Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (445)

Search Parameters:
Keywords = integro-differential equations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 3060 KiB  
Article
Existence, Uniqueness, and Stability of Weighted Fuzzy Fractional Volterra–Fredholm Integro-Differential Equation
by Sahar Abbas, Abdul Ahad Abro, Syed Muhammad Daniyal, Hanaa A. Abdallah, Sadique Ahmad, Abdelhamied Ashraf Ateya and Noman Bin Zahid
Fractal Fract. 2025, 9(8), 540; https://doi.org/10.3390/fractalfract9080540 (registering DOI) - 16 Aug 2025
Abstract
This paper investigates a novel class of weighted fuzzy fractional Volterra–Fredholm integro-differential equations (FWFVFIDEs) subject to integral boundary conditions. The analysis is conducted within the framework of Caputo-weighted fractional calculus. Employing Banach’s and Krasnoselskii’s fixed-point theorems, we establish the existence and uniqueness of [...] Read more.
This paper investigates a novel class of weighted fuzzy fractional Volterra–Fredholm integro-differential equations (FWFVFIDEs) subject to integral boundary conditions. The analysis is conducted within the framework of Caputo-weighted fractional calculus. Employing Banach’s and Krasnoselskii’s fixed-point theorems, we establish the existence and uniqueness of solutions. Stability is analyzed in the Ulam–Hyers (UHS), generalized Ulam–Hyers (GUHS), and Ulam–Hyers–Rassias (UHRS) senses. A modified Adomian decomposition method (MADM) is introduced to derive explicit solutions without linearization, preserving the problem’s original structure. The first numerical example validates the theoretical findings on existence, uniqueness, and stability, supplemented by graphical results obtained via the MADM. Further examples illustrate fuzzy solutions by varying the uncertainty level (r), the variable (x), and both parameters simultaneously. The numerical results align with the theoretical analysis, demonstrating the efficacy and applicability of the proposed method. Full article
12 pages, 268 KiB  
Article
Analysis of Delay-Type Integro-Differential Systems Described by the Φ-Hilfer Fractional Derivative
by Ravichandran Vivek, Waleed Mohammed Abdelfattah and Elsayed Mohamed Elsayed
Axioms 2025, 14(8), 629; https://doi.org/10.3390/axioms14080629 - 11 Aug 2025
Viewed by 187
Abstract
In this article, a novel type of equation, namely the Φ-Hilfer fractional-order integro-differential delay system (Φ-HFOIDDS), is proposed. Here, we study the existence and Hyers–Ulam–Mittag–Leffler (H-U-M-L) stability of the aforementioned equation which are obtained by using the multivariate Mittag–Leffler function, [...] Read more.
In this article, a novel type of equation, namely the Φ-Hilfer fractional-order integro-differential delay system (Φ-HFOIDDS), is proposed. Here, we study the existence and Hyers–Ulam–Mittag–Leffler (H-U-M-L) stability of the aforementioned equation which are obtained by using the multivariate Mittag–Leffler function, Banach contraction principle, and Picard operator method as well as generalized Gronwall inequality. Finally, we conclude this paper by constructing a suitable example to illustrate the applicability of the principal outcomes. Full article
19 pages, 474 KiB  
Article
Differential and Integral Equations Involving Multivariate Special Polynomials with Applications in Computer Modeling
by Mohra Zayed, Taghreed Alqurashi, Shahid Ahmad Wani, Dixon Salcedo and Mohammad Esmael Samei
Fractal Fract. 2025, 9(8), 512; https://doi.org/10.3390/fractalfract9080512 - 5 Aug 2025
Viewed by 210
Abstract
This work introduces a new family of multivariate hybrid special polynomials, motivated by their growing relevance in mathematical modeling, physics, and engineering. We explore their core properties, including recurrence relations and shift operators, within a unified structural framework. By employing the factorization method, [...] Read more.
This work introduces a new family of multivariate hybrid special polynomials, motivated by their growing relevance in mathematical modeling, physics, and engineering. We explore their core properties, including recurrence relations and shift operators, within a unified structural framework. By employing the factorization method, we derive various governing equations such as differential, partial differential, and integrodifferential equations. Additionally, we establish a related fractional Volterra integral equation, which broadens the theoretical foundation and potential applications of these polynomials. To support the theoretical development, we carry out computational simulations to approximate their roots and visualize the distribution of their zeros, offering practical insights into their analytical behavior. Full article
Show Figures

