Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (78)

Search Parameters:
Keywords = intelligent modeling for crops and their environment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1523 KiB  
Article
Reinforcement Learning-Based Agricultural Fertilization and Irrigation Considering N2O Emissions and Uncertain Climate Variability
by Zhaoan Wang, Shaoping Xiao, Jun Wang, Ashwin Parab and Shivam Patel
AgriEngineering 2025, 7(8), 252; https://doi.org/10.3390/agriengineering7080252 - 7 Aug 2025
Viewed by 324
Abstract
Nitrous oxide (N2O) emissions from agriculture are rising due to increased fertilizer use and intensive farming, posing a major challenge for climate mitigation. This study introduces a novel reinforcement learning (RL) framework to optimize farm management strategies that balance [...] Read more.
Nitrous oxide (N2O) emissions from agriculture are rising due to increased fertilizer use and intensive farming, posing a major challenge for climate mitigation. This study introduces a novel reinforcement learning (RL) framework to optimize farm management strategies that balance crop productivity with environmental impact, particularly N2O emissions. By modeling agricultural decision-making as a partially observable Markov decision process (POMDP), the framework accounts for uncertainties in environmental conditions and observational data. The approach integrates deep Q-learning with recurrent neural networks (RNNs) to train adaptive agents within a simulated farming environment. A Probabilistic Deep Learning (PDL) model was developed to estimate N2O emissions, achieving a high Prediction Interval Coverage Probability (PICP) of 0.937 within a 95% confidence interval on the available dataset. While the PDL model’s generalizability is currently constrained by the limited observational data, the RL framework itself is designed for broad applicability, capable of extending to diverse agricultural practices and environmental conditions. Results demonstrate that RL agents reduce N2O emissions without compromising yields, even under climatic variability. The framework’s flexibility allows for future integration of expanded datasets or alternative emission models, ensuring scalability as more field data becomes available. This work highlights the potential of artificial intelligence to advance climate-smart agriculture by simultaneously addressing productivity and sustainability goals in dynamic real-world settings. Full article
(This article belongs to the Special Issue Implementation of Artificial Intelligence in Agriculture)
Show Figures

Figure 1

24 pages, 17213 KiB  
Review
Empowering Smart Soybean Farming with Deep Learning: Progress, Challenges, and Future Perspectives
by Huihui Sun, Hao-Qi Chu, Yi-Ming Qin, Pingfan Hu and Rui-Feng Wang
Agronomy 2025, 15(8), 1831; https://doi.org/10.3390/agronomy15081831 - 28 Jul 2025
Viewed by 541
Abstract
This review comprehensively examines the application of deep learning technologies across the entire soybean production chain, encompassing areas such as disease and pest identification, weed detection, crop phenotype recognition, yield prediction, and intelligent operations. By systematically analyzing mainstream deep learning models, optimization strategies [...] Read more.
This review comprehensively examines the application of deep learning technologies across the entire soybean production chain, encompassing areas such as disease and pest identification, weed detection, crop phenotype recognition, yield prediction, and intelligent operations. By systematically analyzing mainstream deep learning models, optimization strategies (e.g., model lightweighting, transfer learning), and sensor data fusion techniques, the review identifies their roles and performances in complex agricultural environments. It also highlights key challenges including data quality limitations, difficulties in real-world deployment, and the lack of standardized evaluation benchmarks. In response, promising directions such as reinforcement learning, self-supervised learning, interpretable AI, and multi-source data fusion are proposed. Specifically for soybean automation, future advancements are expected in areas such as high-precision disease and weed localization, real-time decision-making for variable-rate spraying and harvesting, and the integration of deep learning with robotics and edge computing to enable autonomous field operations. This review provides valuable insights and future prospects for promoting intelligent, efficient, and sustainable development in soybean production through deep learning. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

