Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (43,989)

Search Parameters:
Keywords = intelligibility

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1693 KiB  
Review
From Vision to Illumination: The Promethean Journey of Optical Coherence Tomography in Cardiology
by Angela Buonpane, Giancarlo Trimarchi, Francesca Maria Di Muro, Giulia Nardi, Marco Ciardetti, Michele Alessandro Coceani, Luigi Emilio Pastormerlo, Umberto Paradossi, Sergio Berti, Carlo Trani, Giovanna Liuzzo, Italo Porto, Antonio Maria Leone, Filippo Crea, Francesco Burzotta, Rocco Vergallo and Alberto Ranieri De Caterina
J. Clin. Med. 2025, 14(15), 5451; https://doi.org/10.3390/jcm14155451 (registering DOI) - 2 Aug 2025
Abstract
Optical Coherence Tomography (OCT) has evolved from a breakthrough ophthalmologic imaging tool into a cornerstone technology in interventional cardiology. After its initial applications in retinal imaging in the early 1990s, OCT was subsequently envisioned for cardiovascular use. In 1995, its ability to visualize [...] Read more.
Optical Coherence Tomography (OCT) has evolved from a breakthrough ophthalmologic imaging tool into a cornerstone technology in interventional cardiology. After its initial applications in retinal imaging in the early 1990s, OCT was subsequently envisioned for cardiovascular use. In 1995, its ability to visualize atherosclerotic plaques was demonstrated in an in vitro study, and the following year marked the acquisition of the first in vivo OCT image of a human coronary artery. A major milestone followed in 2000, with the first intracoronary imaging in a living patient using time-domain OCT. However, the real inflection point came in 2006 with the advent of frequency-domain OCT, which dramatically improved acquisition speed and image quality, enabling safe and routine imaging in the catheterization lab. With the advent of high-resolution, second-generation frequency-domain systems, OCT has become clinically practical and widely adopted in catheterization laboratories. OCT progressively entered interventional cardiology, first proving its safety and feasibility, then demonstrating superiority over angiography alone in guiding percutaneous coronary interventions and improving outcomes. Today, it plays a central role not only in clinical practice but also in cardiovascular research, enabling precise assessment of plaque biology and response to therapy. With the advent of artificial intelligence and hybrid imaging systems, OCT is now evolving into a true precision-medicine tool—one that not only guides today’s therapies but also opens new frontiers for discovery, with vast potential still waiting to be explored. Tracing its historical evolution from ophthalmology to cardiology, this narrative review highlights the key technological milestones, clinical insights, and future perspectives that position OCT as an indispensable modality in contemporary interventional cardiology. As a guiding thread, the myth of Prometheus is used to symbolize the evolution of OCT—from its illuminating beginnings in ophthalmology to its transformative role in cardiology—as a metaphor for how light, innovation, and knowledge can reveal what was once hidden and redefine clinical practice. Full article
(This article belongs to the Section Cardiology)
Show Figures

Figure 1

17 pages, 4136 KiB  
Article
The Effects of Interactions Between Key Environmental Factors on Non-Specific Indicators in Carassius auratus
by Bin Wang, Hang Yang, Hanping Mao and Qiang Shi
Fishes 2025, 10(8), 372; https://doi.org/10.3390/fishes10080372 (registering DOI) - 2 Aug 2025
Abstract
Carassius auratus exhibits significant physiological and behavioral alterations under the combined stress of temperature and dissolved oxygen (DO) fluctuations, which are common challenges in aquaculture. In this investigation, we employed controlled thermal and DO gradients to characterize the multidimensional response profile of this [...] Read more.
Carassius auratus exhibits significant physiological and behavioral alterations under the combined stress of temperature and dissolved oxygen (DO) fluctuations, which are common challenges in aquaculture. In this investigation, we employed controlled thermal and DO gradients to characterize the multidimensional response profile of this species. The key findings revealed that thermal elevation profoundly influenced blood glucose and cortisol concentrations. Notably, exposure to hyperoxic conditions markedly attenuated stress responses relative to hypoxia at equivalent temperatures: cortisol levels were significantly suppressed (reductions of 60.11%, 118.06%, and 34.72%), while blood glucose levels exhibited concurrent increases (16.42%, 26.43%, and 26.34%). Distinctive behavioral patterns, including floating head behavior, surface swimming behavior, and rollover behavior, were identified as indicative behaviors of thermal–oxygen stress. Molecular analysis demonstrated the upregulated expression of stress-associated genes (HSP70, HSP90, HIF-1α, and Prdx3), which correlated temporally with elevated cortisol and glucose concentrations and the manifestation of stress behaviors. Furthermore, a muscle texture assessment indicated that increased DO availability mitigated the textural deterioration induced by heat stress. Collectively, this work establishes an authentic biomarker framework, providing crucial threshold parameters essential for the development of intelligent, real-time environmental monitoring and dynamic regulation systems to enhance climate-resilient aquaculture management. Full article
(This article belongs to the Special Issue Adaptation and Response of Fish to Environmental Changes)
Show Figures