Figure 1

22 pages, 323 KiB  
Article
The First- and Second-Order Features Adjoint Sensitivity Analysis Methodologies for Fredholm-Type Neural Integro-Differential Equations: An Illustrative Application to a Heat Transfer Model—Part II
by Dan Gabriel Cacuci
Processes 2025, 13(7), 2265; https://doi.org/10.3390/pr13072265 - 16 Jul 2025
Cited by 1 | Viewed by 211
Abstract
This work illustrates the application of the “First-Order Features Adjoint Sensitivity Analysis Methodology for Neural Integro-Differential Equations of Fredholm-Type” (1st-FASAM-NIDE-F) and the “Second-Order Features Adjoint Sensitivity Analysis Methodology for Neural Integro-Differential Equations of Fredholm-Type” (2nd-FASAM-NIDE-F) to a paradigm heat transfer model. This physically [...] Read more.
This work illustrates the application of the “First-Order Features Adjoint Sensitivity Analysis Methodology for Neural Integro-Differential Equations of Fredholm-Type” (1st-FASAM-NIDE-F) and the “Second-Order Features Adjoint Sensitivity Analysis Methodology for Neural Integro-Differential Equations of Fredholm-Type” (2nd-FASAM-NIDE-F) to a paradigm heat transfer model. This physically based heat transfer model has been deliberately constructed so that it can be represented either by a neural integro-differential equation of a Fredholm type (NIDE-F) or by a conventional second-order “neural ordinary differential equation (NODE)” while admitting exact closed-form solutions/expressions for all quantities of interest, including state functions and first-order and second-order sensitivities. This heat transfer model enables a detailed comparison of the 1st- and 2nd-FASAM-NIDE-F versus the recently developed 1st- and 2nd-FASAM-NODE methodologies, highlighting the considerations underlying the optimal choice for cases where the neural net of interest is amenable to using either of these methodologies for its sensitivity analysis. It is shown that the 1st-FASAM-NIDE-F methodology enables the most efficient computation of exactly determined first-order sensitivities of the decoder response with respect to the optimized NIDE-F parameters, requiring a single “large-scale” computation for solving the 1st-Level Adjoint Sensitivity System (1st-LASS), regardless of the number of weights/parameters underlying the NIDE-F decoder, hidden layers, and encoder. The 2nd-FASAM-NIDE-F methodology enables the computation, with unparalleled efficiency, of the second-order sensitivities of decoder responses with respect to the optimized/trained weights. Full article
(This article belongs to the Section Energy Systems)
27 pages, 372 KiB  
Article
The First- and Second-Order Features Adjoint Sensitivity Analysis Methodologies for Fredholm-Type Neural Integro-Differential Equations: I. Mathematical Framework
by Dan Gabriel Cacuci
Processes 2025, 13(7), 2258; https://doi.org/10.3390/pr13072258 - 15 Jul 2025
Cited by 1 | Viewed by 215
Abstract
This work presents the “First-Order Features Adjoint Sensitivity Analysis Methodology for Neural Integro-Differential Equations of Fredholm-Type” (1st-FASAM-NIDE-F) and the “Second-Order Features Adjoint Sensitivity Analysis Methodology for Neural Integro-Differential Equations of Fredholm-Type” (2nd-FASAM-NIDE-F). It is shown that the 1st-FASAM-NIDE-F methodology enables the most efficient [...] Read more.
This work presents the “First-Order Features Adjoint Sensitivity Analysis Methodology for Neural Integro-Differential Equations of Fredholm-Type” (1st-FASAM-NIDE-F) and the “Second-Order Features Adjoint Sensitivity Analysis Methodology for Neural Integro-Differential Equations of Fredholm-Type” (2nd-FASAM-NIDE-F). It is shown that the 1st-FASAM-NIDE-F methodology enables the most efficient computation of exactly-determined first-order sensitivities of decoder response with respect to the optimized NIDE-F parameters, requiring a single “large-scale” computation for solving the 1st-Level Adjoint Sensitivity System (1st-LASS), regardless of the number of weights/parameters underlying the NIDE-F decoder, hidden layers, and encoder. The 2nd-FASAM-NIDE-F methodology enables the computation, with unparalleled efficiency, of the second-order sensitivities of decoder responses with respect to the optimized/trained weights, requiring only as many large-scale computations for solving the 2nd-Level Adjoint Sensitivity System (2nd-LASS) as there are non-zero feature functions of parameters. The application of both the 1st-FASAM-NIDE-F and the 2nd-FASAM-NIDE-F methodologies is illustrated in an accompanying work (Part II) by considering a paradigm heat transfer model. Full article
(This article belongs to the Section Energy Systems)
52 pages, 476 KiB  
Article
The First- and Second-Order Features Adjoint Sensitivity Analysis Methodologies for Neural Integro-Differential Equations of Volterra Type: Mathematical Framework and Illustrative Application to a Nonlinear Heat Conduction Model
by Dan Gabriel Cacuci
J. Nucl. Eng. 2025, 6(3), 24; https://doi.org/10.3390/jne6030024 - 4 Jul 2025
Viewed by 231
Abstract
This work presents the mathematical frameworks of the “First-Order Features Adjoint Sensitivity Analysis Methodology for Neural Integro-Differential Equations of Volterra-Type” (1st-FASAM-NIDE-V) and the “Second-Order Features Adjoint Sensitivity Analysis Methodology for Neural Integro-Differential Equations of Volterra-Type” (2nd-FASAM-NIDE-V). It is shown that the 1st-FASAM-NIDE-V methodology [...] Read more.
