Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (60)

Search Parameters:
Keywords = integrated plant nutrient supply

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 836 KiB  
Article
Effect of Farming System and Irrigation on Physicochemical and Biological Properties of Soil Under Spring Wheat Crops
by Elżbieta Harasim and Cezary A. Kwiatkowski
Sustainability 2025, 17(14), 6473; https://doi.org/10.3390/su17146473 - 15 Jul 2025
Viewed by 325
Abstract
A field experiment in growing spring wheat (Triticum aestivum L.—cv. ‘Monsun’) under organic, integrated and conventional farming systems was conducted over the period of 2020–2022 at the Czesławice Experimental Farm (Lubelskie Voivodeship, Poland). The first experimental factor analyzed was the farming system: [...] Read more.
A field experiment in growing spring wheat (Triticum aestivum L.—cv. ‘Monsun’) under organic, integrated and conventional farming systems was conducted over the period of 2020–2022 at the Czesławice Experimental Farm (Lubelskie Voivodeship, Poland). The first experimental factor analyzed was the farming system: A. organic system (control)—without the use of chemical plant protection products and NPK mineral fertilization; B. conventional system—the use of plant protection products and NPK fertilization in the range and doses recommended for spring wheat; C. integrated system—use of plant protection products and NPK fertilization in an “economical” way—doses reduced by 50%. The second experimental factor was irrigation strategy: 1. no irrigation—control; 2. double irrigation; 3. multiple irrigation The aim of the research was to determine the physical, chemical, and enzymatic properties of loess soil under spring wheat crops as influenced by the factors listed above. The highest organic C content of the soil (1.11%) was determined in the integrated system with multiple irrigation of spring wheat, whereas the lowest one (0.77%)—in the conventional system without irrigation. In the conventional system, the highest contents of total N (0.15%), P (131.4 mg kg−1), and K (269.6 mg kg−1) in the soil were determined under conditions of multiple irrigation. In turn, the organic system facilitated the highest contents of Mg, B, Cu, Mn, and Zn in the soil, especially upon multiple irrigation of crops. It also had the most beneficial effect on the evaluated physical parameters of the soil. In each farming system, the multiple irrigation of spring wheat significantly increased moisture content, density, and compaction of the soil and also improved its total sorption capacity (particularly in the integrated system). The highest count of beneficial fungi, the lowest population number of pathogenic fungi, and the highest count of actinobacteria were recorded in the soil from the organic system. Activity of soil enzymes was the highest in the integrated system, followed by the organic system—particularly upon multiple irrigation of crops. Summing up, the present study results demonstrate varied effects of the farming systems on the quality and health of loess soil. From a scientific point of view, the integrated farming system ensures the most stable and balanced physicochemical and biological parameters of the soil due to the sufficient amount of nutrients supplied to the soil and the minimized impact of chemical plant protection products on the soil. The multiple irrigation of crops resulting from indications of soil moisture sensors mounted on plots (indicating the real need for irrigation) contributed to the improvement of almost all analyzed soil quality indices. Multiple irrigation generated high costs, but in combination with fertilization and chemical crop protection (conventional and integrated system), it influenced the high productivity of spring wheat and compensated for the incurred costs (the greatest profit). Full article
(This article belongs to the Special Issue Soil Fertility and Plant Nutrition for Sustainable Cropping Systems)
Show Figures

Figure 1

35 pages, 17263 KiB  
Article
The Influence of Bacterial Inoculants and a Biofertilizer on Maize Cultivation and the Associated Shift in Bacteriobiota During the Growing Season
by Katarina Kruščić, Aleksandra Jelušić, Matjaž Hladnik, Tamara Janakiev, Jovana Anđelković, Dunja Bandelj and Ivica Dimkić
Plants 2025, 14(12), 1753; https://doi.org/10.3390/plants14121753 - 7 Jun 2025
Viewed by 915
Abstract
Maize (Zea mays L.) relies heavily on nitrogen and phosphorus inputs, typically supplied through organic and inorganic fertilizers. However, excessive agrochemical use threatens soil fertility and environmental health. Sustainable alternatives, such as poultry manure (PM) and plant growth-promoting rhizobacteria (PGPR), offer promising [...] Read more.
Maize (Zea mays L.) relies heavily on nitrogen and phosphorus inputs, typically supplied through organic and inorganic fertilizers. However, excessive agrochemical use threatens soil fertility and environmental health. Sustainable alternatives, such as poultry manure (PM) and plant growth-promoting rhizobacteria (PGPR), offer promising solutions. This study examines the effects of a phytobiotic bacterial formulation (PHY), composed of Bacillus subtilis and Microbacterium sp., applied alone and in combination with PM, on maize’s rhizosphere bacteriobiome across key growth stages. Field trials included four treatments: a control, PHY-coated seeds, PM, and combined PHY_PM. The results show that early in development, the PM-treated rhizospheres increased the abundance of beneficial genera such as Sphingomonas, Microvirga, and Streptomyces, though levels declined in later stages. The PHY_PM-treated roots in the seedling phase showed a reduced abundance of taxa like Chryseobacterium, Pedobacter, Phyllobacterium, Sphingobacterium, and Stenotrophomonas, but this effect did not persist. In the PM-treated roots, Flavisolibacter was significantly enriched at harvesting. Overall, beneficial bacteria improved microbial evenness, and the PHY_PM treatment promoted bacterial diversity and maize growth. A genome analysis of the PHY strains revealed plant-beneficial traits, including nutrient mobilization, stress resilience, and biocontrol potential. This study highlights the complementarity of PM and PGPR, showing how their integration reshapes bacteriobiome and correlates with plant parameters in sustainable agriculture. Full article
(This article belongs to the Special Issue Advances in Microbial Solutions for Sustainable Agriculture)
Show Figures

