Mapping High-Resolution Carbon Emission Spatial Distribution Combined with Carbon Satellite and Muti-Source Data
Abstract
1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. OCO-2 XCO2 Data
2.3. Spatial Proxy Data
2.4. Global Gridded Emission Datasets
3. Methodology
3.1. Calculation of XCO2 Background Concentration and XCO2 Anomalies
- (1)
- Perform kernel density analysis on POI and Roads, where Road sets different reference weights of 1–5 according to different road levels [26]. Overlay different kernel density analysis results and generate a map, which can reflect the degree of human activity.
- (2)
- Perform spatial aggregation on population, aggregate 1 km data into a 10 km grid map, and select areas with a population of 0 to generate a map. The population density is closely related to human activities.
- (3)
- Overlay the above kernel density superposition results with the population map to obtain an area that is almost unaffected by human activities. Generate sampling points within this area and extract the mean XCO2 concentration as the monthly XCO2 background concentration value.
3.2. Spatiotemporal Clustering and Local Adaptive Modeling
3.3. Spatial Redistribution of Carbon Emission Estimation
3.4. Accuracy Assessment of the Model
4. Results
4.1. The Trend of Background Concentration and Spatial Distribution of
4.2. Cluster Analysis of and EDGAR Carbon Emission Time Series
4.3. Carbon Emissions Spatial Distribution Map in Urumqi
5. Discussions
5.1. Validation of Estimates with EDGAR
5.2. Validation of Estimates with ODIAC
5.3. Methodological Limitations and Future Perspective
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hua, Y.; Zhao, X.; Sun, W. Estimation of anthropogenic CO2 emissions at different scales for assessing SDG indicators: Method and application. J. Clean. Prod. 2023, 414, 137547. [Google Scholar] [CrossRef]
- Cai, B.; Cui, C.; Zhang, D.; Cao, L.; Wu, P.; Pang, L.; Zhang, J.; Dai, C. China city-level greenhouse gas emissions inventory in 2015 and uncertainty analysis. Appl. Energy 2019, 253, 113579. [Google Scholar] [CrossRef]
- Crippa, M.; Guizzardi, D.; Pagani, F.; Schiavina, M.; Melchiorri, M.; Pisoni, E.; Graziosi, F.; Muntean, M.; Maes, J.; Dijkstra, L.; et al. Insights into the spatial distribution of global, national, and subnational greenhouse gas emissions in the Emissions Database for Global Atmospheric Research (EDGAR v8.0). Earth Syst. Sci. Data 2024, 16, 2811–2830. [Google Scholar] [CrossRef]
- Marchi, M.; Capezzuoli, F.; Fantozzi, P.L.; Maccanti, M.; Pulselli, R.M.; Pulselli, F.M.; Marchettini, N. GHG action zone identification at the local level: Emissions inventory and spatial distribution as methodologies for policies and plans. J. Clean. Prod. 2023, 386, 135783. [Google Scholar] [CrossRef]
- Zeng, C.; Wu, S.; Cheng, M.; Zhou, H.; Li, F. High-resolution mapping of carbon dioxide emissions in Guizhou Province and its scale effects. Sci. Rep. 2024, 14, 20916. [Google Scholar] [CrossRef]
- Hutyra, L.R.; Duren, R.; Gurney, K.R.; Grimm, N.; Kort, E.A.; Larson, E.; Shrestha, G. Urbanization and the carbon cycle: Current capabilities and research outlook from the natural sciences perspective. Earth’s Future 2014, 2, 473–495. [Google Scholar] [CrossRef]