This work presents the mathematical frameworks of the “First-Order Features Adjoint Sensitivity Analysis Methodology for Neural Integro-Differential Equations of Volterra-Type” (1st-FASAM-NIDE-V) and the “Second-Order Features Adjoint Sensitivity Analysis Methodology for Neural Integro-Differential Equations of Volterra-Type” (2nd-FASAM-NIDE-V). It is shown that the 1st-FASAM-NIDE-V methodology enables the efficient computation of exactly-determined first-order sensitivities of the decoder response with respect to the optimized NIDE-V parameters, requiring a single “large-scale” computation for solving the 1st-Level Adjoint Sensitivity System (1st-LASS), regardless of the number of weights/parameters underlying the NIE-net. The 2nd-FASAM-NIDE-V methodology enables the computation, with unparalleled efficiency, of the second-order sensitivities of decoder responses with respect to the optimized/trained weights involved in the NIDE-V’s decoder, hidden layers, and encoder, requiring only as many “large-scale” computations as there are non-zero first-order sensitivities with respect to the feature functions. These characteristics of the 1st-FASAM-NIDE-V and 2nd-FASAM-NIDE-V are illustrated by considering a nonlinear heat conduction model that admits analytical solutions, enabling the exact verification of the expressions obtained for the first- and second-order sensitivities of NIDE-V decoder responses with respect to the model’s functions of parameters (weights) that characterize the heat conduction model. Full article
18 pages, 319 KiB  
Article
On the Existence of Solutions and Ulam-Type Stability for a Nonlinear ψ-Hilfer Fractional-Order Delay Integro-Differential Equation
by Cemil Tunç, Fehaid Salem Alshammari and Fahir Talay Akyıldız
Fractal Fract. 2025, 9(7), 409; https://doi.org/10.3390/fractalfract9070409 - 24 Jun 2025
Cited by 1 | Viewed by 486
Abstract
In this work, we address a nonlinear ψ-Hilfer fractional-order Volterra integro-differential equation that incorporates n-multiple-variable time delays. Employing the ψ-Hilfer fractional derivative operator, we investigate the existence of a unique solution, as well as the Ulam–Hyers–Rassias stability, semi-Ulam–Hyers–Rassias stability, and [...] Read more.
In this work, we address a nonlinear ψ-Hilfer fractional-order Volterra integro-differential equation that incorporates n-multiple-variable time delays. Employing the ψ-Hilfer fractional derivative operator, we investigate the existence of a unique solution, as well as the Ulam–Hyers–Rassias stability, semi-Ulam–Hyers–Rassias stability, and Ulam–Hyers stability of the proposed ψ-Hilfer fractional-order Volterra integro-differential equation through the fixed-point approach. In this study, we enhance and generalize existing results in the literature on ψ-Hilfer fractional-order Volterra integro-differential equations, both including and excluding single delay, by establishing new findings for nonlinear ψ-Hilfer fractional-order Volterra integro-differential equations involving n-multiple-variable time delays. This study provides novel theoretical insights that deepen the qualitative understanding of fractional calculus. Full article
22 pages, 303 KiB  
Article
Remarks on a New Variable-Coefficient Integro-Differential Equation via Inverse Operators
by Chenkuan Li, Nate Fingas and Ying Ying Ou
Fractal Fract. 2025, 9(7), 404; https://doi.org/10.3390/fractalfract9070404 - 23 Jun 2025
Viewed by 1147
Abstract
In this paper, we investigate functional inverse operators associated with a class of fractional integro-differential equations. We further explore the existence, uniqueness, and stability of solutions to a new integro-differential equation featuring variable coefficients and a functional boundary condition. To demonstrate the applicability [...] Read more.
In this paper, we investigate functional inverse operators associated with a class of fractional integro-differential equations. We further explore the existence, uniqueness, and stability of solutions to a new integro-differential equation featuring variable coefficients and a functional boundary condition. To demonstrate the applicability of our main theorems, we provide several examples in which we compute values of the two-parameter Mittag–Leffler functions. The proposed approach is particularly effective for addressing a wide range of integral and fractional nonlinear differential equations with initial or boundary conditions—especially those involving variable coefficients, which are typically challenging to treat using classical integral transform methods. Finally, we demonstrate a significant application of the inverse operator approach by solving a Caputo fractional convection partial differential equation in Rn with an initial condition. Full article
25 pages, 5123 KiB  
Article
Analytical and Numerical Treatment of Evolutionary Time-Fractional Partial Integro-Differential Equations with Singular Memory Kernels
by Kamel Al-Khaled, Isam Al-Darabsah, Amer Darweesh and Amro Alshare
Fractal Fract. 2025, 9(6), 392; https://doi.org/10.3390/fractalfract9060392 - 19 Jun 2025
Viewed by 484
Abstract
Evolution equations with fractional-time derivatives and singular memory kernels are used for modeling phenomena exhibiting hereditary properties, as they effectively incorporate memory effects into their formulation. Time-fractional partial integro-differential equations (FPIDEs) represent a significant class of such evolution equations and are widely used [...] Read more.
Evolution equations with fractional-time derivatives and singular memory kernels are used for modeling phenomena exhibiting hereditary properties, as they effectively incorporate memory effects into their formulation. Time-fractional partial integro-differential equations (FPIDEs) represent a significant class of such evolution equations and are widely used in diverse scientific and engineering fields. In this study, we use the sinc-collocation and iterative Laplace transform methods to solve a specific FPIDE with a weakly singular kernel. Specifically, the sinc-collocation method is applied to discretize the spatial domain, while a combination of numerical techniques is utilized for temporal discretization. Then, we prove the convergence analytically. To compare the two methods, we provide two examples. We notice that both the sinc-collocation and iterative Laplace transform methods provide good approximations. Moreover, we find that the accuracy of the methods is influenced by fractional order α(0,1) and the memory-kernel parameter β(0,1). We observe that the error decreases as β increases, where the kernel becomes milder, which extends the single-value study of β=1/2 in the literature. Full article
(This article belongs to the Special Issue Applications of Fractional Calculus in Modern Mathematical Modeling)
Show Figures