Figure 1

15 pages, 1866 KiB  
Article
Effects of Potassium Supply in Nutrient Solution on Water and Nutrient Absorption of Substrate-Grown Tomato Plants
by Jinxiu Song, Rong Zhang, Bingyan Fu, He Chen, Xiaoming Song, Gaoqiang Lv and Rongqiang Zhang
Horticulturae 2025, 11(6), 629; https://doi.org/10.3390/horticulturae11060629 - 4 Jun 2025
Viewed by 610
Abstract
Potassium (K+) functions as a critical “regulator” and “quality element” in plants, with its physiological roles varying across developmental stages. To clarify the effects of different K+ amounts in nutrient solution on water and nutrient absorption characteristics and potassium utilization [...] Read more.
Potassium (K+) functions as a critical “regulator” and “quality element” in plants, with its physiological roles varying across developmental stages. To clarify the effects of different K+ amounts in nutrient solution on water and nutrient absorption characteristics and potassium utilization efficiency in substrate-grown tomato, a controlled experiment was conducted in a climate-regulated solar greenhouse using “Saint Ness” tomato as the plant material. Four K+ supply levels (1, 4, 8, and 16 mmol/L, designated as K1, K4, K8, and K16 treatment, respectively) were tested to systematically evaluate the responses of tomato plants at different growth stages in terms of water and nutrient absorption capacity, potassium physiological efficiency (KPE), and potassium utilization efficiency (KUE). The results showed that water absorption capacity did not differ significantly among treatments during the vegetative growth stage. However, during the reproductive stage, the K8 treatment exhibited the highest water absorption capacity (47.05 kg/plant) and water absorption efficiency (84.6%). In addition, K8 significantly promoted the coordinated uptake of K+, nitrogen, phosphorus, calcium, and magnesium, with a total potassium absorption capacity of 7.2 g/plant and a potassium absorption efficiency of 79.1%. In contrast, excessive K+ supply (16 mmol/L) increased total potassium absorption capacity (5.09 g/plant) but led to a marked decline in physiological efficiency (by 27.9%) and water absorption efficiency (by 10.3%) due to luxury consumption and substrate-induced salt stress. Insufficient K+ levels (1–4 mmol/L) also restricted root-mediated water and nutrient flux. The study further revealed a dose-dependent and stage-specific pattern in water and potassium absorption. Therefore, an appropriate K+ supply of 8 mmol/L not only improved the plant’s absorption capacity for water and nutrients and potassium utilization efficiency but also maintained ionic balance among essential nutrients. These findings provide a theoretical basis for precision water and fertilizer integration strategies in substrate-cultivated tomato production under greenhouse conditions. Full article
(This article belongs to the Special Issue Soilless Culture in Vegetable Production)
Show Figures