17 pages, 4139 KiB  
Article
Design and Development of an Intelligent Chlorophyll Content Detection System for Cotton Leaves
by Wu Wei, Lixin Zhang, Xue Hu and Siyao Yu
Processes 2025, 13(8), 2329; https://doi.org/10.3390/pr13082329 - 22 Jul 2025
Viewed by 253
Abstract
In order to meet the needs for the rapid detection of crop growth and support variable management in farmland, an intelligent chlorophyll content in cotton leaves (CCC) detection system based on hyperspectral imaging (HSI) technology was designed and developed. The system includes a [...] Read more.
In order to meet the needs for the rapid detection of crop growth and support variable management in farmland, an intelligent chlorophyll content in cotton leaves (CCC) detection system based on hyperspectral imaging (HSI) technology was designed and developed. The system includes a near-infrared (NIR) hyperspectral image acquisition module, a spectral extraction module, a main control processor module, a model acceleration module, a display module, and a power module, which are used to achieve rapid and non-destructive detection of chlorophyll content. Firstly, spectral images of cotton canopy leaves during the seedling, budding, and flowering-boll stages were collected, and the dataset was optimized using the first-order differential algorithm (1D) and Savitzky–Golay five-term quadratic smoothing (SG) algorithm. The results showed that SG had better processing performance. Secondly, the sparrow search algorithm optimized backpropagation neural network (SSA-BPNN) and one-dimensional convolutional neural network (1DCNN) algorithms were selected to establish a chlorophyll content detection model. The results showed that the determination coefficients Rp2 of the chlorophyll SG-1DCNN detection model during the seedling, budding, and flowering-boll stages were 0.92, 0.97, and 0.95, respectively, and the model performance was superior to SG-SSA-BPNN. Therefore, the SG-1DCNN model was embedded into the detection system. Finally, a CCC intelligent detection system was developed using Python 3.12.3, MATLAB 2020b, and ENVI, and the system was subjected to application testing. The results showed that the average detection accuracy of the CCC intelligent detection system in the three stages was 98.522%, 99.132%, and 97.449%, respectively. Meanwhile, the average detection time for the samples is only 20.12 s. The research results can effectively solve the problem of detecting the nutritional status of cotton in the field environment, meet the real-time detection needs of the field environment, and provide solutions and technical support for the intelligent perception of crop production. Full article
(This article belongs to the Special Issue Design and Control of Complex and Intelligent Systems)
Show Figures

Figure 1

17 pages, 1927 KiB  
Article
ConvTransNet-S: A CNN-Transformer Hybrid Disease Recognition Model for Complex Field Environments
by Shangyun Jia, Guanping Wang, Hongling Li, Yan Liu, Linrong Shi and Sen Yang
Plants 2025, 14(15), 2252; https://doi.org/10.3390/plants14152252 - 22 Jul 2025
Viewed by 431
Abstract
To address the challenges of low recognition accuracy and substantial model complexity in crop disease identification models operating in complex field environments, this study proposed a novel hybrid model named ConvTransNet-S, which integrates Convolutional Neural Networks (CNNs) and transformers for crop disease identification [...] Read more.
To address the challenges of low recognition accuracy and substantial model complexity in crop disease identification models operating in complex field environments, this study proposed a novel hybrid model named ConvTransNet-S, which integrates Convolutional Neural Networks (CNNs) and transformers for crop disease identification tasks. Unlike existing hybrid approaches, ConvTransNet-S uniquely introduces three key innovations: First, a Local Perception Unit (LPU) and Lightweight Multi-Head Self-Attention (LMHSA) modules were introduced to synergistically enhance the extraction of fine-grained plant disease details and model global dependency relationships, respectively. Second, an Inverted Residual Feed-Forward Network (IRFFN) was employed to optimize the feature propagation path, thereby enhancing the model’s robustness against interferences such as lighting variations and leaf occlusions. This novel combination of a LPU, LMHSA, and an IRFFN achieves a dynamic equilibrium between local texture perception and global context modeling—effectively resolving the trade-offs inherent in standalone CNNs or transformers. Finally, through a phased architecture design, efficient fusion of multi-scale disease features is achieved, which enhances feature discriminability while reducing model complexity. The experimental results indicated that ConvTransNet-S achieved a recognition accuracy of 98.85% on the PlantVillage public dataset. This model operates with only 25.14 million parameters, a computational load of 3.762 GFLOPs, and an inference time of 7.56 ms. Testing on a self-built in-field complex scene dataset comprising 10,441 images revealed that ConvTransNet-S achieved an accuracy of 88.53%, which represents improvements of 14.22%, 2.75%, and 0.34% over EfficientNetV2, Vision Transformer, and Swin Transformer, respectively. Furthermore, the ConvTransNet-S model achieved up to 14.22% higher disease recognition accuracy under complex background conditions while reducing the parameter count by 46.8%. This confirms that its unique multi-scale feature mechanism can effectively distinguish disease from background features, providing a novel technical approach for disease diagnosis in complex agricultural scenarios and demonstrating significant application value for intelligent agricultural management. Full article
(This article belongs to the Section Plant Modeling)
Show Figures

