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Abstract

With the continuous advancement of 3D perception technology, point cloud data has found
increasingly widespread application. However, the presence of holes in point cloud data
caused by device limitations and environmental interference severely restricts algorithmic
performance, making point cloud completion a research topic of high interest. This study
observes that most existing mainstream point cloud completion methods primarily focus on
capturing global features, while often underrepresenting local structural details. Moreover,
the generation process of complete point clouds lacks effective control over fine-grained
features, leading to insufficient detail in the completed outputs and reduced data integrity.
To address these issues, we propose a Set Combination Multi-Layer Perceptron (SCMP)
module that enables the simultaneous extraction of both local and global features, thereby
reducing the loss of local detail information. In addition, we introduce the Squeeze Exci-
tation Pooling Network (SEP-Net) module, an informative channel attention mechanism
capable of adaptively identifying and enhancing critical channel features, thus improving
the overall feature representation capability. Based on these modules, we further design a
novel Feature Fusion Point Fractal Network (FFPF-Net), which fuses multi-dimensional
point cloud features to enhance representation capacity and progressively refines the miss-
ing regions to generate a more complete point cloud. Extensive experiments conducted
on the ShapeNet-Part and MVP datasets compared to L-GAN and PCN showed average
prediction error improvements of 1.3 and 1.4, respectively. The average completion errors
on the ShapeNet-Part and MVP datasets are 0.783 and 0.824, highlighting the improved
fine-detail reconstruction capability of our network. These results indicate that the pro-
posed method effectively enhances point cloud completion performance and can further
promote the practical application of point cloud data in various real-world scenarios.

Keywords: point cloud completion; feature refinement; attention mechanism; detail
reconstruction

1. Introduction

Point cloud completion [1-3] aims to recover complete 3D shapes from partial and
incomplete point clouds. Complete point cloud data holds significant application value
across various domains. In practical scenarios, due to factors such as sensor resolution
limitations, occlusions, and reflective surfaces [4-6], point cloud is often incomplete, which
compromises data integrity and affects the performance of subsequent processing. There-
fore, recovering a complete output from partial input has become a pressing challenge [7,8].
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For instance, in autonomous driving, accurate 3D environmental perception is critical
to ensuring the safe operation of vehicles. Point cloud completion techniques can en-
hance the accuracy and robustness of 3D perception, enabling autonomous systems to
better recognize and interpret their surroundings, thus facilitating more intelligent and
safer decision-making. Moreover, point cloud completion [9-11] serves as a crucial step
toward achieving high-precision 3D model reconstruction. It contributes to generating
more complete and accurate 3D models, providing strong support for subsequent analysis
and application.

The current mainstream point cloud completion methods are mostly based on deep
learning frameworks, using encoder-decoder structures to extract potential features from
incomplete inputs, and then generate complete point clouds through decoding. The focus
of the point cloud completion task is to repair surface details of objects, mainly involving
research on small surface details and surface continuity reconstruction. The method
proposed in this article focuses more on the reconstruction of surface continuity, while
also focusing on the restoration of local features and surface details of objects. Therefore,
this study defines fine-grained as surface continuity [12,13]. The existing mainstream
point cloud completion methods focus on the global features of the object when extracting
features, and have a slight deficiency in capturing local features of the object. Meanwhile,
in the process of generating a complete point cloud, the control over object details is not
sufficient, resulting in the need to improve the detailed features of the point cloud after
completion, which reduces the integrity of the point cloud data. The fundamental reason for
this problem is, on the one hand, the unstructured and irregular nature of point cloud data,
which poses challenges for the direct application of convolutional neural networks in point
cloud processing. Although methods like PointNet [14] and PointNet++ [15] have partially
addressed these challenges, their modeling of local topological relationships between points
remains insufficiently refined, often overlooking high-frequency geometric information
within local structures. On the other hand, many completion models are architecturally
biased toward global semantic modeling [16-18]. Even when local feature modules are
introduced, they often fail to effectively integrate multi-scale contextual information or
complex geometric constraints, making it difficult to accurately capture detail-rich or
geometrically complex local regions.

Furthermore, the lack of effective constraints on fine-grained features not only com-
promises the visual quality of point cloud completion [19-22], but also negatively impacts
downstream tasks that rely heavily on local detail. For instance, in autonomous driving,
the accuracy of point cloud completion directly affects the recognition of object bound-
aries; erroneous completions may lead to misdetections in object recognition tasks [23,24].
Similarly, in robotic grasping or human-machine interaction scenarios, the precision of
surface feature recovery is closely tied to the feasibility of motion planning and the safety
of physical operations.

With the rapid development of deep learning techniques [25,26], an increasing number
of studies have leveraged neural networks to tackle the point cloud completion problem,
improving the quality of shape reconstruction. Representative works such as LGAN-AE,
PCN, and 3D-Capsule adopt end-to-end encoder-decoder frameworks [27], taking in-
complete point clouds as input and generating semantically consistent and structurally
complete 3D point clouds as output. These approaches have achieved remarkable results
in recovering overall shapes, particularly excelling in capturing global contours and incor-
porating category-level priors, which has greatly enhanced the automation and scalability
of the completion process. However, these methods also share certain limitations. On
the one hand, they tend to prioritize global semantic consistency during modeling, while
overlooking geometric details and structural integrity in local regions, leading to missing
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or blurred fine-grained features in the generated results. On the other hand, many of these
models lack mechanisms for fine-grained selection and enhancement of key features, which
limits their ability to represent complex geometric structures. For example, LGAN-AE
primarily improves the realism of global structures through adversarial learning, but lacks
sufficient modeling of local details. PCN introduces a multi-stage generation strategy, yet
still falls short in recovering high-frequency geometric features. 3D-Capsule incorporates
capsule networks to enhance spatial feature awareness, but remains insufficient in modeling
local deformations and edge features. As a result, while the generated shapes may closely
resemble real objects at a macro level, discrepancies persist in the microstructure, making it
difficult to meet the demands of fine-grained modeling and high-precision perception in
real-world applications.

To address the aforementioned limitations, this paper first designs a multi-level, multi-
resolution farthest point sampling strategy, SCMP, which performs key point sampling
followed by local grouping and feature extraction operations. This approach effectively
preserves structural details and constructs point cloud representations with rich local
semantics, providing high-quality inputs for subsequent completion processes. In addition,
we propose SEP-Net, a strategy that combines channel attention mechanisms with pooling
operations. By suppressing redundant features and enhancing key responses, SEP-Net
refines feature representations and significantly improves the network’s capability in
reconstructing detailed structures, thereby enhancing the overall point cloud completion
performance. Building on these components, we propose a novel point cloud completion
network called FFPF-Net, which integrates the SCMP module and SEP-Net to improve
local feature extraction and enhance detail modeling. Specifically, the SCMP module
is employed during the point cloud processing stage to extract a representative subset
from the raw point cloud. This allows the network to represent point cloud data in a
more compact and abstract manner by selecting key points, thus reducing data volume,
lowering computational complexity, and improving processing efficiency while retaining
informative structural cues. The SEP-Net module, a powerful architecture that combines
attention mechanisms with pooling layers, is applied during the feature processing stage.
It aims to explicitly model the interdependencies between feature channels to enhance the
network’s sensitivity to critical features. Starting from the limitations of existing point
cloud completion methods in modeling local features and restoring fine details, this paper
focuses on improving feature representation accuracy and structural completeness. We
propose a point cloud completion approach based on multi-dimensional adaptive feature
fusion and informative channel attention mechanisms, which significantly enhances the
detail quality of the completed point clouds.