Figure 1

18 pages, 1072 KiB  
Article
Advantages and Challenges of Using Phosphonate-Based Fungicides in Agriculture: Experimental Analysis and Model Development
by Anh Nguyen
Agronomy 2025, 15(6), 1360; https://doi.org/10.3390/agronomy15061360 - 31 May 2025
Viewed by 654
Abstract
Phosphonate-based fungicides are believed to control fungal diseases while also supplying nutrients to plants. However, opinions differ on whether they truly serve as nutrients for plants, and the residues of their transformation products have not yet been thoroughly evaluated or mathematically characterized. To [...] Read more.
Phosphonate-based fungicides are believed to control fungal diseases while also supplying nutrients to plants. However, opinions differ on whether they truly serve as nutrients for plants, and the residues of their transformation products have not yet been thoroughly evaluated or mathematically characterized. To address this gap, this study analyzed data from a two-factorial experiment investigating the effects of Agrifos 400 (potassium phosphonate) application. The experiment involved two soil types: red basalt soil and an organically enriched soil. Three-month-old pepper plants (Piper nigrum L.) were treated with Agrifos at application intervals of 10 and 20 days. The soils were inoculated with pathogenic Pythium spp., known to cause root rot diseases in plants. The soil chemical concentrations were analyzed every ten days, while plant growth parameters (height and leaf numbers) were recorded weekly. A mathematical model describing the fate of Agrifos transformation products was developed and parameterized using this experimental data. The results from the two-month experiment indicated that Agrifos did not enhance plant growth during this period. However, it led to a dramatic increase in soil phosphate (PO43−) levels, which could pose environmental risks. Despite this, the developed mathematical model demonstrated strong explanatory power, accurately capturing the observed data trends. Consequently, future research should consider integrating this model into broader biogeochemical cycle simulations, particularly those that incorporate chemical transport through soil water. Such integration would support more accurate predictions of the long-term environmental impacts of phosphonate-based products like Agrifos. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

27 pages, 4292 KiB  
Article
Alleviating Overgrazing Stress and Promoting Grassland Plant Regeneration via Root Exudate-Mediated Recruitment of Beneficial Bacteria
by Ting Yuan, Jiatao Zhang, Shaohong Zhang, Shuang Liang, Changhong Zhu, Weibo Ren and Jialu Liang
Microorganisms 2025, 13(6), 1225; https://doi.org/10.3390/microorganisms13061225 - 27 May 2025
Viewed by 415
Abstract
Overgrazing (OG) is an important driver of grassland ecosystem degradation and productivity decline. Plants may effectively cope with OG stress by regulating their synergistic interactions with plant growth-promoting rhizobacteria (PGPR) through root exudates. However, the synergistic regulatory mechanisms remain unclear. Under OG stress, [...] Read more.
Overgrazing (OG) is an important driver of grassland ecosystem degradation and productivity decline. Plants may effectively cope with OG stress by regulating their synergistic interactions with plant growth-promoting rhizobacteria (PGPR) through root exudates. However, the synergistic regulatory mechanisms remain unclear. Under OG stress, Leymus chinensis recruited the specific PGPR strain Paraburkholderia graminis (B24) by regulating specific root exudate compounds, including amino acids, alkaloids, and organic acids, which enhance B24 chemotaxis and biofilm formation. The B24 inoculation systematically regulated the transcription of key plant growth and development genes, including those involved in nutrient transport and cell wall expansion, which enhanced nutrient uptake and promoted the overall growth of L. chinensis. Furthermore, B24 regulated the homeostasis of endogenous L. chinensis through the synergistic effects of hormones and the trade-off between growth and defense. Integrated transcriptomic and metabolomic analyses revealed that B24 regulation enhanced carbon and nitrogen metabolism, and energy supply after mowing, forming a holistic adaptive mechanism that enabled L. chinensis to effectively recover from mowing-induced stress, thereby improving its adaptability and regenerative capacity. This study provides a scientific basis and support for elucidating the response mechanisms of how grassland plants cope with OG stress, optimizing grassland management, and rapidly restoring and enhancing grassland productivity. Full article
Show Figures