Figure 1

38 pages, 1194 KiB  
Review
Transforming Data Annotation with AI Agents: A Review of Architectures, Reasoning, Applications, and Impact
by Md Monjurul Karim, Sangeen Khan, Dong Hoang Van, Xinyue Liu, Chunhui Wang and Qiang Qu
Future Internet 2025, 17(8), 353; https://doi.org/10.3390/fi17080353 (registering DOI) - 2 Aug 2025
Abstract
Data annotation serves as a critical foundation for artificial intelligence (AI) and machine learning (ML). Recently, AI agents powered by large language models (LLMs) have emerged as effective solutions to longstanding challenges in data annotation, such as scalability, consistency, cost, and limitations in [...] Read more.
Data annotation serves as a critical foundation for artificial intelligence (AI) and machine learning (ML). Recently, AI agents powered by large language models (LLMs) have emerged as effective solutions to longstanding challenges in data annotation, such as scalability, consistency, cost, and limitations in domain expertise. These agents facilitate intelligent automation and adaptive decision-making, thereby enhancing the efficiency and reliability of annotation workflows across various fields. Despite the growing interest in this area, a systematic understanding of the role and capabilities of AI agents in annotation is still underexplored. This paper seeks to fill that gap by providing a comprehensive review of how LLM-driven agents support advanced reasoning strategies, adaptive learning, and collaborative annotation efforts. We analyze agent architectures, integration patterns within workflows, and evaluation methods, along with real-world applications in sectors such as healthcare, finance, technology, and media. Furthermore, we evaluate current tools and platforms that support agent-based annotation, addressing key challenges such as quality assurance, bias mitigation, transparency, and scalability. Lastly, we outline future research directions, highlighting the importance of federated learning, cross-modal reasoning, and responsible system design to advance the development of next-generation annotation ecosystems. Full article
Show Figures

Figure 1

27 pages, 7899 KiB  
Article
Digital Enablers of Sustainability: Insights from Sustainable Development Goals (SDGs) Research Mapping
by Jeongmi Ga, Jaewoo Bong, Myeongjun Yu and Minjung Kwak
Sustainability 2025, 17(15), 7031; https://doi.org/10.3390/su17157031 (registering DOI) - 2 Aug 2025
Abstract
As the global emphasis on sustainable development intensifies, the integration of digital technologies (DTs) into efforts to address the Sustainable Development Goals (SDGs) has gained increasing attention. However, existing research on the link between the SDGs and DTs remains fragmented and lacks a [...] Read more.
As the global emphasis on sustainable development intensifies, the integration of digital technologies (DTs) into efforts to address the Sustainable Development Goals (SDGs) has gained increasing attention. However, existing research on the link between the SDGs and DTs remains fragmented and lacks a comprehensive perspective on their interconnections. We aimed to address this gap by conducting a large-scale bibliometric analysis based on Elsevier’s SDG research mapping technique. Drawing on approximately 1.17 million publications related to both the 17 SDGs and 11 representative DTs, we explored research trends in the SDG–DT association, identified DTs that are most frequently tied to specific SDGs, and uncovered emerging areas of research within this interdisciplinary domain. Our results highlight the rapid expansion in the volume and variety of SDG–DT studies. Our findings shed light on the widespread relevance of artificial intelligence and robotics, the goal-specific applications of technologies such as 3D printing, cloud computing, drones, and extended reality, as well as the growing visibility of emerging technologies such as digital twins and blockchain. These findings offer valuable insights for researchers, policymakers, and industry leaders aiming to strategically harness DTs to support sustainable development and accelerate progress toward achieving the SDGs. Full article
Show Figures

