized by motor and non-motor symptoms. As conventional diagnostic methods are limited in their ability to detect early-stage PD or monitor its progression, there is growing interest in identifying molecular biomarkers with clinical [...] Read more.
Background: Parkinson’s disease (PD) is a chronic, progressive neurodegenerative disorder characterized by motor and non-motor symptoms. As conventional diagnostic methods are limited in their ability to detect early-stage PD or monitor its progression, there is growing interest in identifying molecular biomarkers with clinical utility. This systematic review synthesizes recent advancements in the application of metabolomics to PD, with a specific focus on human studies published between 2019 and 2024, a period of notable growth in the research area. Methods: Following PRISMA 2020 guidelines, a comprehensive literature search was conducted across major scientific databases. After screening, 16 eligible original studies were selected based on predefined criteria. Key features extracted included study design, biofluid type, analytical platform, statistical approach, and main findings. Results: Consistent metabolic alterations were observed across several biological pathways, including amino acid metabolism, lipid regulation, mitochondrial energy production, oxidative stress, polyamine metabolism, as well as in gut microbiota-derived metabolites. Biofluids analyzed included plasma, serum, cerebrospinal fluid, saliva, urine, and sebum. While plasma and serum remained the most studied matrices, emerging interest in non-invasive fluids such as saliva and sebum reflects their potential in clinical settings. Methodological heterogeneity was noted across studies, particularly in confounder adjustment and study design. Conclusions: Despite certain limitations, the included studies collectively point to the potential of metabolomics in identifying robust diagnostic and prognostic signatures for PD. This review emphasizes the need for longitudinal studies, methodological standardization, and integration with other omics approaches to advance biomarker discovery and support the development of precision medicine strategies for PD. Full article
(This article belongs to the Special Issue Symptoms and Treatment of Parkinson’s Disease)
Show Figures

Figure 1

Back to TopTop