The main contributions of this work are summarized as follows:

(1) To address the problem of losing local structural information, we propose the SCMP
module for feature extraction and fusion of the input point cloud. It performs multi-level
feature extraction on the raw point cloud, effectively capturing local features and reducing
the loss of fine-grained detail information.

(2) To overcome the insulfficient ability to reconstruct fine details, we introduce the SE-
Net module, which enhances the interdependence among features and adaptively adjusts
their weights. This significantly improves the network’s capability in modeling locally
complex structures during the completion process.

(3) Based on the proposed SCMP and SEP-Net modules, we further develop a Feature
Fusion Point Fractal Network (FFPF-Net) for point cloud completion. Extensive experi-
ments on the ShapeNet-Part and MVP datasets demonstrate the feasibility and effectiveness
of FFPF-Net in completing point cloud data.
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2. Related Work
2.1. End-to-End Deep Learning-Based Point Cloud Completion Methods

With the development of 3D perception technology, deep learning-based point cloud
completion methods have become the mainstream direction. Early research primarily
relied on voxel representations or mesh reconstruction, converting point clouds into regular
grid formats to facilitate neural network processing. However, these approaches suffer
from significant limitations in computational efficiency and spatial resolution. In recent
years, with the advancement of the PointNet series, end-to-end completion models that
directly process raw point clouds have emerged, greatly improving the performance of 3D
completion tasks.

LGAN-AE [28] is an autoencoder structure based on generative adversarial networks,
capable of effectively learning the latent distribution of point clouds and enhancing the
structural consistency of completion results through adversarial loss. However, this method
focuses more on global shape generation and insufficiently models local geometric details,
resulting in weaker performance at the detail level. PCN [29] extracts global features via
an encoder and generates complete point clouds through a staged decoder. Its coarse-
to-fine two-stage strategy achieves notable results in reconstructing overall contours, but
due to a lack of fine-grained modeling of local structures, the recovered details remain
insufficient. The 3D-Capsule [30] network introduces a capsule network mechanism aiming
to model spatial relationships and dynamic routing of features in point cloud data, thereby
enhancing the network’s geometric understanding capability. Nonetheless, its ability to
model complex detailed structures is still constrained by the granularity of local modeling
inherent to the network architecture. Although the aforementioned deep learning-based
point cloud completion [31,32] methods have made progress in overall shape reconstruction,
their heavy reliance on global features often leads to inadequate capture of local geometric
details. This is especially problematic in scenes with complex edges, non-uniform densities,
or detail-rich structures, where the completion results tend to be blurred or structurally
degraded. These limitations have prompted researchers to focus on the importance of
local structural information in the completion process and to explore how to explicitly
incorporate local feature modeling mechanisms to enhance the network’s and restore
spatial details.

2.2. Point Cloud Completion Methods Based on Local Feature Modeling and Detail Reconstruction

Enhancing a model’s perception and modeling capability of local structures has long
been a key challenge in cloud tasks. Traditional processing methods, PointNet++, extract
local features through hierarchical sampling and neighborhood aggregation. However,
their use of fixed-radius or k-nearest neighbor (k-NN) strategies for defining local regions
struggles to adapt to the inherent irregularity and non-uniform distribution of point clouds,
resulting in the omission of some edge information and high-frequency geometric details.

To improve the perception of local geometric structures, some studies have attempted
to incorporate graph neural networks (GNNs) or attention mechanisms. For example,
DGCNN [33] dynamically constructs KNN graphs and extracts edge features within these
graphs to enhance the modeling of local geometric relationships. PointTransformer [34]
employs spatial-channel self-attention mechanisms to learn dependencies between points,
thereby boosting the expressiveness. These methods alleviate the loss of local structural
information to some extent but involve complex designs with high computational costs,
and they have not been specifically optimized for modeling geometric details in missing
regions within completion tasks. To address the issue, some works have proposed com-
pletion mechanisms that combine multi-scale feature fusion with structural guidance. For
instance, SnowFlakeNet [35] adopts a layer-wise “snowflake” point generation approach
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that gradually refines local details from coarse structures. However, its detail enhancement
still depends on the prior distribution from coarse layers, making it difficult to directly
capture authentic details from the raw input. Although local feature modeling techniques
have improved detail recovery in point cloud completion to some degree, relying solely
on fixed-range local operations remains limited when facing large-scale structural varia-
tions or scenarios where local and global semantics are strongly correlated. This results in
constrained receptive fields and insufficient contextual understanding. To further enhance
the modeling capability of key information, attention mechanism-based methods have
gradually become a research focus in recent years.

2.3. Attention Mechanism-Based Point Cloud Completion Methods

The introduction of attention mechanisms has significantly alleviated the limitations
of traditional point cloud completion methods in modeling local details. By dynamically
adjusting the response weights of different spatial positions or feature channels, attention
mechanisms enable models to focus more effectively on key regions and important shape
features within point clouds, thereby improving geometric accuracy and structural fidelity
in completion results.

For example, PoinTr [36] is the first work to apply the Transformer architecture to point
cloud completion. It models long-range dependencies between points using learnable query
vectors and self-attention mechanisms, effectively enhancing the model’s understanding
of global context. However, its ability to recover fine-grained geometric details remains
limited. To further improve local structure perception, AnchorFormer [37] proposes a
Transformer framework based on spatial anchor partitioning. By aggregating local regions
and performing attention modeling within subregions, it reduces computational complexity
while strengthening the modeling of critical areas. SeedFormer [38] employs a patch seed
structure combined with an upsample transformer, first generating a sparse skeleton
and then performing point-level upsampling via attention mechanisms. This guides the
model to focus on structural core regions, improving detail restoration. SVDFormer [39]
goes a step further by integrating geometric principal axis information extracted through
singular value decomposition (SVD) with self-attention mechanisms. This guides the
network to adaptively adjust feature responses based on global structures, enhancing the
identification and reconstruction of local details while maintaining overall consistency. In
summary, attention mechanisms have become an effective modeling tool in recent point
cloud completion research, significantly enhancing the ability to capture critical information
and mitigating deficiencies in local detail modeling to some extent. Nevertheless, our
study finds that current methods still face limitations in fine-grained feature modeling,
computational efficiency control, and adaptability to density variations. To address these
issues, this paper refines missing point clouds through multi-dimensional feature fusion,
aiming to generate more complete point cloud models.

2.4. Dataset Introduction

Current point cloud completion research primarily relies on core datasets such as
Shapenet-Part, MVP, and FootGait3D. The Shapenet-Part dataset is a large-scale, multi-
category 3D model database covering dozens of common object categories, such as chairs
and cars.

Each category contains a vast number of 3D models, which include geometric informa-
tion, topological structures, and rich descriptive data such as labels and categories, making
it highly suitable for 3D shape understanding and analysis. Therefore, it is ideal for local
reconstruction tasks that require detailed modeling of specific structures. The MVP dataset
is a multi-view partial point cloud dataset containing over 100,000 high-quality scans. This
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dataset presents partial 3D shapes from 26 uniformly distributed camera poses for each 3D
CAD model, primarily used for point cloud completion and registration research. The MVP
dataset integrates a wide range of categories and a large number of 3D model point cloud
data, covering various objects and scenes. Additionally, each 3D CAD model is scanned
from 26 uniformly distributed camera poses, ensuring data diversity and high quality.
Therefore, it is suitable for detailed 3D reconstruction tasks. FootGait3D, as an innovative
dataset in the medical field, specifically collects motion point cloud data of the ankle and
foot region. It addresses common occlusion issues in medical imaging through precise
annotation, opening up new avenues for rehabilitation medicine and motion analysis. Fur-
thermore, the emerging PointTr Benchmark provides an important testing platform for the
development of geometric perception Transformer models by collecting point cloud data
from complex real-world scenes such as streets and indoors. And KITT], as a classic dataset
in the field of autonomous driving, continues to provide a verification benchmark for
sparse point cloud completion tasks around vehicles. These datasets, spanning from basic
research to vertical fields such as healthcare and autonomous driving, collectively form a
comprehensive verification system for point cloud completion technology, driving rapid
development in this field. Considering that the research content of this paper focuses on
the restoration of detailed features and precise completion of missing areas, Shapenet-Part
and MVP are selected for experiments in subsequent sections.