Figure 1

28 pages, 5813 KiB  
Article
YOLO-SW: A Real-Time Weed Detection Model for Soybean Fields Using Swin Transformer and RT-DETR
by Yizhou Shuai, Jingsha Shi, Yi Li, Shaohao Zhou, Lihua Zhang and Jiong Mu
Agronomy 2025, 15(7), 1712; https://doi.org/10.3390/agronomy15071712 - 16 Jul 2025
Cited by 1 | Viewed by 545
Abstract
Accurate weed detection in soybean fields is essential for enhancing crop yield and reducing herbicide usage. This study proposes a YOLO-SW model, an improved version of YOLOv8, to address the challenges of detecting weeds that are highly similar to the background in natural [...] Read more.
Accurate weed detection in soybean fields is essential for enhancing crop yield and reducing herbicide usage. This study proposes a YOLO-SW model, an improved version of YOLOv8, to address the challenges of detecting weeds that are highly similar to the background in natural environments. The research stands out for its novel integration of three key advancements: the Swin Transformer backbone, which leverages local window self-attention to achieve linear O(N) computational complexity for efficient global context capture; the CARAFE dynamic upsampling operator, which enhances small target localization through context-aware kernel generation; and the RTDETR encoder, which enables end-to-end detection via IoU-aware query selection, eliminating the need for complex post-processing. Additionally, a dataset of six common soybean weeds was expanded to 12,500 images through simulated fog, rain, and snow augmentation, effectively resolving data imbalance and boosting model robustness. The experimental results highlight both the technical superiority and practical relevance: YOLO-SW achieves 92.3% mAP@50 (3.8% higher than YOLOv8), with recognition accuracy and recall improvements of 4.2% and 3.9% respectively. Critically, on the NVIDIA Jetson AGX Orin platform, it delivers a real-time inference speed of 59 FPS, making it suitable for seamless deployment on intelligent weeding robots. This low-power, high-precision solution not only bridges the gap between deep learning and precision agriculture but also enables targeted herbicide application, directly contributing to sustainable farming practices and environmental protection. Full article
Show Figures

Figure 1

19 pages, 4132 KiB  
Article
Comparative Analysis of Deep Learning-Based Feature Extraction and Traditional Classification Approaches for Tomato Disease Detection
by Hakan Terzioğlu, Adem Gölcük, Adnan Mohammad Anwer Shakarji and Mateen Yilmaz Al-Bayati
Agronomy 2025, 15(7), 1509; https://doi.org/10.3390/agronomy15071509 - 21 Jun 2025
Viewed by 600
Abstract
In recent years, significant advancements in artificial intelligence, particularly in the field of deep learning, have increasingly been integrated into agricultural applications, including critical processes such as disease detection. Tomato, being one of the most widely consumed agricultural products globally and highly susceptible [...] Read more.
In recent years, significant advancements in artificial intelligence, particularly in the field of deep learning, have increasingly been integrated into agricultural applications, including critical processes such as disease detection. Tomato, being one of the most widely consumed agricultural products globally and highly susceptible to a variety of fungal, bacterial, and viral pathogens, remains a prominent focus in disease detection research. In this study, we propose a deep learning-based approach for the detection of tomato diseases, a critical challenge in agriculture due to the crop’s vulnerability to fungal, bacterial, and viral pathogens. We constructed an original dataset comprising 6414 images captured under real production conditions, categorized into three image types: leaves, green tomatoes, and red tomatoes. The dataset includes five classes: healthy samples, late blight, early blight, gray mold, and bacterial cancer. Twenty-one deep learning models were evaluated, and the top five performers (EfficientNet-b0, NasNet-Large, ResNet-50, DenseNet-201, and Places365-GoogLeNet) were selected for feature extraction. From each model, 1000 deep features were extracted, and feature selection was conducted using MRMR, Chi-Square (Chi2), and ReliefF methods. The top 100 features from each selection technique were then used for reclassification with traditional machine learning classifiers under five-fold cross-validation. The highest test accuracy of 92.0% was achieved with EfficientNet-b0 features, Chi2 selection, and the Fine KNN classifier. EfficientNet-b0 consistently outperformed other models, while the combination of NasNet-Large and Wide Neural Network yielded the lowest performance. These results demonstrate the effectiveness of combining deep learning-based feature extraction with traditional classifiers and feature selection techniques for robust detection of tomato diseases in real-world agricultural environments. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