- Cai, M.; Shi, Y.; Ren, C.; Yoshida, T.; Yamagata, Y.; Ding, C.; Zhou, N. The need for urban form data in spatial modeling of urban carbon emissions in China: A critical review. J. Clean. Prod. 2021, 319, 128792. [Google Scholar] [CrossRef]
- Oda, T.; Maksyutov, S. A very high-resolution (1 km × 1 km) global fossil fuel CO2 emission inventory derived using a point source database and satellite observations of nighttime lights. Atmos. Chem. Phys. 2011, 11, 543–556. [Google Scholar] [CrossRef]
- Gao, F.; Wu, J.; Xiao, J.; Li, X.; Liao, S.; Chen, W. Spatially explicit carbon emissions by remote sensing and social sensing. Environ. Res. 2023, 221, 115257. [Google Scholar] [CrossRef]
- Zheng, Y.; Du, S.; Zhang, X.; Bai, L.; Wang, H. Estimating carbon emissions in urban functional zones using multi-source data: A case study in Beijing. Build. Environ. 2022, 212, 108804. [Google Scholar] [CrossRef]
- Huo, D.; Liu, K.; Liu, J.; Huang, Y.; Sun, T.; Sun, Y.; Si, C.; Liu, J.; Huang, X.; Qiu, J.; et al. Near-real-time daily estimates of fossil fuel CO2 emissions from major high-emission cities in China. Sci. Data 2022, 9, 684. [Google Scholar] [CrossRef]
- Kongboon, R.; Gheewala, S.H.; Sampattagul, S. Greenhouse gas emissions inventory data acquisition and analytics for low carbon cities. J. Clean. Prod. 2022, 343, 130711. [Google Scholar] [CrossRef]
- Zhang, X.; Cai, Z.; Song, W.; Yang, D. Mapping the spatial-temporal changes in energy consumption-related carbon emissions in the Beijing-Tianjin-Hebei region via nighttime light data. Sustain. Cities Soc. 2023, 94, 104476. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, W.; Jiang, L.; Yuan, C.; Xiao, T.; Wang, R.; Cai, M.; Hong, H. Spatial modelling of street-level carbon emissions with multi-source open data: A case study of Guangzhou. Urban. Clim. 2024, 55, 101974. [Google Scholar] [CrossRef]
- Jiang, F.; He, W.; Ju, W.; Wang, H.; Wu, M.; Wang, J.; Feng, S.; Zhang, L.; Chen, J.M. The status of carbon neutrality of the world’s top 5 CO2 emitters as seen by carbon satellites. Fundam. Res. 2022, 2, 357–366. [Google Scholar] [CrossRef]
- Golkar, F.; Mousavi, S.M. Variation of XCO2 anomaly patterns in the Middle East from OCO-2 satellite data. Int. J. Digit. Earth 2022, 15, 1219–1235. [Google Scholar] [CrossRef]
- Nassar, R.; Mastrogiacomo, J.-P.; Bateman-Hemphill, W.; McCracken, C.; MacDonald, C.G.; Hill, T.; O’Dell, C.W.; Kiel, M.; Crisp, D. Advances in quantifying power plant CO2 emissions with OCO-2. Remote Sens. Environ. 2021, 264, 112579. [Google Scholar] [CrossRef]
- Konovalov, I.B.; Berezin, E.V.; Ciais, P.; Broquet, G.; Zhuravlev, R.V.; Janssens-Maenhout, G. Estimation of fossil-fuel CO2 emissions using satellite measurements of proxy species. Atmos. Chem. Phys. 2016, 16, 13509–13540. [Google Scholar] [CrossRef]
- Duren, R.M.; Miller, C.E. Measuring the carbon emissions of megacities. Nat. Clim. Change 2012, 2, 560–562. [Google Scholar] [CrossRef]
- Labzovskii, L.D.; Jeong, S.-J.; Parazoo, N.C. Working towards confident spaceborne monitoring of carbon emissions from cities using Orbiting Carbon Observatory-2. Remote Sens. Environ. 2019, 233, 111359. [Google Scholar] [CrossRef]
- Lei, R.; Feng, S.; Danjou, A.; Broquet, G.; Wu, D.; Lin, J.C.; O’Dell, C.W.; Lauvaux, T. Fossil fuel CO2 emissions over metropolitan areas from space: A multi-model analysis of OCO-2 data over Lahore, Pakistan. Remote Sens. Environ. 2021, 264, 112625. [Google Scholar] [CrossRef]