Graphical abstract

17 pages, 2402 KiB  
Article
Effects of Different Vegetation Types on Soil Quality in Golden Huacha (Camellia petelotii) National Nature Reserve
by Yong Jiang, Sheng Xu, Weiwei Gu, Siqi Wu, Jian Qiu, Wenxu Zhu and Nanyan Liao
Forests 2025, 16(5), 865; https://doi.org/10.3390/f16050865 - 21 May 2025
Viewed by 343
Abstract
Natural and planted forests differentially regulate soil quality through vegetation–soil interactions. The effects of four types of planting covers on soil nutrients, enzyme activities, and microbial communities in the Guangxi Camellia nitidissima National Nature Reserve were studied, revealing the multi-dimensional influences of natural [...] Read more.
Natural and planted forests differentially regulate soil quality through vegetation–soil interactions. The effects of four types of planting covers on soil nutrients, enzyme activities, and microbial communities in the Guangxi Camellia nitidissima National Nature Reserve were studied, revealing the multi-dimensional influences of natural (broadleaf, shrubland) and planted forests (bamboo, pine) on soil quality. Surface soils (0–10 cm depth) were characterized for physicochemical properties (pH, TC, TN, NO3-N, AP), enzyme activities (α-amylase, urease, phosphatase, β-glucosidase), and microbial composition (using 16S rRNA and ITS region sequencing). Mantel tests and PLS–PM modeling were employed to investigate interactions among vegetation, soil variables, and microbes. Natural forests exhibited higher pH, nitrate nitrogen, and enzymatic activities (urease, phosphatase, β-glucosidase) alongside enhanced carbon–nitrogen accumulation and reduced acidification. Planted forests showed elevated available phosphorus and nutrient supply but lower organic matter retention. Microbial communities displayed higher similarity within natural forests, with fungal composition strongly linked to total carbon/nitrogen (p < 0.05). Vegetation type positively influenced bacterial diversity but negatively affected fungal communities. Natural forests maintained critical soil–microbe–plant interactions supporting ecosystem resilience through carbon–nitrogen cycling, while planted forests fostered divergent microbial functionality despite short-term nutrient benefits. These findings underscore natural forests’ unique role in preserving ecological stability and reveal fundamental limitations of artificial systems in mimicking microbially-mediated biogeochemical processes. Conservation policy should prioritize the protection of natural forests while simultaneously integrating microbial community management with vegetation restoration efforts to enhance long-term ecosystem functionality and nutrient cycling efficiency. Full article
Show Figures

Figure 1

17 pages, 2269 KiB  
Article
Litter and Pruning Biomass in Mango Orchards: Quantification and Nutrient Analysis
by Alan Niscioli, Constancio A. Asis, Joanne Tilbrook, Dallas Anson, Danilo Guinto, Mila Bristow and David Rowlings
Sustainability 2025, 17(10), 4452; https://doi.org/10.3390/su17104452 - 14 May 2025
Viewed by 547
Abstract
Litter and pruning biomass are integral to nutrient cycling in the plant–soil ecosystem, contributing significantly to organic matter formation and humus development through decomposition and nutrient mineralization, which ultimately influence soil fertility and health. However, the litterfall dynamics in mango orchards are not [...] Read more.
Litter and pruning biomass are integral to nutrient cycling in the plant–soil ecosystem, contributing significantly to organic matter formation and humus development through decomposition and nutrient mineralization, which ultimately influence soil fertility and health. However, the litterfall dynamics in mango orchards are not well understood, and its contribution to nutrient cycling has seldom been measured. This study aimed to estimate litterfall and pruning biomass in mango orchards and assess the nutrient contents of various biomass components. Litter and pruning biomass samples were collected from four commercial mango orchards planted with Kensington Pride (‘KP’) and ‘B74’ (‘Calypso®’) cultivars in the Darwin and Katherine regions, using litter traps placed on the orchard floors. Samples were sorted (leaves, flowers, panicles, fruits, and branches) and analyzed for nutrient contents. Results showed that most biomass abscissions occurred between late June and August, spanning approximately 100 days involving floral induction phase, fruit set, and maturity. Leaves made up most of the abscised litter biomass, while branches were the primary component of pruning biomass. The overall ranking of biomass across both regions and orchards is as follows: leaves > branches > panicles > flowers > fruits. The carbon–nitrogen (C:N) ratio of litter pruning material ranged from 30 (flowers) to 139 (branches). On a hectare basis, litter and biomass inputs contained 1.2 t carbon (C), 21.2 kg nitrogen (N), 0.80 kg phosphorus (P), 4.9 kg potassium (K), 8.7 kg calcium (Ca), 2.0 kg magnesium (Mg), 1.1 kg sulfur (S), 15 g boron (B), 13.6 g copper (Cu), 99.3 g iron (Fe), 78.6 g manganese (Mn), and 28.6 g zinc (Zn). The results indicate that annual litterfall may contribute substantially to plant nutrient supply and soil health when incorporated into the soil to undergo decomposition. This study contributes to a better understanding of litter biomass, nutrient sources, and nutrient cycling in tropical mango production systems, offering insights that support accurate nutrient budgeting and help prevent over-fertilization. However, further research is needed to examine biomass accumulation under different pruning regimes, decomposition dynamics, microbial interactions, and broader ecological effects to understand litterfall’s role in promoting plant growth, enhancing soil health, and supporting sustainable mango production. Full article
(This article belongs to the Special Issue Sustainable Management: Plant, Biodiversity and Ecosystem)
Show Figures