16 pages, 12771 KiB  
Article
Application of AI in Date Fruit Detection—Performance Analysis of YOLO and Faster R-CNN Models
by Seweryn Lipiński, Szymon Sadkowski and Paweł Chwietczuk
Computation 2025, 13(6), 149; https://doi.org/10.3390/computation13060149 - 13 Jun 2025
Cited by 1 | Viewed by 1078
Abstract
Presented study evaluates and compares two deep learning models, i.e., YOLOv8n and Faster R-CNN, for automated detection of date fruits in natural orchard environments. Both models were trained and tested using a publicly available annotated dataset. YOLO, a single-stage detector, achieved a mAP@0.5 [...] Read more.
Presented study evaluates and compares two deep learning models, i.e., YOLOv8n and Faster R-CNN, for automated detection of date fruits in natural orchard environments. Both models were trained and tested using a publicly available annotated dataset. YOLO, a single-stage detector, achieved a mAP@0.5 of 0.942 with a training time of approximately 2 h. It demonstrated strong generalization, especially in simpler conditions, and is well-suited for real-time applications due to its speed and lower computational requirements. Faster R-CNN, a two-stage detector using a ResNet-50 backbone, reached comparable accuracy (mAP@0.5 = 0.94) with slightly higher precision and recall. However, its training required significantly more time (approximately 19 h) and resources. Deep learning metrics analysis confirmed both models performed reliably, with YOLO favoring inference speed and Faster R-CNN offering improved robustness under occlusion and variable lighting. Practical recommendations are provided for model selection based on application needs—YOLO for mobile or field robotics and Faster R-CNN for high-accuracy offline tasks. Additional conclusions highlight the benefits of GPU acceleration and high-resolution inputs. The study contributes to the growing body of research on AI deployment in precision agriculture and provides insights into the development of intelligent harvesting and crop monitoring systems. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Graphical abstract

38 pages, 10101 KiB  
Article
Wheat Cultivation Suitability Evaluation with Stripe Rust Disease: An Agricultural Group Consensus Framework Based on Artificial-Intelligence-Generated Content and Optimization-Driven Overlapping Community Detection
by Tingyu Xu, Haowei Cui, Yunsheng Song, Chao Zhang, Turki Alghamdi and Majed Aborokbah
Plants 2025, 14(12), 1794; https://doi.org/10.3390/plants14121794 - 11 Jun 2025
Viewed by 765
Abstract
Plant modeling uses mathematical and computational methods to simulate plant structures, physiological processes, and interactions with various environments. In precision agriculture, it enables the digital monitoring and prediction of crop growth, supporting better management and efficient resource use. Wheat, as a major global [...] Read more.
Plant modeling uses mathematical and computational methods to simulate plant structures, physiological processes, and interactions with various environments. In precision agriculture, it enables the digital monitoring and prediction of crop growth, supporting better management and efficient resource use. Wheat, as a major global staple, is vital for food security. However, wheat stripe rust, a widespread and destructive disease, threatens yield stability. The paper proposes wheat cultivation suitability evaluation with stripe rust disease using an agriculture group consensus framework (WCSE-AGC) to tackle this issue. Assessing stripe rust severity in regions relies on wheat pathologists’ judgments based on multiple criteria, creating a multi-attribute, multi-decision-maker consensus problem. Limited regional coverage and inconsistent evaluations among wheat pathologists complicate consensus-reaching. To support wheat pathologist participation, this study employs artificial-intelligence-generated content (AIGC) techniques by using Claude 3.7 to simulate wheat pathologists’ scoring through role-playing and chain-of-thought prompting. WCSE-AGC comprises three main stages. First, a graph neural network (GNN) models trust propagation within wheat pathologists’ social networks, completing missing trust links and providing a solid foundation for weighting and clustering. This ensures reliable expert influence estimations. Second, integrating secretary bird optimization (SBO), K-means, and three-way clustering detects overlapping wheat pathologist subgroups, reducing opinion divergence and improving consensus inclusiveness and convergence. Third, a two-stage optimization balances group fairness and adjustment cost, enhancing consensus practicality and acceptance. The paper conducts experiments using publicly available real wheat stripe rust datasets from four different locations, Ethiopia, India, Turkey, and China, and validates the effectiveness and robustness of the framework through comparative and sensitivity analyses. Full article
(This article belongs to the Special Issue Advances in Artificial Intelligence for Plant Research)
Show Figures