- Wang, X.; Cai, Y.; Liu, G.; Zhang, M.; Bai, Y.; Zhang, F. Carbon emission accounting and spatial distribution of industrial entities in Beijing—Combining nighttime light data and urban functional areas. Ecol. Inform. 2022, 70, 101759. [Google Scholar] [CrossRef]
- Wu, J.; Jia, P.; Feng, T.; Li, H.; Kuang, H.; Zhang, J. Uncovering the spatiotemporal impacts of built environment on traffic carbon emissions using multi-source big data. Land. Use Policy 2023, 129, 106621. [Google Scholar] [CrossRef]
- Liu, Z.; Han, L.; Liu, M. High-resolution carbon emission mapping and spatial-temporal analysis based on multi-source geographic data: A case study in Xi’an City, China. Environ. Pollut. 2024, 361, 124879. [Google Scholar] [CrossRef]
- Ahn, D.Y.; Goldberg, D.L.; Coombes, T.; Kleiman, G.; Anenberg, S.C. CO2 emissions from C40 cities: Citywide emission inventories and comparisons with global gridded emission datasets. Environ. Res. Lett. 2023, 18, 034032. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, V.; Brückner, J.; Schultz, M.; Vardag, S.N.; Ludwig, C.; Fürle, J.; Zia, M.; Lautenbach, S.; Zipf, A. Private Vehicles Greenhouse Gas Emission Estimation at Street Level for Berlin Based on Open Data. ISPRS Int. J. Geo-Inf. 2023, 12, 138. [Google Scholar] [CrossRef]
- Zhang, X.; Xie, Y.; Jiao, J.; Zhu, W.; Guo, Z.; Cao, X.; Liu, J.; Xi, G.; Wei, W. How to accurately assess the spatial distribution of energy CO2 emissions? Based on POI and NPP-VIIRS comparison. J. Clean. Prod. 2023, 402, 136656. [Google Scholar] [CrossRef]
- Li, H.; Jakobsen, J.P.; Wilhelmsen, O.; Yan, J. Responses to ‘Comments on PVTxy properties of CO2 mixtures relevant for CO2 capture, transport and storage: Review of available experimental data and theoretical models’. Appl. Energy 2012, 93, 753–754. [Google Scholar] [CrossRef]
- Li, C.; Wang, X.; Ye, H.; Wu, S.; Shi, H.; Luo, H.; Li, Z.; Xiong, W.; Li, D.; Sun, E.; et al. Evaluation of Simulated CO2 Point Source Plumes from High-Resolution Atmospheric Transport Model. Remote Sens. 2023, 15, 4518. [Google Scholar] [CrossRef]
- Fang, S.X.; Zhou, L.X.; Tans, P.P.; Ciais, P.; Steinbacher, M.; Xu, L.; Luan, T. In situ measurement of atmospheric CO2 at the four WMO/GAW stations in China. Atmos. Chem. Phys. 2014, 14, 2541–2554. [Google Scholar] [CrossRef]
- Agustí-Panareda, A.; Diamantakis, M.; Massart, S.; Chevallier, F.; Muñoz-Sabater, J.; Barré, J.; Curcoll, R.; Engelen, R.; Langerock, B.; Law, R.M.; et al. Modelling CO2 weather—Why horizontal resolution matters. Atmos. Chem. Phys. 2019, 19, 7347–7376. [Google Scholar] [CrossRef]
- Zhang, S.; Lei, L.; Sheng, M.; Song, H.; Li, L.; Guo, K.; Ma, C.; Liu, L.; Zeng, Z. Evaluating Anthropogenic CO2 Bottom-Up Emission Inventories Using Satellite Observations from GOSAT and OCO-2. Remote Sens. 2022, 14, 5024. [Google Scholar] [CrossRef]
- Jin, C.; Xue, Y.; Yuan, T.; Zhao, L.; Jiang, X.; Sun, Y.; Wu, S.; Wang, X. Retrieval anthropogenic CO2 emissions from OCO-2 and comparison with gridded emission inventories. J. Clean. Prod. 2024, 448, 141418. [Google Scholar] [CrossRef]
- Wei, Y.; Teng, Y.; Liu, X.; Chen, Y.; Zhang, J.; Deng, S.; Liu, Z.; Li, Q. Diffusion Modeling of Carbon Dioxide Concentration from Stationary Sources with Improved Gaussian Plume Modeling. Energies 2025, 18, 2827. [Google Scholar] [CrossRef]