3. Method

Based on the aforementioned issues, this paper proposes the SCMP feature extraction
and fusion module and the SEP-Net feature refinement module. Building upon these,
we further introduce the FFPF-Net point cloud completion network, which addresses the
shortcomings in local feature extraction and detail reconstruction. The proposed approach
enhances the local feature representation and detail recovery capabilities of point cloud
completion, while improving overall feature representation. This section presents a detailed
introduction to the methods proposed in this paper

3.1. Overall Framework

During the point cloud data acquisition process, point loss is inevitably caused by fac-
tors such as the characteristics of the tested objects, processing methods, and environmental
influences. The main reasons for this loss include specular reflection, signal absorption, and
occlusion by external objects. After data acquisition, steps such as denoising, smoothing,
and registration are also required, which can further lead to point loss.

To more effectively handle data and accomplish the completion task, this paper applies
the SCMP module and SEP-Net module during the point cloud processing and feature
processing stages, respectively. The SCMP module extracts a representative subset from
the raw data, representing the data in a more compact and abstract manner. By selecting
key points, it reduces the number of points, thereby lowering computational complexity
and improving processing efficiency, while obtaining point cloud data containing richer
information. The SEP-Net is an attention mechanism-based convolutional neural network
architecture applied in the feature processing stage. It explicitly models the interdependen-
cies between feature channels to enhance the network’s sensitivity to important features.

Based on the SCMP module and SEP Net module, we constructed the Feature Fusion
Point Cloud Completion Network (FFPF Net), whose overall architecture is clearly shown
in Figure 1.
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Figure 1. The FFPF Net structure diagram of the point cloud completion network proposed in this
article. (a) Multilayer perceptron feature extraction structure. (b) Fully connected decoding structure.

Firstly, in section A of the structure, the input raw point cloud data is sent to the SCMP
module for preliminary processing. This module can generate three point cloud datasets
with different characteristics according to their different composition. Subsequently, with
the collaborative effect of the SA module, these point cloud datasets were further enriched,
containing more point cloud information. Next, we use three independent CMLP com-
ponents to map these three different scales of point cloud data into three independent
composite latent vectors. These vectors represent the key features extracted at specific
resolution levels from point cloud data.

Next, these informative vectors are fed into the SEP Net module for deep processing.
Within this module, information exchange between feature channels is achieved through the
application of SE Net attention mechanism and the execution of pooling operations. During
this process, adaptive attention weight calculations were performed on each channel
of the input feature map, thereby enhancing the expression of important features and
effectively aggregating the feature map locally, ensuring the complete preservation of the
main features.

Subsequently, in section B of the structure, the feature vectors processed by the SEP
Net module are sent to the decoder for further decoding operations. The decoder consists
of a series of fully connected layers that take feature vectors as input and gradually parse
out three key features: F1, F2, and F3. Among them, F3 obtained the prediction result
Yp (dimension M1 x 3) of the main center point through the processing of convolutional
layers. On this basis, combined with the feature information of F2, we further calculated
the relative coordinates Ysec of the secondary center. Finally, utilizing the combined effect
of F1 and Ysec, we generated the final point cloud data Yd. It is worth noting that Yd
also attempts to accurately match feature points sampled from real values to ensure the
accuracy and authenticity of the completion results.

Due to the multi-scale generation architecture adopted by FFPF Net, high-level features
can have a profound impact on the expression of low-level features. At the same time, low
resolution feature points can effectively propagate local geometric information to high-
resolution prediction results, thereby achieving comprehensive and accurate completion of
point cloud data.
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3.2. Subsection Scmp Module

Current point cloud completion methods often suffer from insufficient local feature
capture and low precision in detail reconstruction. Existing approaches struggle to accu-
rately capture local geometric features and texture details within point clouds, primarily
due to the inherent sparsity, irregularity, and noise present in data. This complexity makes
local feature extraction challenging, and inadequate capture of local features leads to sig-
nificant differences in details between the completed and original point clouds, adversely
affecting the overall visual quality and subsequent applications. Similarly, detail reconstruc-
tion is a critical step in the point cloud completion process. However, existing methods
often find it difficult to precisely reconstruct fine details while maintaining global structure.
Low accuracy in detail reconstruction results in completed point clouds that appear visually
unrealistic or coarse, thereby impacting user experience and downstream processing.

To address issues, this paper proposes a feature extraction and fusion module (SCMP),
which combines Set Abstraction and Composite Multi-Layer Perceptron (CMLP) to enhance
point cloud feature acquisition and reduce the loss of local details. The architecture of the
SCMP module is illustrated in Figure 2.
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Figure 2. The SCMP module for feature processing mentioned in this article.

The SCMP module first selects a series of key points from the original point cloud
using Farthest Point Sampling (FPS), which iteratively chooses the point farthest from the
already selected set as a new key point until the predetermined number of key points is
reached. Input point cloud P = {p,py,p5- " py |- the number of sampling points is
N, the sampled point set is S = {s,sp,53,- - - sm}, the sampled point set is M. Then,
points from the original point cloud are assigned to local regions centered on each key
point using K-Nearest Neighbors (KNN). For each key point, KNN finds the nearest K
points and assigns these points to the group corresponding to that key point. The specific
formulation is as follows:

G = {p; € Pd(sip;) <7} M

In Equation (1), G; is a group, d (s;, p;) is the distance between the two, r is the
search radius.

Then, feature extraction is performed by extracting features from each local region to
represent the information of that region. For each local region, MLP and pooling operations
are applied to the points to extract features. The MLP typically consists of multiple fully
connected layers that can learn complex feature representations. The pooling operation
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produces a fixed-length feature vector representing the region’s information. Feature
extraction can be expressed by Equation (2).

h; = ReLU(W,G; + bl)
hy = ReLU(W)G; + bz)

fi=Wrh, 1+bg

(2)

In Equation (2), W, b; are the weights and biases of the I-th layer, L is the number of
layers in MLP, ReLU is activation function, h; is hierarchical feature, f; is a feature vector.

SCMP can extract features from point clouds layer by layer, with the center points
obtained from each layer being a subset of the center points from the previous layer. The
input point cloud is processed through the SCMP module, and a more informative point set
is obtained by uniformly sampling the input point set. The resulting downsampled point
cloud and the original point cloud are separately input into the Combined Multi-Layer
Perceptron. In the Composite Multi-Layer Perceptron, we use MLP to encode points into
multiple dimensions, then apply max pooling to the outputs of the last four layers of MLP
to obtain multidimensional feature vectors. These vectors are then combined to form the
final feature vector. The final feature vector is used as input to the FCD module, which
generates a complete point cloud to represent the missing areas in the region, as shown
in Figure 3. The foundation of the FCD is a fully connected decoder, which can predict
the global geometric shape of point clouds very effectively. However, it only uses the
last layer, it may cause a loss of local geometric information. To address this, we adopt a
multi-level structure. First, the feature vectors are passed through a fully connected layer,
each responsible for predicting point clouds at different resolutions. The main center point
is predicted starting from the deepest feature layer, followed by the prediction result of the
center point in the second layer. The relevant coordinates of each point are generated by
combining the previous points as centers and the extracted features. Finally, the complete
point cloud is obtained.

fake(b,1512,3) == net p == output(b,1) ==  labei(b,1)

enG D
o fake(b,512.3) | real_center(b,512,3)
— errG
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CD_LOSS : errG_I2
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’ » ‘-_,,’ _ . 64.3)
L & — @ CD_LOSS

Figure 3. The FCD module for point cloud generation mentioned in this article.