Figure 1

27 pages, 11022 KiB  
Article
Mathematical Modeling of Impurity Diffusion Processes in a Multiphase Randomly Inhomogeneous Body Using Feynman Diagrams
by Petro Pukach, Yurii Chernukha, Olha Chernukha, Yurii Bilushchak and Myroslava Vovk
Symmetry 2025, 17(6), 920; https://doi.org/10.3390/sym17060920 - 10 Jun 2025
Viewed by 329
Abstract
Modeling of impurity diffusion processes in a multiphase randomly inhomogeneous body is performed using the Feynman diagram technique. The impurity diffusion equations are formulated for each of the phases separately. Their random boundaries are subject to non-ideal contact conditions for concentration. The contact [...] Read more.
Modeling of impurity diffusion processes in a multiphase randomly inhomogeneous body is performed using the Feynman diagram technique. The impurity diffusion equations are formulated for each of the phases separately. Their random boundaries are subject to non-ideal contact conditions for concentration. The contact mass transfer problem is reduced to a partial differential equation describing diffusion in the body as a whole, which accounts for jump discontinuities in the searched function as well as in its derivative at the stochastic interfaces. The obtained problem is transformed into an integro-differential equation involving a random kernel, whose solution is constructed as a Neumann series. Averaging over the ensemble of phase configurations is performed. The Feynman diagram technique is developed to investigate the processes described by parabolic partial differential equations. The mass operator kernel is constructed as a sum of strongly connected diagrams. An integro-differential Dyson equation is obtained for the concentration field. In the Bourret approximation, the Dyson equation is specified for a multiphase randomly inhomogeneous medium with uniform phase distribution. The problem solution, obtained using Feynman diagrams, is compared with the solutions of diffusion problems for a homogeneous layer, one having the coefficients of the base phase and the other having the characteristics averaged over the body volume. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