Figure 1

23 pages, 2426 KiB  
Article
SUQ-3: A Three Stage Coarse-to-Fine Compression Framework for Sustainable Edge AI in Smart Farming
by Thavavel Vaiyapuri and Huda Aldosari
Sustainability 2025, 17(12), 5230; https://doi.org/10.3390/su17125230 - 6 Jun 2025
Viewed by 592
Abstract
Artificial intelligence of things (AIoT) has become a pivotal enabler of precision agriculture by supporting real-time, data-driven decision-making at the edge. Deep learning (DL) models are central to this paradigm, offering powerful capabilities for analyzing environmental and climatic data in a range of [...] Read more.
Artificial intelligence of things (AIoT) has become a pivotal enabler of precision agriculture by supporting real-time, data-driven decision-making at the edge. Deep learning (DL) models are central to this paradigm, offering powerful capabilities for analyzing environmental and climatic data in a range of agricultural applications. However, deploying these models on edge devices remains challenging due to constraints in memory, computation, and energy. Existing model compression techniques predominantly target large-scale 2D architectures, with limited attention to one-dimensional (1D) models such as gated recurrent units (GRUs), which are commonly employed for processing sequential sensor data. To address this gap, we propose a novel three-stage coarse-to-fine compression framework, termed SUQ-3 (Structured, Unstructured Pruning, and Quantization), designed to optimize 1D DL models for efficient edge deployment in AIoT applications. The SUQ-3 framework sequentially integrates (1) structured pruning with an M×N sparsity pattern to induce hardware-friendly, coarse-grained sparsity; (2) unstructured pruning to eliminate low-magnitude weights for fine-grained compression; and (3) quantization, applied post quantization-aware training (QAT), to support low-precision inference with minimal accuracy loss. We validate the proposed SUQ-3 by compressing a GRU-based crop recommendation model trained on environmental and climatic data from an agricultural dataset. Experimental results show a model size reduction of approximately 85% and an 80% improvement in inference latency while preserving high predictive accuracy (F1 score: 0.97 vs. baseline: 0.9837). Notably, when deployed on a mobile edge device using TensorFlow Lite, the SUQ-3 model achieved an estimated energy consumption of 1.18 μJ per inference, representing a 74.4% reduction compared with the baseline and demonstrating its potential for sustainable low-power AI deployment in agricultural environments. Although demonstrated in an agricultural AIoT use case, the generality and modularity of SUQ-3 make it applicable to a broad range of DL models across domains requiring efficient edge intelligence. Full article
(This article belongs to the Collection Sustainability in Agricultural Systems and Ecosystem Services)
Show Figures