Figure 1

33 pages, 1949 KiB  
Review
Biochar Characteristics and Application: Effects on Soil Ecosystem Services and Nutrient Dynamics for Enhanced Crop Yields
by Ojone Anyebe, Fatihu Kabir Sadiq, Bonface Ombasa Manono and Tiroyaone Albertinah Matsika
Nitrogen 2025, 6(2), 31; https://doi.org/10.3390/nitrogen6020031 - 27 Apr 2025
Cited by 4 | Viewed by 1773
Abstract
Although intensive farming practices have greatly increased food production, they have undermined the soil ecosystem services on which agriculture depends. Biochar application in soils is increasingly gaining worldwide acceptance as a means of addressing these environmental challenges while enhancing agricultural productivity. Biochar offers [...] Read more.
Although intensive farming practices have greatly increased food production, they have undermined the soil ecosystem services on which agriculture depends. Biochar application in soils is increasingly gaining worldwide acceptance as a means of addressing these environmental challenges while enhancing agricultural productivity. Biochar offers dual benefits that support food security and ecological well-being through enhanced soil fertility and plant nutrition. These benefits include water retention, promotion of soil microbial functioning, carbon sequestration, and nutrient absorption, among others. In spite of these known benefits, many studies continue to emphasize the roles biochar plays in enhancing soil health and crop yields but often neglect the influence of biochar characteristics, which are key in optimizing these soil ecosystem services. Thus, it is important to understand how biochar characteristics influence soil in supporting, regulating, and provisioning ecosystem services. This review offers a comprehensive and integrative assessment on how biochar’s characteristics influence key soil ecosystem services rather than examining each service individually. The focus is on how biochar feedstock material and pyrolysis temperature determine the characteristics of generated biochar and how these characteristics influence biochar’s efficacy in supplying soil ecosystem services and nutrient dynamics for enhanced crop yields. Full article
Show Figures

Figure 1

19 pages, 3343 KiB  
Article
Bioimpedance Analysis of Cucumber Plants Exposed to Different Nitrogen Doses Under Greenhouse Conditions
by Flórián Kovács, Katalin Juhos, Zoltán Vizvári, Péter Odry, Ingrid M. Gyalai, Peter Sarcevic and Ákos Odry
Sensors 2025, 25(8), 2486; https://doi.org/10.3390/s25082486 - 15 Apr 2025
Viewed by 506
Abstract
Nitrogen (N) availability is critical for cucumber (Cucumis sativus L.) growth and yield in greenhouse production. In this study, we investigated the effects of different N doses on the bioimpedance spectroscopy (BIS) parameters of cucumber plants (ES.22.17 F1 genotype), focusing on extracellular [...] Read more.
Nitrogen (N) availability is critical for cucumber (Cucumis sativus L.) growth and yield in greenhouse production. In this study, we investigated the effects of different N doses on the bioimpedance spectroscopy (BIS) parameters of cucumber plants (ES.22.17 F1 genotype), focusing on extracellular fluid resistance (R1), intracellular fluid resistance (R2), vacuole fluid resistance (R4), and cell membrane capacitances (Cm, Ct). The results showed that low N supply significantly increased R1 and reduced Cm in the leaves, indicative of decreased nitrate (NO3) concentration and impaired membrane fluidity. Higher N supply lowered resistance and increased cell membrane capacitance, reflecting improved ion transport and storage efficiency. A strong positive correlation was observed between total N and NO3 content (r = 0.9), while NO3 content negatively correlated with extracellular fluid resistance (R1, r = −0.8) and vacuole fluid resistance (R4, r = −0.9). The optimal N supply for cucumber plants was associated with R1 values of 47,121.07–52,953.93 Ω, R4 values of 0.348–0.529 Ω, and Cm values of 3.149 × 10⁻10–3.781 × 10⁻10 F. These BIS parameters showed high sensitivity to plant N status, highlighting BIS as a promising, minimally invasive technique for real-time nutrient monitoring. By integrating BIS data and horticultural best practices, growers can refine N fertilization strategies for better resource efficiency and potentially higher yields and fruit quality. Full article
(This article belongs to the Special Issue Bioimpedance Measurements and Microelectrodes)
Show Figures