Figure 1

14 pages, 626 KiB  
Article
Mapping Clinical Questions to the Nursing Interventions Classification: An Evidence-Based Needs Assessment in Emergency and Intensive Care Nursing Practice in South Korea
by Jaeyong Yoo
Healthcare 2025, 13(15), 1892; https://doi.org/10.3390/healthcare13151892 (registering DOI) - 2 Aug 2025
Abstract
Background/Objectives: Evidence-based nursing practice (EBNP) is essential in high-acuity settings such as intensive care units (ICUs) and emergency departments (EDs), where nurses are frequently required to make time-critical, high-stakes clinical decisions that directly influence patient safety and outcomes. Despite its recognized importance, [...] Read more.
Background/Objectives: Evidence-based nursing practice (EBNP) is essential in high-acuity settings such as intensive care units (ICUs) and emergency departments (EDs), where nurses are frequently required to make time-critical, high-stakes clinical decisions that directly influence patient safety and outcomes. Despite its recognized importance, the implementation of EBNP remains inconsistent, with frontline nurses often facing barriers to accessing and applying current evidence. Methods: This descriptive, cross-sectional study systematically mapped and prioritized clinical questions generated by ICU and ED nurses at a tertiary hospital in South Korea. Using open-ended questionnaires, 204 clinical questions were collected from 112 nurses. Each question was coded and classified according to the Nursing Interventions Classification (NIC) taxonomy (8th edition) through a structured cross-mapping methodology. Inter-rater reliability was assessed using Cohen’s kappa coefficient. Results: The majority of clinical questions (56.9%) were mapped to the Physiological: Complex domain, with infection control, ventilator management, and tissue perfusion management identified as the most frequent areas of inquiry. Patient safety was the second most common domain (21.6%). Notably, no clinical questions were mapped to the Family or Community domains, highlighting a gap in holistic and transitional care considerations. The mapping process demonstrated high inter-rater reliability (κ = 0.85, 95% CI: 0.80–0.89). Conclusions: Frontline nurses in high-acuity environments predominantly seek evidence related to complex physiological interventions and patient safety, while holistic and community-oriented care remain underrepresented in clinical inquiry. Utilizing the NIC taxonomy for systematic mapping establishes a reliable framework to identify evidence gaps and support targeted interventions in nursing practice. Regular protocol evaluation, alignment of continuing education with empirically identified priorities, and the integration of concise evidence summaries into clinical workflows are recommended to enhance EBNP implementation. Future research should expand to multicenter and interdisciplinary settings, incorporate advanced technologies such as artificial intelligence for automated mapping, and assess the long-term impact of evidence-based interventions on patient outcomes. Full article
(This article belongs to the Section Nursing)
Show Figures