Based on the above analysis, SCMP performs fine layered feature extraction on point
cloud data, which can flexibly integrate multi-scale features, effectively address the chal-
lenges of point cloud data with varying densities. This module accurately captures the
subtle features of point clouds by performing feature extraction operations at different
scales and cleverly fusing these multi-scale features. Furthermore, SCMP not only fo-
cuses on multi-scale features but also excels in deeply mining multi-layer features. This
multi-level and multi-dimensional feature extraction mechanism enables SCMP to com-
prehensively understand the complex structure of point clouds, accurately capture the
rich geometric and semantic information contained therein. Therefore, SCMP not only
improves the problem of insufficient local feature extraction but also lays a solid, com-



Sensors 2025, 25, 6173

10 of 24

prehensive foundation for subsequent tasks, enhancing the accuracy and precision of the
completion effect.

3.3. Sep-Net Module

The SEP-Net module explicitly models the dependency relationships between convo-
lutional feature channels by introducing the “Squeeze-and-Excitation” (SE) block, thereby
significantly improving network performance with almost no increase in computational
cost. Secondly, it automatically obtains the importance level of each feature channel through
learning. This “feature-calibration” strategy enhances the network’s representational ability.
SEP-Net, as shown in Figure 4a, mainly includes three key operations: Squeeze, Excitation,

and Scale.
X
F
Sgueeze
- —_ e H —> i
H Excitation | I POOLING -
w
o c W
(a)
w o
=1 M % M Q - 8
T —> —> —> —> 3 —=> 2 = 5
o
(b)

Figure 4. The feature refinement SEP Net module proposed in this article. (a) SEP-Net architectural
feature map. (b) SEP-Net operational flowchart.

The purpose of the squeezing operation is to encode the global spatial features of each
channel into a global feature, usually achieved through Global Average Pooling (GAP). For
an input feature map X, its shape is (H, W, C), where H and W are the height and width of
the feature map, respectively, and C is the number of channels. The squeezing operation
performs global average pooling on each channel, resulting in a vector of length C, denoted
as z. The specific calculation formula is as follows:

1 L&
zZc = HXWl:Zl];xC(l’.D (3)

In Equation (3), Xc(i, j) indicate the value of the c-th channel in feature map X at
position (i, j), H and W are the width and height of the feature map, and z, is the feature
vector of length c.

The purpose of the excitation operation is to learn the nonlinear relationships between
various channels through a simple fully connected neural network, in order to obtain the
weights of each channel. This fully connected neural network typically consists of two
fully connected layers. The first fully connected layer is used for dimensionality reduction,
reducing the number of parameters and computational complexity. The second fully
connected layer is used for dimensionality enhancement, restoring the original number of
channels. Finally, the weight of each channel is obtained through the sigmoid activation
function, denoted as s. The specific calculation formula is as follows:

s = 0(Wad(W;z)) 4)
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In Equation (4), W1 and W, are the weights of two fully connected layers, z is the
feature vector, J is the ReLU activation function, ¢ is a sigmoid activation function, s is the
weight of each channel.

The purpose of the recalibration operation is to apply the channel weights obtained
from the excitation operation to the original feature map, in order to achieve recalibration
of the feature map. The specific operation is to multiply the weight s with each channel of
the original feature map X through channel multiplication to obtain the final feature map
X'. The calculation formula is as follows:

Xé =s.-Xc 5)

In Equation (5), X’; and X, represent the c-th channel of the recalibrated and original
feature maps, respectively, and s is the weight of this channel.

Given the input features, after a series of convolution operations, new features are
obtained, as shown in Figure 4b. After performing a global average pooling operation on
the new features, and passing them through two fully connected layers and two activation
functions, the final output feature map is obtained. After the first FC layer, the ReLU
activation function is applied to output a feature map of size 1x 1x C. After the second FC
layer, the Sigmoid activation function is used to normalize the values of each layer to the
range (0,1), representing the weight of each channel. The output feature size of the second
FClayeris 1 x 1 x C. Finally, the weights are multiplied to obtain the output feature map.

The SEP-Net module uses a highly adaptive mechanism to accurately grasp the
importance of each channel’s contribution to the overall task. This module is dedicated
to fine weight distribution of feature channels to achieve effective enhancement of key
information, effective suppression of redundant information. The SEP-Net module applies
these learned weight values to the corresponding channels of the original feature map
to achieve weighted adjustment of features. In this way, useful channel features are
significantly enhanced, while unimportant channel features are effectively suppressed.
This adaptive weight allocation mechanism not only improves the sensitivity of the model
to key information but also reduces the interference of redundant information on model
performance, thereby enhancing the ability to reconstruct details of missing point clouds.

4. Experiment

To verify the effectiveness in this article, experiments were conducted on both the
Shapenet-Part dataset and the MVP dataset in this section. The Shapenet-Part is a 3D model
database, such as chairs, cars, etc. Each category contains a large number of 3D models,
which include geometric information, topological structures, and rich descriptive data
such as labels and categories, making them very suitable for 3D shape understanding and
analysis. The MVP dataset is known for its large-scale and multi-perspective characteristics.
It contains a large number of residual cloud samples, providing abundant resources for
point cloud learning tasks. Meanwhile, the multi-perspective feature enables the model to
learn the shape and structure of objects more comprehensively, improving the quality of
point cloud completion.

4.1. Shapenet-Part Dataset Experiment
4.1.1. Shapenet-Part Comparison of Completion Effect Experiments

In this section, we compare our method, including L-GAN [28], PCN [29], 3D Point-
Capsule [30], CGCN [31], and DAF-SAC [32]. Networks. Since the existing methods are
trained on different datasets, we retrain them on the same dataset for quantitative eval-
uation. All methods do not receive any additional information. We use two evaluation
metrics: Pred — GT (Error from predicting point cloud to actual point cloud) and GT —



Sensors 2025, 25, 6173

12 of 24

Pred (Error from real point cloud to predicted point cloud). The results are shown in Table 1.
To ensure that our evaluation is reasonable, we also calculated the Pred — GT error and
GT — Pred error on the missing areas. The results are shown in Table 2.

Table 1. Shapenet-Part dataset the overall point cloud completion result.