Graphical abstract

31 pages, 457 KiB  
Review
A Promising Niche: Current State of Knowledge on the Agroecological Contribution of Alternative Livestock Farming Practices
by Pascal Genest-Richard, Caroline Halde, Patrick Mundler and Nicolas Devillers
Agriculture 2025, 15(3), 235; https://doi.org/10.3390/agriculture15030235 - 22 Jan 2025
Cited by 1 | Viewed by 2004
Abstract
Agroecology is increasingly used to study the evolution of farms and food systems, in which livestock plays a significant part. While large-scale specialized livestock farms are sometimes criticized for their contribution to climate change and nutrient cycle disruption, interest in alternative practices such [...] Read more.
Agroecology is increasingly used to study the evolution of farms and food systems, in which livestock plays a significant part. While large-scale specialized livestock farms are sometimes criticized for their contribution to climate change and nutrient cycle disruption, interest in alternative practices such as raising multiple species, integrating crop and livestock, relying on pasture, and marketing through short supply chains is growing. Through a narrative review, we aimed to determine if the scientific literature allowed for an evaluation of the agroecological contribution of alternative livestock farming practices. Taking advantage of ruminants’ capacity to digest human-inedible plant material such as hay and pasture on marginal land reduces the competition between livestock feed and human food for arable land. Taking advantage of monogastric animals’ capacity to digest food waste or byproducts limits the need for grain feed. Pasturing spreads manure directly on the field and allows for the expression of natural animal behavior. Animals raised on alternative livestock farms, however, grow slower and live longer than those raised on large specialized farms. This causes them to consume more feed and to emit more greenhouse gases per unit of meat produced. Direct or short supply chain marketing fosters geographical and relational proximity, but alternative livestock farms’ contribution to the social equity and responsibility principles of agroecology are not well documented. Policy aimed at promoting practices currently in place on alternative livestock farms is compatible with agroecology but has to be envisioned in parallel with a reduction in animal consumption in order to balance nutrient and carbon cycles. Full article
(This article belongs to the Section Agricultural Systems and Management)
33 pages, 8797 KiB  
Article
Hybrid Plant Growth: Integrating Stochastic, Empirical, and Optimization Models with Machine Learning for Controlled Environment Agriculture
by Nezha Kharraz and István Szabó
Agronomy 2025, 15(1), 189; https://doi.org/10.3390/agronomy15010189 - 14 Jan 2025
Viewed by 1529
Abstract
Controlled Environment Agriculture (CEA) offers a viable solution for sustainable crop production, yet the optimization of the latter requires precise modeling and resource management. This study introduces a novel hybrid plant growth model integrating stochastic, empirical, and optimization approaches, using Internet of Things [...] Read more.
Controlled Environment Agriculture (CEA) offers a viable solution for sustainable crop production, yet the optimization of the latter requires precise modeling and resource management. This study introduces a novel hybrid plant growth model integrating stochastic, empirical, and optimization approaches, using Internet of Things sensors for real-time data collection. Unlike traditional methods, the hybrid model systematically captures environmental variability, simulates plant growth dynamics, and optimizes resource inputs. The prototype growth chamber, equipped with IoT sensors for monitoring environmental parameters such as light intensity, temperature, CO2, humidity, and water intake, was primarily used to provide accurate input data for the model and specifically light intensity, water intake and nutrient intake. While experimental tests on lettuce were conducted to validate initial environmental conditions, this study was focused on simulation-based analysis. Specific tests simulated plant responses to varying levels of light, water, and nutrients, enabling the validation of the proposed hybrid model. We varied light durations between 6 and 14 h/day, watering levels between 5 and 10 L/day, and nutrient concentrations between 3 and 11 g/day. Additional simulations modeled different sowing intervals to capture internal plant variability. The results demonstrated that the optimal growth conditions were 14 h/day of light, 9 L/day of water, and 5 g/day of nutrients; maximized plant biomass (200 g), leaf area (800 cm2), and height (90 cm). Key novel metrics developed in this study, the Growth Efficiency Ratio (GER) and Plant Growth Index (PGI), provided solid tools for evaluating plant performance and resource efficiency. Simulations showed that GER peaked at 0.6 for approximately 200 units of combined inputs, beyond which diminishing returns were observed. PGI increased to 0.8 to day 20 and saturated to 1 by day 30. The role of IoT sensors was critical in enhancing model accuracy and replicability by supplying real-time data on environmental variability. The hybrid model’s adaptability in the future may offer scalability to diverse crop types and environmental settings, establishing a foundation for its integration into decision-support systems for large-scale indoor farming. Full article
(This article belongs to the Special Issue Application of Internet of Things in Agroecosystems)
Show Figures

