The Qinba Mountains in China span six provinces, characterized by a large population, rugged terrain, steep peaks, deep valleys, and scarce flat land, making large-scale agricultural development challenging. Terraced fields serve as the core cropland type in this region, playing a vital role
[...] Read more.
The Qinba Mountains in China span six provinces, characterized by a large population, rugged terrain, steep peaks, deep valleys, and scarce flat land, making large-scale agricultural development challenging. Terraced fields serve as the core cropland type in this region, playing a vital role in preventing soil erosion on sloping farmland and expanding agricultural production space. They also function as a crucial medium for sustaining the ecosystem services of mountainous areas. As a transitional zone between China’s northern and southern climates and a vital ecological barrier, the Qinba Mountains’ terraced ecosystems have undergone significant spatial changes over the past two decades due to compound factors including the Grain-for-Green Program, urban expansion, and population outflow. However, current large-scale, long-term, high-resolution monitoring studies of terraced fields in this region still face technical bottlenecks. On one hand, traditional remote sensing interpretation methods rely on manually designed features, making them ill-suited for the complex scenarios of fragmented, multi-scale distribution, and terrain shadow interference in Qinba terraced fields. On the other hand, the lack of high-resolution historical imagery means that low-resolution data suffers from insufficient accuracy and spatial detail for capturing dynamic changes in terraced fields. This study aims to fill the technical gap in detailed dynamic monitoring of terraced fields in the Qinba Mountains. By creating image tiles from Landsat-8 satellite imagery collected between 2017 and 2020, it employs three deep learning semantic segmentation models—DeepLabV3 based on ResNet-34, U-Net, and PSPNet deep learning semantic segmentation models. Through optimization strategies such as data augmentation and transfer learning, the study achieves 15-m-resolution remote sensing interpretation of terraced field information in the Qinba Mountains from 2000 to 2020. Comparative results revealed DeepLabV3 demonstrated significant advantages in identifying terraced field types: Mean Pixel Accuracy (MPA) reached 79.42%, Intersection over Union (IoU) was 77.26%, F1 score attained 80.98, and Kappa coefficient reached 0.7148—all outperforming U-Net and PSPNet models. The model’s accuracy is not uniform but is instead highly contingent on the topographic context. The model excels in environments that are archetypal for mid-altitudes with moderately steep slopes. Based on it we create a set of tiles integrating multi-source data from RBG and DEM. The fusion model, which incorporates DEM-derived topographic data, demonstrates improvement across these aspects. Dynamic monitoring based on the optimal model indicates that terraced fields in the Qinba Mountains expanded between 2000 and 2020: the total area was 57.834 km
2 in 2000, and by 2020, this had increased to 63,742 km
2, representing an approximate growth rate of 8.36%. Sichuan, Gansu, and Shaanxi provinces contributed the majority of this expansion, accounting for 71% of the newly added terraced fields. Over the 20-year period, the center of gravity of terraced fields shifted upward. The area of terraced fields above 500 m in elevation increased, while that below 500 m decreased. Terraced fields surrounding urban areas declined, and mountainous slopes at higher elevations became the primary source of newly constructed terraces. This study not only establishes a technical paradigm for the refined monitoring of terraced field resources in mountainous regions but also provides critical data support and theoretical foundations for implementing sustainable land development in the Qinba Mountains. It holds significant practical value for advancing regional sustainable development.
Full article