Figure 1

25 pages, 904 KiB  
Review
Edible Mushroom Cultivation in Liquid Medium: Impact of Microparticles and Advances in Control Systems
by Juan Carlos Ferrer Romero, Oana Bianca Oprea, Liviu Gaceu, Siannah María Más Diego, Humberto J. Morris Quevedo, Laura Galindo Alonso, Lilianny Rivero Ramírez and Mihaela Badea
Processes 2025, 13(8), 2452; https://doi.org/10.3390/pr13082452 (registering DOI) - 2 Aug 2025
Abstract
Mushrooms are eukaryotic organisms with absorptive heterotrophic nutrition, capable of feeding on organic matter rich in cellulose and lignocellulose. Since ancient times, they have been considered allies and, in certain cultures, they were seen as magical beings or food of the gods. Of [...] Read more.
Mushrooms are eukaryotic organisms with absorptive heterotrophic nutrition, capable of feeding on organic matter rich in cellulose and lignocellulose. Since ancient times, they have been considered allies and, in certain cultures, they were seen as magical beings or food of the gods. Of the great variety of edible mushrooms identified worldwide, less than 2% are traded on the market. Although mushrooms have been valued for their multiple nutritional and healing benefits, some cultures perceive them as toxic and do not accept them in their culinary practices. Despite the existing skepticism, several researchers are promoting the potential of edible mushrooms. There are two main methods of mushroom cultivation: solid-state fermentation and submerged fermentation. The former is the most widely used and simplest, since the fungus grows in its natural environment; in the latter, the fungus grows suspended without developing a fruiting body. In addition, submerged fermentation is easily monitored and scalable. Both systems are important and have their limitations. This article discusses the main methods used to increase the performance of submerged fermentation with emphasis on the modes of operation used, types of bioreactors and application of morphological bioengineering of filamentous fungi, and especially the use of intelligent automatic control technologies and the use of non-invasive monitoring in fermentation systems thanks to the development of machine learning (ML), neural networks, and the use of big data, which will allow more accurate decisions to be made in the fermentation of filamentous fungi in submerged environments with improvements in production yields. Full article
Show Figures

Figure 1

17 pages, 1651 KiB  
Article
A Comprehensive User Acceptance Evaluation Framework of Intelligent Driving Based on Subjective and Objective Integration—From the Perspective of Value Engineering
by Wang Zhang, Fuquan Zhao, Zongwei Liu, Haokun Song and Guangyu Zhu
Systems 2025, 13(8), 653; https://doi.org/10.3390/systems13080653 (registering DOI) - 2 Aug 2025
Abstract
Intelligent driving technology is expected to reshape urban transportation, but its promotion is hindered by user acceptance challenges and diverse technical routes. This study proposes a comprehensive user acceptance evaluation framework for intelligent driving from the perspective of value engineering (VE). The novelty [...] Read more.
Intelligent driving technology is expected to reshape urban transportation, but its promotion is hindered by user acceptance challenges and diverse technical routes. This study proposes a comprehensive user acceptance evaluation framework for intelligent driving from the perspective of value engineering (VE). The novelty of this framework lies in three aspects: (1) It unifies behavioral theory and utility theory under the value engineering framework, and it extracts key indicators such as safety, travel efficiency, trust, comfort, and cost, thus addressing the issue of the lack of integration between subjective and objective factors in previous studies. (2) It establishes a systematic mapping mechanism from technical solutions to evaluation indicators, filling the gap of insufficient targeting at different technical routes in the existing literature. (3) It quantifies acceptance differences via VE’s core formula of V = F/C, overcoming the ambiguity of non-technical evaluation in prior research. A case study comparing single-vehicle intelligence vs. collaborative intelligence and different sensor combinations (vision-only, map fusion, and lidar fusion) shows that collaborative intelligence and vision-based solutions offer higher comprehensive acceptance due to balanced functionality and cost. This framework guides enterprises in technical strategy planning and assists governments in formulating industrial policies by quantifying acceptance differences across technical routes. Full article
(This article belongs to the Special Issue Modeling, Planning and Management of Sustainable Transport Systems)
22 pages, 3301 KiB  
Article
Parameter Identification of Distribution Zone Transformers Under Three-Phase Asymmetric Conditions
by Panrun Jin, Wenqin Song and Yankui Zhang
Eng 2025, 6(8), 181; https://doi.org/10.3390/eng6080181 (registering DOI) - 2 Aug 2025
Abstract
As a core device in low-voltage distribution networks, the distribution zone transformer (DZT) is influenced by short circuits, overloads, and unbalanced loads, which cause thermal aging, mechanical stress, and eventually deformation of the winding, resulting in parameter deviations from nameplate values and impairing [...] Read more.
As a core device in low-voltage distribution networks, the distribution zone transformer (DZT) is influenced by short circuits, overloads, and unbalanced loads, which cause thermal aging, mechanical stress, and eventually deformation of the winding, resulting in parameter deviations from nameplate values and impairing system operation. However, existing identification methods typically require synchronized high- and low-voltage data and are limited to symmetric three-phase conditions, which limits their application in practical distribution systems. To address these challenges, this paper proposes a parameter identification method for DZTs under three-phase unbalanced conditions. Firstly, based on the transformer’s T-equivalent circuit considering the load, the power flow equations are derived without involving the synchronization issue of high-voltage and low-voltage side data, and the sum of the impedances on both sides is treated as an independent parameter. Then, a novel power flow equation under three-phase unbalanced conditions is established, and an adaptive recursive least squares (ARLS) solution method is constructed using the measurement data sequence provided by the smart meter of the intelligent transformer terminal unit (TTU) to achieve online identification of the transformer winding parameters. The effectiveness and robustness of the method are verified through practical case studies. Full article
Show Figures