Figure 1

19 pages, 2742 KiB  
Article
NgLst8 Coactivates TOR Signaling to Activate Photosynthetic Growth in Nannochloropsis gaditana
by Zhengying Zhang, Shu Yang, Yanyan Li, Dian Xie, Guobin Chen, Jiaxu Ren, Hongmei Zhu and Hantao Zhou
Microorganisms 2024, 12(12), 2574; https://doi.org/10.3390/microorganisms12122574 - 13 Dec 2024
Viewed by 823
Abstract
The target of rapamycin (TOR) serves as a central regulator of cell growth, coordinating anabolic and catabolic processes in response to nutrient availability, growth factors, and energy supply. Activation of TOR has been shown to promote photosynthesis, growth, and development in yeast, animals, [...] Read more.
The target of rapamycin (TOR) serves as a central regulator of cell growth, coordinating anabolic and catabolic processes in response to nutrient availability, growth factors, and energy supply. Activation of TOR has been shown to promote photosynthesis, growth, and development in yeast, animals, and plants. In this study, the complete cDNA sequence of the Lst8 gene was obtained from Nannochloropsis gaditana. The structure of N. gaditana LST8 comprises a typical WD40 repeat sequence, exhibiting high sequence similarity to several known LST8 proteins. By overexpressing the Lst8 gene in N. gaditana, we constructed the NgLst8 transgenic algal strain and measured its photosynthetic activity and growth. We observed that an increase in LST8 abundance promotes the expression of TOR-related kinase, thereby enhancing photosynthetic growth. Transcriptome analysis further elucidated the response mechanism of elevated Lst8 abundance in relation to photosynthesis. Our findings indicate that increased Lst8 expression activates ABC transporter proteins and the MAPK signaling pathway, which regulate the transmembrane transport of sugars and other metabolites, integrate photosynthesis, sugar metabolism, and energy signaling, and modulate energy metabolism in algal cells through interactions with the TOR signaling pathway. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

16 pages, 5661 KiB  
Article
Genotype and Nitrogen Source Influence Drought Stress Response in Oil Palm Seedlings
by Rodrigo Ruiz-Romero, Marlon De la Peña, Iván Ayala-Díaz, Carmenza Montoya and Hernán Mauricio Romero
Agronomy 2024, 14(9), 2082; https://doi.org/10.3390/agronomy14092082 - 12 Sep 2024
Viewed by 1045
Abstract
As a significant global source of vegetable oil, the oil palm’s ability to withstand abiotic stresses, particularly drought, is crucial for sustainable agriculture. This is especially significant in tropical regions, where water scarcity is becoming more common. Nitrogen, a vital nutrient, plays an [...] Read more.
As a significant global source of vegetable oil, the oil palm’s ability to withstand abiotic stresses, particularly drought, is crucial for sustainable agriculture. This is especially significant in tropical regions, where water scarcity is becoming more common. Nitrogen, a vital nutrient, plays an essential role in various physiological and biochemical processes in plants, directly influencing growth and stress tolerance. This study investigates the interaction between nitrogen sources (ammonium vs. nitrate) and drought stress in oil palm (Elaeis guineensis) seedlings, which is critical in enhancing productivity in this economically important crop. The experiment evaluated five commercial oil palm genotypes, which were supplied with nitrogen solutions (15 mM NH4+ or NO3) for 46 days, followed by 30 days of progressive drought. The results showed that drought conditions universally reduced the biomass, with ammonium-fed plants exhibiting greater shoot biomass sensitivity than nitrate-fed plants. Drought also significantly decreased the chlorophyll a, PhiPS2, and root-reducing sugar levels—critical indicators of photosynthetic efficiency and overall plant health. The effects on the root architecture were complex, with ammonium nutrition differentially influencing the lateral root length under well-watered versus drought conditions, highlighting nitrogen forms’ nuanced role in root development. Importantly, substantial genotypic variability was observed in most traits, affecting the responses to both the nitrogen source and drought stress. This variability suggests that certain genotypes may be better suited to cultivation in specific environmental conditions, particularly drought-prone areas. In conclusion, this study underscores the intricate interplay between nitrogen nutrition, genotypic variability, and drought tolerance in oil palm seedlings. These findings highlight the need to integrate these factors into agricultural management strategies to improve resilience and productivity in oil palm plantations. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