Figure 1

17 pages, 563 KiB  
Review
Harnessing Artificial Intelligence and Machine Learning for Identifying Quantitative Trait Loci (QTL) Associated with Seed Quality Traits in Crops
by My Abdelmajid Kassem
Plants 2025, 14(11), 1727; https://doi.org/10.3390/plants14111727 - 5 Jun 2025
Viewed by 951
Abstract
Seed quality traits, such as seed size, oil and protein content, mineral accumulation, and morphological characteristics, are crucial for enhancing crop productivity, nutritional value, and marketability. Traditional quantitative trait loci (QTL) mapping methods, such as linkage analysis and genome-wide association studies (GWAS), have [...] Read more.
Seed quality traits, such as seed size, oil and protein content, mineral accumulation, and morphological characteristics, are crucial for enhancing crop productivity, nutritional value, and marketability. Traditional quantitative trait loci (QTL) mapping methods, such as linkage analysis and genome-wide association studies (GWAS), have played fundamental role in identifying loci associated with these complex traits. However, these approaches often struggle with high-dimensional genomic data, polygenic inheritance, and genotype-by-environment (GXE) interactions. Recent advances in artificial intelligence (AI) and machine learning (ML) provide powerful alternatives that enable more accurate trait prediction, robust marker-trait associations, and efficient feature selection. This review presents an integrated overview of AI/ML applications in QTL mapping and seed trait prediction, highlighting key methodologies such as LASSO regression, Random Forest, Gradient Boosting, ElasticNet, and deep learning techniques including convolutional neural networks (CNNs) and graph neural networks (GNNs). A case study on soybean seed mineral nutrients accumulation illustrates the effectiveness of ML models in identifying significant SNPs on chromosomes 8, 9, and 14. LASSO and ElasticNet consistently achieved superior predictive accuracy compared to tree-based models. Beyond soybean, AI/ML methods have enhanced QTL detection in wheat, lettuce, rice, and cotton, supporting trait dissection across diverse crop species. I also explored AI-driven integration of multi-omics data—genomics, transcriptomics, metabolomics, and phenomics—to improve resolution in QTL mapping. While challenges remain in terms of model interpretability, biological validation, and computational scalability, ongoing developments in explainable AI, multi-view learning, and high-throughput phenotyping offer promising avenues. This review underscores the transformative potential of AI in accelerating genomic-assisted breeding and developing high-quality, climate-resilient crop varieties. Full article
(This article belongs to the Special Issue QTL Mapping of Seed Quality Traits in Crops, 2nd Edition)
Show Figures

Figure 1

25 pages, 1595 KiB  
Review
Research Status and Development Trends of Deep Reinforcement Learning in the Intelligent Transformation of Agricultural Machinery
by Jiamuyang Zhao, Shuxiang Fan, Baohua Zhang, Aichen Wang, Liyuan Zhang and Qingzhen Zhu
Agriculture 2025, 15(11), 1223; https://doi.org/10.3390/agriculture15111223 - 4 Jun 2025
Cited by 1 | Viewed by 1352
Abstract
With the acceleration of agricultural intelligent transformation, deep reinforcement learning (DRL), leveraging its adaptive perception and decision-making capabilities in complex environments, has emerged as a pivotal technology in advancing the intelligent upgrade of agricultural machinery and equipment. For example, in UAV path optimization, [...] Read more.
With the acceleration of agricultural intelligent transformation, deep reinforcement learning (DRL), leveraging its adaptive perception and decision-making capabilities in complex environments, has emerged as a pivotal technology in advancing the intelligent upgrade of agricultural machinery and equipment. For example, in UAV path optimization, DRL can help UAVs plan more efficient flight paths to cover more areas in less time. To enhance the systematicity and credibility of this review, this paper systematically examines the application status, key issues, and development trends of DRL in agricultural scenarios, based on the research literature from mainstream Chinese and English databases spanning from 2018 to 2024. From the perspective of algorithm–hardware synergy, the article provides an in-depth analysis of DRL’s specific applications in agricultural ground platform navigation, path planning for intelligent agricultural end-effectors, and autonomous operations of low-altitude unmanned aerial vehicles. It highlights the technical advantages of DRL by integrating typical experimental outcomes, such as improved path-tracking accuracy and optimized spraying coverage. Meanwhile, this paper identifies three major challenges facing DRL in agricultural contexts: the difficulty of dynamic path planning in unstructured environments, constraints imposed by edge computing resources on algorithmic real-time performance, and risks to policy reliability and safety under human–machine collaboration conditions. Looking forward, the DRL-driven smart transformation of agricultural machinery will focus on three key aspects: (1) The first aspect is developing a hybrid decision-making architecture based on model predictive control (MPC). This aims to enhance the strategic stability and decision-making interpretability of agricultural machinery (like unmanned tractors, harvesters, and drones) in complex and dynamic field environments. This is essential for ensuring the safe and reliable autonomous operation of machinery. (2) The second aspect is designing lightweight models that support edge-cloud collaborative deployment. This can meet the requirements of low-latency responses and low-power operation in edge computing scenarios during field operations, providing computational power for the real-time intelligent decision-making of machinery. (3) The third aspect is integrating meta-learning with self-supervised mechanisms. This helps improve the algorithm’s fast generalization ability across different crop types, climates, and geographical regions, ensuring the smart agricultural machinery system has broad adaptability and robustness and accelerating its application in various agricultural settings. This paper proposes research directions from three key dimensions-“algorithm capability enhancement, deployment architecture optimization, and generalization ability improvement”-offering theoretical references and practical pathways for the continuous evolution of intelligent agricultural equipment. Full article
Show Figures