Figure 1

30 pages, 1130 KiB  
Review
Beyond the Backbone: A Quantitative Review of Deep-Learning Architectures for Tropical Cyclone Track Forecasting
by He Huang, Difei Deng, Liang Hu, Yawen Chen and Nan Sun
Remote Sens. 2025, 17(15), 2675; https://doi.org/10.3390/rs17152675 (registering DOI) - 2 Aug 2025
Abstract
Accurate forecasting of tropical cyclone (TC) tracks is critical for disaster preparedness and risk mitigation. While traditional numerical weather prediction (NWP) systems have long served as the backbone of operational forecasting, they face limitations in computational cost and sensitivity to initial conditions. In [...] Read more.
Accurate forecasting of tropical cyclone (TC) tracks is critical for disaster preparedness and risk mitigation. While traditional numerical weather prediction (NWP) systems have long served as the backbone of operational forecasting, they face limitations in computational cost and sensitivity to initial conditions. In recent years, deep learning (DL) has emerged as a promising alternative, offering data-driven modeling capabilities for capturing nonlinear spatiotemporal patterns. This paper presents a comprehensive review of DL-based approaches for TC track forecasting. We categorize all DL-based TC tracking models according to the architecture, including recurrent neural networks (RNNs), convolutional neural networks (CNNs), Transformers, graph neural networks (GNNs), generative models, and Fourier-based operators. To enable rigorous performance comparison, we introduce a Unified Geodesic Distance Error (UGDE) metric that standardizes evaluation across diverse studies and lead times. Based on this metric, we conduct a critical comparison of state-of-the-art models and identify key insights into their relative strengths, limitations, and suitable application scenarios. Building on this framework, we conduct a critical cross-model analysis that reveals key trends, performance disparities, and architectural tradeoffs. Our analysis also highlights several persistent challenges, such as long-term forecast degradation, limited physical integration, and generalization to extreme events, pointing toward future directions for developing more robust and operationally viable DL models for TC track forecasting. To support reproducibility and facilitate standardized evaluation, we release an open-source UGDE conversion tool on GitHub. Full article
(This article belongs to the Section AI Remote Sensing)
31 pages, 3464 KiB  
Article
An Intelligent Method for C++ Test Case Synthesis Based on a Q-Learning Agent
by Serhii Semenov, Oleksii Kolomiitsev, Mykhailo Hulevych, Patryk Mazurek and Olena Chernyk
Appl. Sci. 2025, 15(15), 8596; https://doi.org/10.3390/app15158596 (registering DOI) - 2 Aug 2025
Abstract
Ensuring software quality during development requires effective regression testing. However, test suites in open-source libraries often grow large, redundant, and difficult to maintain. Most traditional test suite optimization methods treat test cases as atomic units, without analyzing the utility of individual instructions. This [...] Read more.
Ensuring software quality during development requires effective regression testing. However, test suites in open-source libraries often grow large, redundant, and difficult to maintain. Most traditional test suite optimization methods treat test cases as atomic units, without analyzing the utility of individual instructions. This paper presents an intelligent method for test case synthesis using a Q-learning agent. The agent learns to construct compact test cases by interacting with an execution environment and receives rewards based on branch coverage improvements and simultaneous reductions in test case length. The training process includes a pretraining phase that transfers knowledge from the original test suite, followed by adaptive learning episodes on individual test cases. As a result, the method requires no formal documentation or API specifications and uses only execution traces of the original test cases. An explicit synthesis algorithm constructs new test cases by selecting API calls from a learned policy encoded in a Q-table. Experiments were conducted on two open-source C++ libraries of differing API complexity and original test suite size. The results show that the proposed method can reach up to 67% test suite reduction while preserving branch coverage, confirming its effectiveness for regression test suite minimization in resource-constrained or specification-limited environments. Full article
Show Figures