12 pages, 270 KiB  
Article
Existence of Solution for a Singular Problem with a General Non-Local Integrated Differential Operator
by Abdeljabbar Ghanmi, Abdelhakim Sahbani and Khaled Kefi
Mathematics 2025, 13(11), 1870; https://doi.org/10.3390/math13111870 - 3 Jun 2025
Viewed by 327
Abstract
This work examines a singular elliptic problem with a fractional and a non-local integrodifferential operator. The question of whether solutions exist is transformed into the existence of critical points of the associated functional energy, to be more specific. The existence of a critical [...] Read more.
This work examines a singular elliptic problem with a fractional and a non-local integrodifferential operator. The question of whether solutions exist is transformed into the existence of critical points of the associated functional energy, to be more specific. The existence of a critical point is then demonstrated by combining the variational method with some monotonicity arguments. After this, due to the singular non-linearity, we manually demonstrate that this critical point is a weak solution for such a problem. Full article
(This article belongs to the Special Issue Advances in Nonlinear Elliptic and Parabolic Equations)
22 pages, 1130 KiB  
Article
Two-Mode Hereditary Model of Solar Dynamo
by Evgeny Kazakov, Gleb Vodinchar and Dmitrii Tverdyi
Mathematics 2025, 13(10), 1669; https://doi.org/10.3390/math13101669 - 20 May 2025
Viewed by 279
Abstract
The magnetic field of the Sun is formed by the mechanism of hydromagnetic dynamo. In this mechanism, the flow of the conducting medium (plasma) of the convective zone generates a magnetic field, and this field corrects the flow using the Lorentz force, creating [...] Read more.
The magnetic field of the Sun is formed by the mechanism of hydromagnetic dynamo. In this mechanism, the flow of the conducting medium (plasma) of the convective zone generates a magnetic field, and this field corrects the flow using the Lorentz force, creating feedback. An important role in dynamo is played by memory (hereditary), when a change in the current state of a physical system depends on its states in the past. Taking these effects into account may provide a more accurate description of the generation of the Sun’s magnetic field. This paper generalizes classical dynamo models by including hereditary feedback effects. The feedback parameters such as the presence or absence of delay, delay duration, and memory duration are additional degrees of freedom. This can provide more diverse dynamic modes compared to classical memoryless models. The proposed model is based on the kinematic dynamo problem, where the large-scale velocity field is predetermined. The field in the model is represented as a linear combination of two stationary predetermined modes with time-dependent amplitudes. For these amplitudes, equations are obtained based on the kinematic dynamo equations. The model includes two generators of a large-scale magnetic field. In the first, the field is generated due to large-scale flow of the medium. The second generator has a turbulent nature; in it, generation occurs due to the nonlinear interaction of small-scale pulsations of the magnetic field and velocity. Memory in the system under study is implemented in the form of feedback distributed over all past states of the system. The feedback is represented by an integral term of the type of convolution of a quadratic form of phase variables with a kernel of a fairly general form. The quadratic form models the influence of the Lorentz force. This integral term describes the turbulent generator quenching. Mathematically, this model is written with a system of integro-differential equations for amplitudes of modes. The model was applied to a real space object, namely, the solar dynamo. The model representation of the Sun’s velocity field was constructed based on helioseismological data. Free field decay modes were chosen as components of the magnetic field. The work considered cases when hereditary feedback with the system arose instantly or with a delay. The simulation results showed that the model under study reproduces dynamic modes characteristic of the solar dynamo, if there is a delay in the feedback. Full article
(This article belongs to the Special Issue Advances in Nonlinear Dynamical Systems of Mathematical Physics)
Show Figures