20 pages, 5085 KiB  
Review
Sustainable Production: Integrating Medicinal Plants with Fish Farming in Aquaponics—A Mini Review
by Stefka Stoyanova, Ivaylo Sirakov and Katya Velichkova
Sustainability 2024, 16(15), 6337; https://doi.org/10.3390/su16156337 - 24 Jul 2024
Cited by 4 | Viewed by 3694
Abstract
Aquaponics, defined as a sustainable technology combining aquaculture and hydroponics, integrates plant and fish production into one system. Aquaponics technology offers several major advantages over conventional methods of raising fish and/or plants. In this system, plants act as a natural biological filter, purifying [...] Read more.
Aquaponics, defined as a sustainable technology combining aquaculture and hydroponics, integrates plant and fish production into one system. Aquaponics technology offers several major advantages over conventional methods of raising fish and/or plants. In this system, plants act as a natural biological filter, purifying the water so that the same amount can be used repeatedly. Fish, on the other hand, are a natural source of nutrients. This contributes to the aquaponics system’s substantial economic potential, thanks to its use of virtually free nutrients, dramatically reduced water consumption, and the elimination of filter systems, making this system innovative and sustainable. On the other hand, the use of medicinal plants for the needs of the pharmaceutical, cosmetics, and food industries is often associated with a decrease in their natural reserves. Utilizing aquaponics for the production of medicinal plants could reduce the pressure on these natural reserves. As a result, aquaponics has emerged as one of the most environmentally friendly methods of cultivating plant species. The concept of aquaponics, which evolved from traditional hydroponic systems, has gained worldwide recognition through the effective use of symbiosis. It refers to the coexistence and interaction of different organisms, facilitating their growth and life cycle processes. Unlike hydroponics, which requires the purification of nutrient solutions due to plant waste, aquaponics takes advantage of the natural cycle of waste and nutrient exchange between plants and fish. Fish waste serves as organic fertilizer for the plants, while the plants help purify the water for the fish. This symbiotic relationship not only reduces the environmental impact associated with aquaculture wastewater but also provides a sustainable method of food production. The integrated system reduces infrastructure costs, conserves water, and minimizes the potential for environmental pollution. Furthermore, it provides an opportunity for increased profitability from both crop and fish production. Cultivation of medicinal plants within aquaponic systems can be carried out year-round, offering a continuous supply of valuable pharmacological resources. This review examines suitable medicinal plants for aquaponic cultivation and evaluates their pharmacological benefits to humans. Full article
(This article belongs to the Topic Sustainable Food Processing)
Show Figures

Figure 1

17 pages, 3780 KiB  
Article
Integrated Straw Return with Less Power Puddling Improves Soil Fertility and Rice Yield in China’s Cold Regions
by Donghui Liu, Pengfei Li, Wenyu Wu, Shunyao Yu, Muhammad Rehman Naseer, Zhilei Liu, Cailian Yu and Xianlong Peng
Agronomy 2024, 14(4), 685; https://doi.org/10.3390/agronomy14040685 - 27 Mar 2024
Cited by 1 | Viewed by 1469
Abstract
The rice production system in China is facing challenges, including declining soil fertility and a stagnant rice yield. This study aimed to test whether integrating the return of straw to fields with less power puddling could simultaneously enhance soil fertility and rice yields. [...] Read more.
The rice production system in China is facing challenges, including declining soil fertility and a stagnant rice yield. This study aimed to test whether integrating the return of straw to fields with less power puddling could simultaneously enhance soil fertility and rice yields. Therefore, field experiments were conducted in Heilongjiang Province, a key rice-growing region in China, from 2017 to 2021, using three different planting methods: control group (CK), straw return (SR) and straw return integrated with less power puddling (SR + LP). The results showed that small soil aggregates (particle diameter < 0.25 mm) and soil bulk density were significantly decreased when straw return was integrated with less power puddling. These changes contributed to the preservation of soil structure. Simultaneously, this approach significantly increased soil ammonium nitrogen content from 9.9 to 10.9 mg kg−1, organic matter content from 35.0 to 36.2 g kg−1, available nitrogen content from 140.5 to 147.0 mg kg−1 and available potassium content from 128.6 to 136.8 mg kg−1 at mature stage on average. Consequently, the post-heading stored assimilates accumulation of rice was increased from 6.12 to 6.43 t ha−1, and the nitrogen, phosphorus and potassium accumulation of rice were increased by 7.85 kg ha−1, 1.13 kg ha−1 and 5.68 kg ha−1, respectively. These changes ultimately resulted in a higher 1000 g weight and filled grain rate, providing the foundation for higher yields (an increase from 9.31 t ha−1 to 9.55 t ha−1). Furthermore, this approach also increased the net income for farmers by USD 14 t ha−1. In summary, this study demonstrates that integrating straw return with less power puddling can enhance soil’s nutrient supply and retention capacity. This enhancement may boost the absorption and transportation of nutrients, ultimately establishing the groundwork for higher yields and economic benefits by enhancing the 1000 g weight and filled grain rate. Future research should delve deeper into its applicability across different ecosystems and investigate the yield-increasing mechanisms. Full article
Show Figures

Figure 1

Back to TopTop