Figure 1

23 pages, 3120 KiB  
Article
Bee Swarm Metropolis–Hastings Sampling for Bayesian Inference in the Ginzburg–Landau Equation
by Shucan Xia and Lipu Zhang
Algorithms 2025, 18(8), 476; https://doi.org/10.3390/a18080476 (registering DOI) - 2 Aug 2025
Abstract
To improve the sampling efficiency of Markov Chain Monte Carlo in complex parameter spaces, this paper proposes an adaptive sampling method that integrates a swarm intelligence mechanism called the BeeSwarm-MH algorithm. The method combines global exploration by scout bees with local exploitation by [...] Read more.
To improve the sampling efficiency of Markov Chain Monte Carlo in complex parameter spaces, this paper proposes an adaptive sampling method that integrates a swarm intelligence mechanism called the BeeSwarm-MH algorithm. The method combines global exploration by scout bees with local exploitation by worker bees. It employs multi-stage perturbation intensities and adaptive step-size tuning to enable efficient posterior sampling. Focusing on Bayesian inference for parameter estimation in the soliton solutions of the two-dimensional complex Ginzburg–Landau equation, we design a dedicated inference framework to systematically compare the performance of BeeSwarm-MH with the classical Metropolis–Hastings algorithm. Experimental results demonstrate that BeeSwarm-MH achieves comparable estimation accuracy while significantly reducing the required number of iterations and total computation time for convergence. Moreover, it exhibits superior global search capabilities and adaptive features, offering a practical approach for efficient Bayesian inference in complex physical models. Full article
23 pages, 2029 KiB  
Systematic Review
Exploring the Role of Industry 4.0 Technologies in Smart City Evolution: A Literature-Based Study
by Nataliia Boichuk, Iwona Pisz, Anna Bruska, Sabina Kauf and Sabina Wyrwich-Płotka
Sustainability 2025, 17(15), 7024; https://doi.org/10.3390/su17157024 (registering DOI) - 2 Aug 2025
Abstract
Smart cities are technologically advanced urban environments where interconnected systems and data-driven technologies enhance public service delivery and quality of life. These cities rely on information and communication technologies, the Internet of Things, big data, cloud computing, and other Industry 4.0 tools to [...] Read more.
Smart cities are technologically advanced urban environments where interconnected systems and data-driven technologies enhance public service delivery and quality of life. These cities rely on information and communication technologies, the Internet of Things, big data, cloud computing, and other Industry 4.0 tools to support efficient city management and foster citizen engagement. Often referred to as digital cities, they integrate intelligent infrastructures and real-time data analytics to improve mobility, security, and sustainability. Ubiquitous sensors, paired with Artificial Intelligence, enable cities to monitor infrastructure, respond to residents’ needs, and optimize urban conditions dynamically. Given the increasing significance of Industry 4.0 in urban development, this study adopts a bibliometric approach to systematically review the application of these technologies within smart cities. Utilizing major academic databases such as Scopus and Web of Science the research aims to identify the primary Industry 4.0 technologies implemented in smart cities, assess their impact on infrastructure, economic systems, and urban communities, and explore the challenges and benefits associated with their integration. The bibliometric analysis included publications from 2016 to 2023, since the emergence of urban researchers’ interest in the technologies of the new industrial revolution. The task is to contribute to a deeper understanding of how smart cities evolve through the adoption of advanced technological frameworks. Research indicates that IoT and AI are the most commonly used tools in urban spaces, particularly in smart mobility and smart environments. Full article
Show Figures