Figure 1

26 pages, 332 KiB  
Article
Uniqueness Methods and Stability Analysis for Coupled Fractional Integro-Differential Equations via Fixed Point Theorems on Product Space
by Nan Zhang, Emmanuel Addai and Hui Wang
Axioms 2025, 14(5), 377; https://doi.org/10.3390/axioms14050377 - 16 May 2025
Viewed by 327
Abstract
In this paper, we obtain unique solution and stability results for coupled fractional differential equations with p-Laplacian operator and Riemann–Stieltjes integral conditions that expand and improve the works of some of the literature. In order to obtain the existence and uniqueness of solutions [...] Read more.
In this paper, we obtain unique solution and stability results for coupled fractional differential equations with p-Laplacian operator and Riemann–Stieltjes integral conditions that expand and improve the works of some of the literature. In order to obtain the existence and uniqueness of solutions for coupled systems, several fixed point theorems for operators in ordered product spaces are given without requiring the existence conditions of upper–lower solutions or the compactness and continuity of operators. By applying the conclusions of the operator theorem studied, sufficient conditions for the unique solution of coupled fractional integro-differential equations and approximate iterative sequences for uniformly approximating unique solutions were obtained. In addition, the Hyers–Ulam stability of the coupled system is discussed. As applications, the corresponding results obtained are well demonstrated through some concrete examples. Full article
14 pages, 362 KiB  
Article
First-Hitting Problems for Jump-Diffusion Processes with State-Dependent Uniform Jumps
by Mario Lefebvre and Ibrahim Elmojtaba
Mathematics 2025, 13(10), 1629; https://doi.org/10.3390/math13101629 - 16 May 2025
Viewed by 376
Abstract
Let {X(t),t0} be a one-dimensional jump-diffusion process whose continuous part is either a Wiener, Ornstein–Uhlenbeck, or generalized Bessel process. The process starts at [...] Read more.
Let {X(t),t0} be a one-dimensional jump-diffusion process whose continuous part is either a Wiener, Ornstein–Uhlenbeck, or generalized Bessel process. The process starts at X(0)=x[d,d]. Let τ(x) be the first time that X(t)=0 or |X(t)|=d. The jumps follow a uniform distribution on the interval (2x,0) when x is positive and on the interval (0,2x) when x is negative. We are interested in the moment-generating function of τ(x), its mean, and the probability that X[τ(x)]=0. We must solve integro-differential equations, subject to the appropriate boundary conditions. Analytical and numerical results are presented. Full article
(This article belongs to the Section D1: Probability and Statistics)
Show Figures

Figure 1

21 pages, 5020 KiB  
Article
Influence of Heat Transfer on Stress Components in Metallic Plates Weakened by Multi-Curved Holes
by Faizah M. Alharbi and Nafeesa G. Alhendi
Axioms 2025, 14(5), 369; https://doi.org/10.3390/axioms14050369 - 14 May 2025
Viewed by 404
Abstract
This manuscript addresses an application study by employing a mathematical model of a thermoelastic plate weakened by multi-curved holes under the effect of stress forces in the presence of heat conduction. When the initial heat flow is directed to the plate system, complex [...] Read more.
This manuscript addresses an application study by employing a mathematical model of a thermoelastic plate weakened by multi-curved holes under the effect of stress forces in the presence of heat conduction. When the initial heat flow is directed to the plate system, complex variable procedures are used to compute the basic Goursat functions, taking into account the time-dependent variables through conformal mapping, which transfers the domain to the exterior of a unit circle. The problem reduces to a general form of a contact problem in two dimensions, which is called an integrodifferential equation of the second type with the Cauchy kernel. Additionally, different hole shapes are generated using Maple 2023. Computational simulations are performed to determine the normal and shear stress components in the presence and absence of heat effects at various times. Furthermore, numerical calculations of Goursat functions are carried out and graphically displayed for some specific materials. This investigation provides valuable information about industries, such as those regarding ceramic tile, glass, rubber, paint, ceramic pigment, and metal alloys. Full article
(This article belongs to the Special Issue Mathematical Methods in the Applied Sciences, 2nd Edition)
Show Figures

Figure 1

Back to TopTop