LGAN-AE PCN 3DCapsule CGCN DAF-SAC Ours
Category (Pred— (Pred— (Pred— (Pred— (Pred— (Pred—
Method GT/GT— GT/GT— GT/GT— GT/GT— GT/GT— GT/GT—
Pred) Pred) Pred) Pred) Pred) Pred)
Airplane 0.856/0.722 0.800/0.800 0.826/0.881 0.432/0.427 0.325/0.316 0.273/0.248
Bag 3.102/2.994 2.954/3.063 3.228/2.722 1.785/1.674 1.532/1.314 0.946/0.792
Cap 3.530/2.823 3.466/2.674 3.439/2.844 2.784/2.476 2.351/2.224 1.266/1.189
Car 2.232/1.687 2.324/1.738 2.503/1.913 2.013/1.476 1.521/1.487 0.601/0.435
Chair 1.541/1.473 1.592/1.538 1.678/1.563 1.465/1.437 1.078/1.024 0.490/0.457
Guitar 0.394/0.354 0.367/0.406 0.298/0.461 0.321/0.306 0.241/0.214 0.401/0.396
Lamp 3.181/1.918 2.757/2.003 3.271/1.912 1.887/1.804 1.563/1.464 1.123/0.664
Laptop 1.206/1.030 1.191/1.155 1.276/1.254 0.846/0.766 0.423/0.456 0.323/0.256
Motorbike 1.828/1.455 1.699/1.459 1.591/1.664 0.784/0.702 0.654/0.621 0.543/0.398
Mug 2.732/2.946 2.893/2.821 3.086/2.961 1.054/1.104 0.984/1.354 0.762/0.749
Pistol 1.113/0.967 0.968/0.958 1.089/1.086 1.232/1.122 1.023/1.054 1.114/1.342
Skateboard 0.887/1.023 0.816/1.206 0.897/1.262 0.423/0.412 0.365/0.302 0.268/0.202
Table 1.694/1.601 1.604/1.790 1.870/1.749 1.452/1.322 0.941/0.842 0.553/0.442
Mean 1.869/1.615 1.802/1.662 1.927/1.713 1.268/1.156 1.001/0.975 0.579/0.475
Table 2. Shapenet-Part dataset missing point cloud completion result.
LGAN-AE PCN 3DCapsule CGCN DAF-SAC Ours
Category (Pred— (Pred— (Pred— (Pred— (Pred— (Pred—
Method GT/GT— GT/GT— GT/GT— GT/GT— GT/GT— GT/GT—
Pred) Pred) Pred) Pred) Pred) Pred)
Airplane 3.357/1.130 5.060/1.243 2.676/1.401 1.457/1.321 1.315/1.046 1.123/1.101
Bag 5.707/5.303 3.251/4.314 5.228/4.202 3.675/3.644 3.231/3.047 3.949/3.823
Cap 8.968/4.608 7.015/4.240 11.04/4.739 6.413/6.326 4.551/4.264 5.304/4.875
Car 4.531/2.518 2.741/2.123 5.944/3.508 2.623/2.456 2.537/2.087 2.522/1.873
Chair 7.359/2.339 3.952/2.301 3.049/2.207 2.665/2.637 2.278/2.114 2.113/1.843
Guitar 0.838/0.536 1.419/0.689 0.625/0.662 0.523/0.446 0.441/0.454 0.465/0.431
Lamp 8.464/3.627 11.61/7.139 9.912/5.847 6.877/6.524 5.533/5.024 5.132/3.471
Laptop 7.649/1.413 3.070/1.422 2.129/1.733 2.046/2.016 1.433/1.241 1.273/1.011
Motorbike 4.914/2.036 4.962/1.922 8.617/2.708 3.185/2.812 2.254/2.121 2.232/1.782
Mug 6.139/4.735 3.590/3.591 5.155/5.168 4.210/4.074 3.954/3.374 3.143/3.243
Pistol 3.944/1.424 4.484/1.414 5.980/1.782 1.473/1.323 1.213/1.104 1.122/1.055
Skateboard 5.613/1.683 3.025/1.740 11.49/2.044 2.015/1.751 1.457/1.302 1.143/1.358
Table 2.658/2.484 2.503/2.452 3.929/3.098 2.874/2.432 2.041/1.932 2.754/1.956
Mean 5.395/2.603 4.360/2.661 5.829/3.008 3.079/2.905 2.480/2.239 2.482/2.140

As shown in Tables 1 and 2, among the 13 categories tested, in terms of the average
point cloud completion results Pred — GT/GT — Pred for the overall point cloud, LGAN-
AEis 1.869/1.615, PCN is 1.802/1.662, 3D Capsule is 1.927/1.713, CGCN is 1.268/1.156, and
DAF-SAC is 1.001/0.975. In the completion results of the missing point cloud, the LGAN-
AE average value is 5.395/2.603, the PCN average value is 4.360/2.661, the 3D Capsule
average value is 5.829/3.008, the CGCN average value is 3.079/2.905, and the DAF-SAC
average value is 2.480/2.239. However, the average values of the method proposed in this
paper are 0.579/0.475 and 2.482/2.140, respectively. Experimental results show that our
method has good advantages. The results in Tables 1 and 2 indicate that our method can
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generate more accurate point clouds while having less distortion in the overall point cloud
and the missing area point cloud.

4.1.2. Shapenet-Part Dataset Robustness Test

This article conducted robustness tests on the Airplane, Guitar, and Skateboard classes
in the Shapenet-Part dataset. In the robustness testing, we not only changed the M param-
eter in FCD to control the number of output points of the network, but also trained the
network to repair shapes with different degrees of incompleteness, in order to evaluate its
stability and recovery ability in the face of missing or damaged input data. By adjusting the
M parameter, we can simulate point cloud data with varying degrees of sparsity, then test
the performance of the network in repairing these incomplete shapes. The experimental
results are shown in Table 3.

Table 3. Incomplete point cloud prediction error.

Category 25% 50% 75%
Missing Ratio (Pred— GT/GT— (Pred— GT/GT— (Pred— GT/GT—
Pred) Pred) Pred)
Airplane 0.784/0.520 0.763/0.531 0.792/0.594
Guitar 0.683/0.493 0.668/0.547 0.694/0.552
Skateboard 0.803/0.658 0.824/0.603 0.795/0.656

As shown in Table 3, 25%, 50%, and 75% represent the degrees of point cloud loss.
When the Missing Ratio is 25%, the missing rates for the three are 0.784/0.520, 0.683/0.493,
and 0.803/0.658, respectively. When the Missing Ratio is 50%, the missing rates for the three
are 0.763/0.531, 0.668/0.547, and 0.824/0.603, respectively. When the Missing Ratio is 75%,
the missing rates for the three are 0.792/0.594, 0.694/0.552, and 0.795/0.656, respectively.
The average input error for 25% is 0.757, for 50% it is 0.752, and for 75% it is 0.760. The
input errors for all three parts are around 0.76. This indicates that the network in this article
has strong robustness in handling point clouds with different degrees of missing data, can
stably recover the missing point clouds.

4.1.3. Shapenet-Part Comparison Experiment of Dataset Cd

This paper conducts CD comparative experiments on the Airplane and Lamp cate-
gories from the Shapenet-Part dataset, with the results illustrated in Figure 5. A larger CD
value indicates greater dissimilarity between the two point clouds, while a smaller distance
signifies better reconstruction performance.

To further validate the effectiveness of the proposed method, this paper conducted
CD comparison experiments on the Airplane, Lamp, Laptop, and Guitar categories of
the Shapenet Part dataset. The experimental results are shown in Figure 5. Compared
with LGAN-AE, the CD values of the proposed method in this paper decreased by 0.21,
0.15, 0.17, and 0.22 in the categories of Airplane, Lamp, Laptop, and Guitar, respectively;
Compared to PCN, the CD values decreased by 0.13, 0.13, 0.15, and 0.12, respectively;
Compared to 3D capsules, the CD values decreased by 0.22, 0.16, 0.18, and 0.14, respectively.
These data show that the method proposed in this article significantly outperforms other
mainstream methods in terms of CD values, with average reductions of 20%, 15%, 13%,
and 17%, respectively.
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Figure 5. Shapenet-Part dataset CD comparative experiment. (a) Airplane CD comparative experi-
ment. (b) Lamp CD comparative experiment. (c) Laptop CD comparative experiment. (d) Guitar CD
comparative experiment.