Figure 1

27 pages, 1326 KiB  
Systematic Review
Application of Artificial Intelligence in Pancreatic Cyst Management: A Systematic Review
by Donghyun Lee, Fadel Jesry, John J. Maliekkal, Lewis Goulder, Benjamin Huntly, Andrew M. Smith and Yazan S. Khaled
Cancers 2025, 17(15), 2558; https://doi.org/10.3390/cancers17152558 (registering DOI) - 2 Aug 2025
Abstract
Background: Pancreatic cystic lesions (PCLs), including intraductal papillary mucinous neoplasms (IPMNs) and mucinous cystic neoplasms (MCNs), pose a diagnostic challenge due to their variable malignant potential. Current guidelines, such as Fukuoka and American Gastroenterological Association (AGA), have moderate predictive accuracy and may lead [...] Read more.
Background: Pancreatic cystic lesions (PCLs), including intraductal papillary mucinous neoplasms (IPMNs) and mucinous cystic neoplasms (MCNs), pose a diagnostic challenge due to their variable malignant potential. Current guidelines, such as Fukuoka and American Gastroenterological Association (AGA), have moderate predictive accuracy and may lead to overtreatment or missed malignancies. Artificial intelligence (AI), incorporating machine learning (ML) and deep learning (DL), offers the potential to improve risk stratification, diagnosis, and management of PCLs by integrating clinical, radiological, and molecular data. This is the first systematic review to evaluate the application, performance, and clinical utility of AI models in the diagnosis, classification, prognosis, and management of pancreatic cysts. Methods: A systematic review was conducted in accordance with PRISMA guidelines and registered on PROSPERO (CRD420251008593). Databases searched included PubMed, EMBASE, Scopus, and Cochrane Library up to March 2025. The inclusion criteria encompassed original studies employing AI, ML, or DL in human subjects with pancreatic cysts, evaluating diagnostic, classification, or prognostic outcomes. Data were extracted on the study design, imaging modality, model type, sample size, performance metrics (accuracy, sensitivity, specificity, and area under the curve (AUC)), and validation methods. Study quality and bias were assessed using the PROBAST and adherence to TRIPOD reporting guidelines. Results: From 847 records, 31 studies met the inclusion criteria. Most were retrospective observational (n = 27, 87%) and focused on preoperative diagnostic applications (n = 30, 97%), with only one addressing prognosis. Imaging modalities included Computed Tomography (CT) (48%), endoscopic ultrasound (EUS) (26%), and Magnetic Resonance Imaging (MRI) (9.7%). Neural networks, particularly convolutional neural networks (CNNs), were the most common AI models (n = 16), followed by logistic regression (n = 4) and support vector machines (n = 3). The median reported AUC across studies was 0.912, with 55% of models achieving AUC ≥ 0.80. The models outperformed clinicians or existing guidelines in 11 studies. IPMN stratification and subtype classification were common focuses, with CNN-based EUS models achieving accuracies of up to 99.6%. Only 10 studies (32%) performed external validation. The risk of bias was high in 93.5% of studies, and TRIPOD adherence averaged 48%. Conclusions: AI demonstrates strong potential in improving the diagnosis and risk stratification of pancreatic cysts, with several models outperforming current clinical guidelines and human readers. However, widespread clinical adoption is hindered by high risk of bias, lack of external validation, and limited interpretability of complex models. Future work should prioritise multicentre prospective studies, standardised model reporting, and development of interpretable, externally validated tools to support clinical integration. Full article
(This article belongs to the Section Methods and Technologies Development)
Show Figures