- Gong, P.; Chen, B.; Li, X.; Liu, H.; Wang, J.; Bai, Y.; Chen, J.; Chen, X.; Fang, L.; Feng, S.; et al. Mapping essential urban land use categories in China (EULUC-China): Preliminary results for 2018. Sci. Bull. 2020, 65, 182–187. [Google Scholar] [CrossRef]
- Lee, K.; Ko, J.; Jung, S. Quantifying uncertainty in carbon emission estimation: Metrics and methodologies. J. Clean. Prod. 2024, 452, 142141. [Google Scholar] [CrossRef]
- Oda, T.; Bun, R.; Kinakh, V.; Topylko, P.; Halushchak, M.; Marland, G.; Lauvaux, T.; Jonas, M.; Maksyutov, S.; Nahorski, Z.; et al. Errors and uncertainties in a gridded carbon dioxide emissions inventory. Mitig. Adapt. Strateg. Glob. Change 2019, 24, 1007–1050. [Google Scholar] [CrossRef]
- Solazzo, E.; Crippa, M.; Guizzardi, D.; Muntean, M.; Choulga, M.; Janssens-Maenhout, G. Uncertainties in the Emissions Database for Global Atmospheric Research (EDGAR) emission inventory of greenhouse gases. Atmos. Chem. Phys. 2021, 21, 5655–5683. [Google Scholar] [CrossRef]
- Wei, S.; Paytan, A.; Chu, X.; Zhang, X.; Song, W.; Wang, X.; Li, P.; Han, G. Vegetation Types Shift Physiological and Phenological Controls on Carbon Sink Strength in a Coastal Zone. Glob. Change Biol. 2025, 31, e70029. [Google Scholar] [CrossRef]
- Van der Molen, M.K.; Dolman, A.J. Regional carbon fluxes and the effect of topography on the variability of atmospheric CO2. J. Geophys. Res. Atmos. 2007, 112, D01104. [Google Scholar] [CrossRef]
Data Source | Category Label | Count | Spatial Proxy Function |
---|---|---|---|
POI | catering, shopping, hotel accommodation, life services | 70173 | Carbon emission space allocation for services. |
POI | factories | 281 | Carbon emission space allocation for industry. |
Road | motorway, trunk, primary, secondary, tertiary, residential roads | - | Carbon emission space allocation for road traffic. |
Population | population | - | Carbon emission space allocation for daily consumption. |
Sector-Specific | Spatial Proxy | Data Type | Sector Weights | Spatial Weights Methods |
---|---|---|---|---|
Commercial | POI | Point feature | 0.0144 | KDE and normalization |
Industrial | Industry poi | Point feature | 0.9366 | KDE and normalization |
Traffic | Roads data | Line feature | 0.0254 | KDE and normalization |
Daily life | Population | Raster | 0.0236 | Normalization |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, L.; Yang, H.; Martin, M.; Qiao, Y.; Ulrich, V.; Zipf, A. Mapping High-Resolution Carbon Emission Spatial Distribution Combined with Carbon Satellite and Muti-Source Data. Remote Sens. 2025, 17, 3125. https://doi.org/10.3390/rs17173125
Cui L, Yang H, Martin M, Qiao Y, Ulrich V, Zipf A. Mapping High-Resolution Carbon Emission Spatial Distribution Combined with Carbon Satellite and Muti-Source Data. Remote Sensing. 2025; 17(17):3125. https://doi.org/10.3390/rs17173125
Chicago/Turabian StyleCui, Liu, Hui Yang, Maria Martin, Yina Qiao, Veit Ulrich, and Alexander Zipf. 2025. "Mapping High-Resolution Carbon Emission Spatial Distribution Combined with Carbon Satellite and Muti-Source Data" Remote Sensing 17, no. 17: 3125. https://doi.org/10.3390/rs17173125
APA StyleCui, L., Yang, H., Martin, M., Qiao, Y., Ulrich, V., & Zipf, A. (2025). Mapping High-Resolution Carbon Emission Spatial Distribution Combined with Carbon Satellite and Muti-Source Data. Remote Sensing, 17(17), 3125. https://doi.org/10.3390/rs17173125