Figure 1

21 pages, 5936 KiB  
Article
Research on Intelligent Control Technology for a Rail-Based High-Throughput Crop Phenotypic Platform Based on Digital Twins
by Haishen Liu, Weiliang Wen, Wenbo Gou, Xianju Lu, Hanyu Ma, Lin Zhu, Minggang Zhang, Sheng Wu and Xinyu Guo
Agriculture 2025, 15(11), 1217; https://doi.org/10.3390/agriculture15111217 - 2 Jun 2025
Viewed by 667
Abstract
Rail-based crop phenotypic platforms operating in open-field environments face challenges such as environmental variability and unstable data quality, highlighting the urgent need for intelligent, online data acquisition strategies. This study proposes a digital twin-based data acquisition strategy tailored to such platforms. A closed-loop [...] Read more.
Rail-based crop phenotypic platforms operating in open-field environments face challenges such as environmental variability and unstable data quality, highlighting the urgent need for intelligent, online data acquisition strategies. This study proposes a digital twin-based data acquisition strategy tailored to such platforms. A closed-loop architecture “comprising connection, computation, prediction, decision-making, and execution“ was developed to build DT-FieldPheno, a digital twin system that enables real-time synchronization between physical equipment and its virtual counterpart, along with dynamic device monitoring. Weather condition standards were defined based on multi-source sensor requirements, and a dual-layer weather risk assessment model was constructed using the analytic hierarchy process (AHP) and fuzzy comprehensive evaluation by integrating weather forecasts and real-time meteorological data to guide adaptive data acquisition scheduling. Field deployment over 27 consecutive days in a maize field demonstrated that DT-FieldPheno reduced the manual inspection workload by 50%. The system successfully identified and canceled two high-risk tasks under wind-speed threshold exceedance and optimized two others affected by gusts and rainfall, thereby avoiding ineffective operations. It also achieved sub-second responses to trajectory deviation and communication anomalies. The synchronized digital twin interface supported remote, real-time visual supervision. DT-FieldPheno provides a technological paradigm for advancing crop phenotypic platforms toward intelligent regulation, remote management, and multi-system integration. Future work will focus on expanding multi-domain sensing capabilities, enhancing model adaptability, and evaluating system energy consumption and computational overhead to support scalable field deployment. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

26 pages, 2959 KiB  
Review
Intelligent Recognition and Automated Production of Chili Peppers: A Review Addressing Varietal Diversity and Technological Requirements
by Sheng Tai, Zhong Tang, Bin Li, Shiguo Wang and Xiaohu Guo
Agriculture 2025, 15(11), 1200; https://doi.org/10.3390/agriculture15111200 - 31 May 2025
Cited by 3 | Viewed by 995
Abstract
Chili pepper (Capsicum annuum L.), a globally important economic crop, faces production challenges characterized by high labor intensity, cost, and inefficiency. Intelligent technologies offer key opportunities for sector transformation. This review begins by outlining the diversity of major chili pepper cultivars, differences [...] Read more.
Chili pepper (Capsicum annuum L.), a globally important economic crop, faces production challenges characterized by high labor intensity, cost, and inefficiency. Intelligent technologies offer key opportunities for sector transformation. This review begins by outlining the diversity of major chili pepper cultivars, differences in key quality indicators, and the resulting specific harvesting needs. It then reviews recent progress in intelligent perception, recognition, and automation within the chili pepper industry. For perception and recognition, the review covers the evolution from traditional image processing to deep learning-based methods (e.g., YOLO and Mask R-CNN achieving a mAP > 90% in specific studies) for pepper detection, segmentation, and fine-grained cultivar identification, analyzing the performance and optimization in complex environments. In terms of automation, we systematically discuss the principles and feasibility of different mechanized harvesting machines, consider the potential of vision-based keypoint detection for the point localization of picking, and explore motion planning and control for harvesting robots (e.g., robotic systems incorporating diverse end-effectors like soft grippers or cutting mechanisms and motion planning algorithms such as RRT) as well as seed cleaning/separation techniques and simulations (e.g., CFD and DEM) for equipment optimization. The main current research challenges are listed including the environmental adaptability/robustness, efficiency/real-time performance, multi-cultivar adaptability/flexibility, system integration, and cost-effectiveness. Finally, future directions are given (e.g., multimodal sensor fusion, lightweight models, and edge computing applications) in the hope of guiding the intelligent growth of the chili pepper industry. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