Figure 1

21 pages, 4314 KiB  
Article
Panoptic Plant Recognition in 3D Point Clouds: A Dual-Representation Learning Approach with the PP3D Dataset
by Lin Zhao, Sheng Wu, Jiahao Fu, Shilin Fang, Shan Liu and Tengping Jiang
Remote Sens. 2025, 17(15), 2673; https://doi.org/10.3390/rs17152673 (registering DOI) - 2 Aug 2025
Abstract
The advancement of Artificial Intelligence (AI) has significantly accelerated progress across various research domains, with growing interest in plant science due to its substantial economic potential. However, the integration of AI with digital vegetation analysis remains underexplored, largely due to the absence of [...] Read more.
The advancement of Artificial Intelligence (AI) has significantly accelerated progress across various research domains, with growing interest in plant science due to its substantial economic potential. However, the integration of AI with digital vegetation analysis remains underexplored, largely due to the absence of large-scale, real-world plant datasets, which are crucial for advancing this field. To address this gap, we introduce the PP3D dataset—a meticulously labeled collection of about 500 potted plants represented as 3D point clouds, featuring fine-grained annotations for approximately 20 species. The PP3D dataset provides 3D phenotypic data for about 20 plant species spanning model organisms (e.g., Arabidopsis thaliana), potted plants (e.g., Foliage plants, Flowering plants), and horticultural plants (e.g., Solanum lycopersicum), covering most of the common important plant species. Leveraging this dataset, we propose the panoptic plant recognition task, which combines semantic segmentation (stems and leaves) with leaf instance segmentation. To tackle this challenge, we present SCNet, a novel dual-representation learning network designed specifically for plant point cloud segmentation. SCNet integrates two key branches: a cylindrical feature extraction branch for robust spatial encoding and a sequential slice feature extraction branch for detailed structural analysis. By efficiently propagating features between these representations, SCNet achieves superior flexibility and computational efficiency, establishing a new baseline for panoptic plant recognition and paving the way for future AI-driven research in plant science. Full article
Show Figures

Figure 1

18 pages, 6891 KiB  
Article
Physics-Based Data Augmentation Enables Accurate Machine Learning Prediction of Melt Pool Geometry
by Siqi Liu, Ruina Li, Jiayi Zhou, Chaoyuan Dai, Jingui Yu and Qiaoxin Zhang
Appl. Sci. 2025, 15(15), 8587; https://doi.org/10.3390/app15158587 (registering DOI) - 2 Aug 2025
Abstract
Accurate melt pool geometry prediction is essential for ensuring quality and reliability in Laser Powder Bed Fusion (L-PBF). However, small experimental datasets and limited physical interpretability often restrict the effectiveness of traditional machine learning (ML) models. This study proposes a hybrid framework that [...] Read more.
Accurate melt pool geometry prediction is essential for ensuring quality and reliability in Laser Powder Bed Fusion (L-PBF). However, small experimental datasets and limited physical interpretability often restrict the effectiveness of traditional machine learning (ML) models. This study proposes a hybrid framework that integrates an explicit thermal model with ML algorithms to improve prediction under sparse data conditions. The explicit model—calibrated for variable penetration depth and absorptivity—generates synthetic melt pool data, augmenting 36 experimental samples across conduction, transition, and keyhole regimes for 316 L stainless steel. Three ML methods—Multilayer Perceptron (MLP), Random Forest, and XGBoost—are trained using fivefold cross-validation. The hybrid approach significantly improves prediction accuracy, especially in unstable transition regions (D/W ≈ 0.5–1.2), where morphological fluctuations hinder experimental sampling. The best-performing model (MLP) achieves R2 > 0.98, with notable reductions in MAE and RMSE. The results highlight the benefit of incorporating physically consistent, nonlinearly distributed synthetic data to enhance generalization and robustness. This physics-augmented learning strategy not only demonstrates scientific novelty by integrating mechanistic modeling into data-driven learning, but also provides a scalable solution for intelligent process optimization, in situ monitoring, and digital twin development in metal additive manufacturing. Full article
Show Figures

Figure 1

Back to TopTop