4.1.4. Shapenet-Part Dataset Ablation Experiment

To demonstrate the effectiveness of the proposed SCMP and SEP-Net modules and
to gain a deeper understanding of the internal mechanisms of the model for optimizing
its structure, a series of carefully designed ablation experiments were conducted on the
ShapeNet-Part dataset. These experiments systematically removed or replaced the SCMP
and SEP-Net modules to observe and analyze changes in model performance, thereby accu-
rately evaluating the contribution of each module to the overall performance. The results
of the ablation studies not only validate the effectiveness of but also provide valuable guid-
ance for further optimizing the model architecture, ensuring its outstanding performance
on the ShapeNet-Part dataset. The results are shown in Table 4.

Table 4. Shapenet-Part dataset ablation experiment.

SCMP SEP-Net CD
X X 0.300
vV X 0.289
X Vv 0.263
vV Vv 0.245

As shown in Table 4, the proposed modules all lead to a reduction in the Chamfer
Distance (CD) value. When using only the SCMP module, the CD value decreases by 0.011;
when using only the SEP-Net module, the CD value decreases by 0.037. When both modules
are used together, the CD value decreases by 0.055. Therefore, the SCMP and SEP-Net
modules proposed in this paper have been experimentally verified to reduce the CD value
by approximately 5%, enhancing the quality of point cloud features, effectively reducing the
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loss of geometric information, and strengthening the inter-feature dependencies, thereby
improving the feature representation capability.

4.2. Mop Dataset Experiment
4.2.1. Mvp Comparison of Dataset Completion Effects

To avoid the incompleteness of experimental results obtained from a single dataset, we
also conducted the same experiment on the MVP dataset. Compared to the Shapenet-Part
dataset, the MVP dataset first collects point cloud data from a wide variety of 3D models,
covering various objects and scenes. Secondly, each 3D CAD model is scanned from 26
evenly distributed camera poses, ensuring data diversity and high quality. The results are
shown in Tables 5 and 6. In the 13 categories of the MVP dataset, the testing error of the
method proposed in this paper is lower than that of other mainstream methods, and it
can obtain higher precision point clouds with smaller distortion during the generation of
missing point clouds.

Table 5. MVP dataset the overall point cloud completion result.

LGAN-AE PCN 3DCapsule CGCN DAF-SAC Ours
Category (Pred— (Pred— (Pred— (Pred— (Pred— (Pred—
Method GT/GT— GT/GT— GT/GT— GT/GT— GT/GT— GT/GT—
Pred) Pred) Pred) Pred) Pred) Pred)
Airplane 1.754/1.956 1.653/1.745 1.934/1.776 0.874/0.727 0.651/0.606 0.542/0.764
Bed 4.397/5.023 4.654/4.956 5.203/4.971 2.478/2.421 2.351/2.343 2.321/2.341
Watercraft 3.486/3.234 3.789/3.643 3.764/3.547 1.851/1.846 1.325/1.354 1.231/1.452
Car 4.653/4.983 4.134/4.857 4.784/5.021 3.541/3.426 2.911/2.487 2.584/3.471
Chair 2.354/2.763 2.764/2.657 2.546/2.835 2.315/2.437 2.078/2.034 1.851/1.942
Guitar 0.767/0.754 0.781/0.895 0.754/0.902 0.323/0.306 0.241/0.224 0.234/0.214
Lamp 4.385/2.964 4.746/5.312 4.432/4.674 1.658/1.634 1.543/1.574 1.421/1.512
Laptop 1.206/1.030 1.093/1.342 1.283/1.443 1.081/1.266 1.223/1.256 1.324/1.241
Motorbike 2.354/2.221 2.365/2.431 2.112/2.435 1.875/1.712 1.553/1.532 1.413/1.531
Sofa 3.423/3.134 3.541/3.462 3.123/3.431 2.784/2.604 2.584/2.346 2.512/2.131
Pistol 1.453/1.342 1.433/1.578 1.453/1.586 1.334/1.526 1.523/1.563 1.471/1.571
Skateboard 1.293/1.245 1.283/1.256 1.238/1.245 1.201/1.184 1.085/0.862 0.841/0.681
Table 3.845/2.927 3.875/3.901 3.523/3.741 2.684/2.322 2.651/2.642 2.314/2.615
Mean 2.721/2.583 2.778/2.926 2.781/2.893 1.846/1.801 1.671/1.601 1.543/1.651

As shown in Tables 5 and 6, among the 13 categories tested, in terms of the average
point cloud completion results Pred — GT/GT — Pred for the overall point cloud, LGAN-
AEis2.721/2.583, PCN is 2.778/2.926, 3D Capsule is 2.781/2.893, CGCN is 1.846/1.801, and
DAF-SAC is 1.671/1.601. In the completion results of missing point clouds, the LGAN-AE
average value is 6.626/4.554, the PCN average value is 5.966/4.390, the 3D Capsule average
value is 6.895/4.811, the CGCN average value is 4.080/3.869, and the DAF-SAC average
value is 3.481/3.301. However, the average values of the method proposed in this paper are
1.543/1.651 and 3.473/3.04, respectively. Experimental results show that compared with
other mainstream methods, this paper still has good advantages in completing missing
point clouds on the MVP dataset, and can obtain more complete point clouds.
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Table 6. MVP dataset missing point cloud completion result.
LGAN-AE PCN 3DCapsule CGCN DAF-SAC Ours

Category (Pred— (Pred— (Pred— (Pred— (Pred— (Pred—

Method GT/GT— GT/GT— GT/GT— GT/GT— GT/GT— GT/GT—
Pred) Pred) Pred) Pred) Pred) Pred)

Airplane 4.331/1.453 5.132/1.674 3.613/2.371 1.952/1.874 1.652/1.646 1.562/1.423
Bed 9.714/10.065 8.314/8.921 10.512/9.524 6.871/6.634 5.762/5.036 5.326/4.952
Watercraft 7.892/7.471 8.424/8.214 7.934/7.621 4.414/4.024 4.021/3.781 3.624/3.596
Car 5.213/3.971 3.413/2.967 6.313/5.023 3.658/3.416 2.631/2.477 3.532/2.461
Chair 8.962/4.281 4.721/3.651 4.301/3.134 4.535/4.137 3.045/3.124 2.781/2.073
Guitar 1.213/1.112 1.984/1.545 1.034/1.157 1.033/1.016 0.784/0.854 1.114/1.201
Lamp 9.345/5.821 12.941/8.412 10.462/6.984 7.213/7.024 6.543/6.014 6.041/4.786
Laptop 8.515/5.023 4.142/2.768 3.614/3.081 2.135/2.025 1.435/1.311 1.981/1.861
Motorbike 6.051/3.571 5.812/2.614 9.531/4.671 4.652/4.522 4.157/4.101 3.795/2.945
Sofa 7.324/6.724 7.624/6.962 6.731/6.782 5.820/5.774 5.652/5.378 5.532/5.342
Pistol 5.158/2.076 5.714/2.061 7.084/3.515 2.653/2.603 2.492/2.434 2.412/2.301
Skateboard 7.795/2.963 4.658/2.856 13.724/4.071 3.457/3.321 3.057/3.009 2.614/3.014
Table 4.625/4.672 4.681/4.423 4.784/4.424 4.672/3.933 4.031/3.751 4.831/3.615
Mean 6.626/4.554 5.966/4.390 6.895/4.811 4.080/3.869 3.481/3.301 3.473/3.040

4.2.2. Mvp Dataset Robustness Test

In order to further verify the robustness of the method proposed in this paper, ro-
bustness experiments were also conducted on the MVP dataset. This article selected three
categories—Airplane, Guitar, and Skateboard—from the MVP dataset and conducted in-
complete point cloud prediction error testing. Table 7 shows the experimental results of the
method proposed in this article.