5 pages, 145 KiB  
Editorial
Advances in Developments and Trends of UAV Technology in the Context of Precision Agriculture
by Mingxia Li and Jiyu Li
Agriculture 2025, 15(11), 1146; https://doi.org/10.3390/agriculture15111146 - 27 May 2025
Viewed by 545
Abstract
Agriculture, as a core pathway for advancing modern agricultural development, emphasizes data-driven perception and intelligent decision-making. Unmanned aerial vehicles (UAVs), with advantages such as high-resolution imaging, flexible deployment, and adaptability to diverse terrains, have become an essential tool in this domain. This Editorial [...] Read more.
Agriculture, as a core pathway for advancing modern agricultural development, emphasizes data-driven perception and intelligent decision-making. Unmanned aerial vehicles (UAVs), with advantages such as high-resolution imaging, flexible deployment, and adaptability to diverse terrains, have become an essential tool in this domain. This Editorial synthesizes the key findings from nine representative studies featured in this Special Issue, focusing on recent advancements in UAV-based remote sensing, flight control, and precision spraying. The results indicate that the integration of multispectral imagery with deep learning models significantly enhances crop identification and parameter inversion accuracy. Flight control performance has been greatly improved through innovations such as free-tail configuration optimization and fuzzy sliding mode composite control, ensuring stable operations in complex environments. In the realm of precision spraying, progress in wind vortex regulation and airflow modeling has led to improved droplet deposition consistency and target accuracy. Overall, UAV technologies demonstrate strong potential for cross-disciplinary integration and scalable application, offering robust support for the intelligent transformation of agricultural production. Full article
(This article belongs to the Special Issue Application of UAVs in Precision Agriculture—2nd Edition)
26 pages, 9408 KiB  
Article
DMN-YOLO: A Robust YOLOv11 Model for Detecting Apple Leaf Diseases in Complex Field Conditions
by Lijun Gao, Hongwu Cao, Hua Zou and Huanhuan Wu
Agriculture 2025, 15(11), 1138; https://doi.org/10.3390/agriculture15111138 - 25 May 2025
Cited by 2 | Viewed by 1152
Abstract
Accurately identifying apple leaf diseases in complex field environments is a critical concern for intelligent agriculture, as early detection directly affects crop health and yield outcomes. However, accurate feature recognition remains a significant challenge due to the complexity of disease symptoms, background interference, [...] Read more.
Accurately identifying apple leaf diseases in complex field environments is a critical concern for intelligent agriculture, as early detection directly affects crop health and yield outcomes. However, accurate feature recognition remains a significant challenge due to the complexity of disease symptoms, background interference, and variations in lesion color and size. In this study, we propose an enhanced detection framework named DMN-YOLO. Specifically, the model integrates a multi-branch auxiliary feature pyramid network (MAFPN), along with Superficial Assisted Fusion (SAF) and Advanced Auxiliary Fusion (AAF) modules, to strengthen feature interaction, retain shallow-layer information, and improve high-level gradient transmission, thereby enhancing multi-scale lesion detection performance. Furthermore, the RepHDWConv module is incorporated into the neck network to increase the model’s representational capacity. To address difficulties in detecting small and overlapping lesions, a lightweight RT-DETR decoder and a dedicated detection layer (P2) are introduced. These enhancements effectively reduce both missed and false detections. Additionally, a normalized Wasserstein distance (NWD) loss function is introduced to mitigate localization errors, particularly for small or overlapping lesions. Experimental results demonstrate that DMN-YOLO achieves a 5.5% gain in precision, a 3.4% increase in recall, and a 5.0% improvement in mAP@50 compared to the baseline, showing consistent superiority across multiple performance metrics. This method offers a promising solution for robust disease monitoring in smart orchard applications. Full article
Show Figures

Figure 1

Back to TopTop