Table 7. MVP dataset incomplete point cloud prediction error.

Category 25% 50% 75%
Missing Ratio (Pred— GT/GT— (Pred— GT/GT— (Pred— GT/GT—
Pred) Pred) Pred)
Airplane 0.813/0.573 0.826/0.594 0.833/0.612
Guitar 0.704/0.564 0.682/0.559 0.715/0.597
Skateboard 0.833/0.678 0.875/0.664 0.804/0.697

The experimental results are shown in Table 7. When the Missing Ratio is 25%, the
missing rates for the three are 0.813/0.573, 0.704/0.564, and 0.833/0.678, respectively. When
the Missing Ratio is 50%, the missing rates for the three are 0.826/0.594, 0.682/0.559, and
0.875/0.664, respectively. When the Missing Ratio is 75%, the missing rates for the three are
0.833/0.612, 0.715/0.597, and 0.804/0.697, respectively. In the MVP dataset, the average
input error for 25% is 0.783, the average input error for 50% is 0.794, and the average input
error for 75% is 0.784. The input errors for all three parts are around 0.79. This also indicates
that the network in this article has strong robustness in handling point clouds with different
degrees of missing data, and can stably recover the missing point clouds.

4.2.3. Mvp Comparison Experiment of Dataset Cd

This paper also conducted CD comparison experiments on the Airplane and Lamp
categories in the MVP dataset. Figure 6 shows the experimental results. A larger CD
indicates that the difference between the two sets of point clouds is greater. The smaller the
distance, the better the reconstruction effect.
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Figure 6. Mvp dataset CD comparative experiment. (a) Airplane CD comparative experiment.
(b) Lamp CD comparative experiment. (c¢) Laptop CD comparative experiment. (d) Guitar CD
comparative experiment.

To further validate the effectiveness of the proposed method, this paper conducted
CD comparison experiments on the Airplane, Lamp, Laptop, and Guitar categories of
the Shapenet Part dataset. The experimental results are shown in Figure 6. Compared
with LGAN-AE, the CD values of the proposed method in this paper decreased by 0.23,
0.14, 0.16, and 0.22 in the categories of Airplane, Lamp, Laptop, and Guitar, respectively;
Compared to PCN, the CD values decreased by 0.06, 0.05, 0.05, and 0.08, respectively;
Compared to 3D capsules, the CD values decreased by 0.22, 0.07, 0.18, and 0.12, respectively.
These data show that the method proposed in this article significantly outperforms other
mainstream methods in terms of CD values, with average reductions of 19%, 6%, 15%, and
15%, respectively.

4.2.4. Mvp Dataset Ablation Experiment

To avoid the limitations of a single dataset, a series of ablation experiments were also
conducted on the MVP dataset. These experiments systematically removed or replaced
the SCMP and SEP-Net modules to observe and analyze changes in model performance,
thereby accurately evaluating the contribution of each module. The ablation studies provide
valuable guidance for further optimizing the model architecture, ensuring the model’s
outstanding performance on the ShapeNet-Part dataset. The results are shown in Table 8.

Table 8. MVP dataset ablation experiment.

SCMP SEP-Net CD
X 0.372
0.359

0.314

<X <X
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As shown in Table 8, the proposed modules all contribute to a reduction in the Chamfer
Distance (CD) value. When using only the SCMP module, the CD value decreases by 0.013;
when using only the SEP-Net module, it decreases by 0.017. When both modules are used
together, the CD value decreases by 0.028. Therefore, the SCMP and SEP-Net modules
proposed in this paper have been experimentally verified to reduce the CD value by
approximately 6%. The proposed method also effectively reduces geometric information
loss, enhances feature representation capability, and generates more complete point clouds
on the MVP dataset.

4.3. Prediction Error Training Experiment

The point cloud completion prediction error experiment is a key step in evaluating
the performance of point cloud completion algorithms. The error size is determined by
quantifying the difference between the completed point cloud and the true complete point
cloud. During the experiment, incomplete point cloud data must be prepared as input,
and corresponding real and complete point cloud data should be obtained as a reference.
Then, using the point cloud completion algorithm to be evaluated, the incomplete point
clouds are completed to obtain the predicted point cloud data. Finally, by calculating the
evaluation index values, the prediction error is quantified, and the algorithm’s performance
is evaluated. The prediction error training in this article is shown in Figure 7.

Prediction Error
Prediction Error
[=-]

4 W

0 0

50 100 150 200 50 100 150 200
epochs epochs

() (b)

Figure 7. Training of dataset prediction error model. (a) Shapenet-Part training model. (b) MVP

training model.

Figure 7 shows the overall error value variation of the FFPF-Net method on the
Shapenet-Part and MVP datasets after 200 rounds of training. From Figure 7a, it can be
concluded that after 200 rounds of training, the training error value for Shapenet-Part is
generally stable at around 0.2. From Figure 7b, it can be concluded that after 200 rounds
of training, the MVP training error value is generally stable at around 0.25. Therefore, the
method proposed in this article can stably perform tasks, and our method can converge
quickly and stably in the early stage. During the process, the fluctuation amplitude is small,
indicating strong stability. The results prove that the FFPF-Net method has both accuracy
and stability.

4.4. Inference Time and Model Size

In the comprehensive evaluation system of artificial intelligence models, model per-
formance is not solely defined by accuracy indicators. For point cloud processing, its data
naturally has the characteristics of high dimensionality and uneven sampling density, and
the core application scenarios generally have rigid constraints such as “limited hardware
resources” and “zero tolerance for response delay”. This further amplifies the importance
of inference time and model size. The following is a discussion on the model in this article.
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As shown in Table 9, based on the mainstream experimental configuration in the
field of point cloud processing (input point cloud size of 2048 sampling points, hardware
platform unified as NVIDIA RTX 2080Ti GPU, Intel i7-10700K CPU), combined with the
core structural characteristics of each model and experimental data in public literature, the
inference time and model size (parameter quantity) are analyzed and compared. The FFPF
Net model has a size of 2.8 M and an inference time of 6.5 ms. Compared to PCN, LGAN-AE,
and 3D Capsule, the FFPF Net model has only slightly higher parameter count (2.8 M) and
inference time (6.5 ms) than the minimalist PCN model, avoiding a significant decrease in
efficiency caused by complex modules in LGAN-AE and 3D Capsule. The 2.8 M parameter
count and 6.5ms inference time make it adaptable to scenarios with limited hardware
resources, making it more practical for deployment compared to LGAN-AE (3.0 M /9.8 ms)
and 3D Capsule (11.5 M/18.3 ms). The above comparison fully demonstrates that FFPF Net
effectively controls the model size and inference time while ensuring completion accuracy,
making it a reasonable design that balances performance and efficiency.

Table 9. Inference time and model size.

Method Param (M) Time (ms)
PCN 1.2 4.2
FFPF-Net 2.8 6.5
LGAN-AE 3.0 9.8
3D-Capsule 11.5 18.3

4.5. Point Cloud Visualization

In order to gain a more intuitive understanding of the shape of point clouds and
evaluate the completion effect, this paper conducted point cloud visualization experiments,
presenting point cloud data in the form of three-dimensional graphics through visualiza-
tion methods. The results are shown in Figure 8. Through visualization, we can clearly
observe the shape, distribution, and surface features of point clouds, which is crucial for
understanding the structure of point cloud data and evaluating the effectiveness of point
cloud completion. By comparing the visualization results, we can intuitively evaluate the
performance and effectiveness of completion algorithms, providing strong support for
subsequent algorithm optimization and improvement.

As shown in Figure 8, compared with PCN, LGAN-AE, and 3D Capsule, the method
proposed in this paper exhibits significant advantages in all categories. In the case of the
aircraft shown in Figure 8a, the tail is completely missing from the input point cloud. PCN,
LGAN-AE, and 3D Capsule cannot provide sufficiently complete reconstruction, while
the proposed method more accurately restores the tail. For the hat depicted in Figure 8b,
the upper right corner of the input point cloud is clearly missing. The completion of PCN,
LGAN-AE, and 3D Capsule appears relatively rigid, while the proposed method better
restores the original details of the cap. In Figure 8c, the backrest of the chair is clearly incom-
plete in the input point cloud. The results of PCN, LGAN-AE, and 3D Capsule are quite
sparse, while the proposed method effectively restores the structural details of the backrest.
For the guitar shown in Figure 8d, the upper part of the input point cloud is missing. The
completion of PCN, LGAN-AE, and 3D Capsule lacks density, but the proposed method
successfully restores the fine details of the guitar. In summary, the method proposed in this
article has demonstrated excellent performance and broad application potential in point
cloud completion. It better integrates object features, effectively restores missing details,
and generates more complete, accurate, and realistic point clouds, providing a more solid
data foundation for subsequent point cloud processing tasks.
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Figure 8. Point cloud visualization. (a) Airplane point cloud completion. (b) Cap point cloud
completion. (c¢) Chair point cloud completion. (d) Guitar point cloud completion.

5. Discussion

In response to the common limitations of insufficient capture of local structural features
and weak control of fine-grained features in existing mainstream point cloud completion
methods, this paper proposes two core modules (SCMP and SEP-Net) to address these
deficiencies in a targeted manner. Among them, the SCMP module adopts a multi-level
and multi-resolution farthest point sampling, local grouping, and Composite Multi-Layer
Perceptron architecture. Firstly, key points are filtered through FPS; then K-nearest neigh-
bors (KNN) are used to divide local regions; and finally multi-scale features are extracted
through MLP and pooling, breaking through the limitations of traditional methods such
as PCN and LGAN-AE that overly focus on global features. It can flexibly integrate local
geometric details such as edges and textures of point clouds with global semantics, avoid-
ing high-frequency geometric information omission. Finally, the dual-input encoding of
“original point cloud + downsampling point cloud” is used to further preserve structural
clues and provide high-quality feature input for subsequent completion. The SEP-Net
module integrates “squeeze excitation” and pooling operations, encoding channel global
information through global average pooling (Squeeze), learning channel weights through
dual fully connected layers (Excitation), and adjusting feature responses through scale
calibration. It can achieve adaptive recognition and enhancement of key channel features,
significantly improving the network’s sensitivity to important features while suppressing
redundant feature interference, with almost no increase in computational cost. Compared
to traditional attention methods, it focuses more on “channel level feature calibration” and
improves fine-grained structure reconstruction more directly.

This work focuses on the SCMP and SEP-Net modules, constructing an end-to-end
architecture of “feature extraction—feature optimization—gradual generation,” which offers
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significant advantages in feature utilization and completion logic. However, the method
proposed in this article heavily relies on predefined key point selection and other steps.
Although it can effectively improve the processing performance of common structured
data, in cases where the point cloud is severely missing or the shape is abnormally irregular,
it may lead to the establishment of biased local features in subsequent parts, thereby
limiting the overall performance of the model. Additionally, the improved performance
achieved through multi-module collaboration inevitably increases model complexity. When
training data is insufficient or lacks diversity, the network may overfit to specific datasets
or object categories, thus compromising its completion performance in unseen scenarios.
Furthermore, although our model excels in feature utilization and completion, its primary
focus remains on accuracy rather than efficiency. No specific optimizations have been
made for inference speed; as a result, its computational cost and inference time may still
be higher than those of the lightest point cloud processing networks. This could limit its
applicability in high-real-time scenarios such as high-speed autonomous driving or real-
time robotic decision-making. Finally, the absence of a hardware platform for real-world
data acquisition confined our experiments to benchmark datasets. Consequently, while the
model achieves strong performance on these datasets, its robustness against real-world
impairments such as noise, occlusion, and uneven point density remains unvalidated.

Based on the in-depth analysis of the limitations of this study, our future work will
prioritize the following research directions:

(1) Regarding the dependencies of predefined sampling, future research will focus on
learnable deformable attention modules, enabling the model to dynamically determine
the importance of various regions in the point cloud. When faced with severe missing or
abnormal shapes, the model can intelligently focus on the core structural regions, thereby
improving its generalization ability to complex situations.

(2) In response to the issues of model complexity and computational efficiency, future
research will focus on techniques such as channel pruning and dynamic inference paths,
in order to construct a dual-mode system that can switch in real time according to actual
needs. This will enable the full model to be activated when high precision is required and
switch to lightweight mode when real-time performance is required, thereby enhancing its
application capabilities in high-real-time scenarios.

(3) In response to interference issues in the real world, future research will actively seek
cooperation and build a real-time data collection platform to validate model performance
in real-world environments. On the other hand, research on anti-interference strategies
such as training noise simulation and outlier removal at the algorithm level can improve
the reliability of the model in complex physical environments.

6. Conclusions

Point cloud completion, as a core task in computer vision and 3D data processing,
faces significant challenges due to the unordered and sparse nature of point cloud data,
as well as inevitable missing data caused by external factors during acquisition. These
issues contribute to the complexity of the completion task. Existing mainstream point
cloud completion methods tend to focus on extracting global features of objects, while the
extraction of local features is relatively insufficient. Moreover, in the process of generating
complete point clouds, object details are often overlooked, resulting in a lack of fine-grained
features in the completed point clouds. These shortcomings lead to suboptimal accuracy
and completeness in the final results. To address the above issues, this paper first designs a
multi-level, multi-resolution farthest point sampling strategy called SCMP. After sampling
key points, this module performs local grouping and feature extraction operations to
preserve structural details and construct point cloud representations rich in local semantics,
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thus providing high-quality input for the subsequent completion process. In addition,
this paper introduces SEP-Net, a strategy that combines channel attention mechanisms
with pooling operations. By suppressing redundant features and enhancing key responses,
SEP-Net refines feature representation and significantly improves the network’s ability to
reconstruct fine-grained structures, thereby enhancing the overall completion performance.
Based on improvements in local feature extraction and detailed structure modeling, this
paper proposes a point cloud completion network called FFPF-Net, which integrates the
SCMP module and SEP-Net architecture. Extensive experiments were conducted on the
ShapeNet-Part and MVP datasets. Results show that the proposed method improves the
average prediction accuracy by 1.3 and 1.4 compared to L-GAN and PCN, respectively. In
robustness testing, the average Chamfer Distance was 0.783 on the ShapeNet-Part dataset
and 0.824 on the MVP dataset, indicating that the proposed method significantly enhances
the level of detail in point cloud completion. These improvements demonstrate the potential
of the method for broader application in various 3D scenarios.
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