A Promising Niche: Current State of Knowledge on the Agroecological Contribution of Alternative Livestock Farming Practices
Abstract
:1. Introduction
2. Search Strategy and Analysis
3. Improve Resource Efficiency
3.1. Nutrient Cycling (Principles 1 and 2)
3.2. Land Use (Principles 1 and 2)
3.3. Greenhouse Gas Emissions (Principles 1 and 2)
4. Strengthen Resilience
4.1. Soil Health (Principle 3)
4.2. Animal Health and Welfare (Principle 4)
4.3. Biodiversity (Principle 5)
4.4. Synergy (Principle 6)
4.5. Economic Diversification (Principle 7)
5. Secure Social Equity and Responsibility
5.1. Co-Creation of Knowledge (Principle 8)
5.2. Social Values and Diets (Principle 9)
5.3. Fairness (Principle 10)
5.4. Connectivity (Principle 11)
5.5. Land and Natural Resource Governance (Principle 12)
5.6. Participation (Principle 13)
6. Agroecological Contribution of Alternative Livestock Farms
7. Challenges in Assessing Contribution to Agroecology
8. Knowledge Gaps
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Vries, M.; De Boer, I.J.M. Comparing Environmental Impacts for Livestock Products: A Review of Life Cycle Assessments. Livest. Sci. 2010, 128, 1–11. [Google Scholar] [CrossRef]
- Jones, B.A.; Grace, D.; Kock, R.; Alonso, S.; Rushton, J.; Said, M.Y.; McKeever, D.; Mutua, F.; Young, J.; McDermott, J.; et al. Zoonosis Emergence Linked to Agricultural Intensification and Environmental Change. Proc. Natl. Acad. Sci. USA 2013, 110, 8399–8404. [Google Scholar] [CrossRef] [PubMed]
- Mottet, A.; De Haan, C.; Falcucci, A.; Tempio, G.; Opio, C.; Gerber, P. Livestock: On Our Plates or Eating at Our Table? A New Analysis of the Feed/Food Debate. Glob. Food Secur. 2017, 14, 1–8. [Google Scholar] [CrossRef]
- Jordon, M.W.; Buffet, J.-C.; Dungait, J.A.J.; Galdos, M.V.; Garnett, T.; Lee, M.R.F.; Lynch, J.; Röös, E.; Searchinger, T.D.; Smith, P.; et al. A Restatement of the Natural Science Evidence Base Concerning Grassland Management, Grazing Livestock and Soil Carbon Storage. Proc. R. Soc. B Biol. Sci. 2024, 291, 20232669. [Google Scholar] [CrossRef]
- Gliessman, S. Transforming Food Systems with Agroecology. Agroecol. Sustain. Food Syst. 2016, 40, 187–189. [Google Scholar] [CrossRef]
- Anderson, C.R.; Bruil, J.; Chappell, M.J.; Kiss, C.; Pimbert, M.P. Agroecology Now!: Transformations Towards More Just and Sustainable Food Systems; Springer International Publishing: Cham, Switzerland, 2021; ISBN 978-3-030-61314-3. [Google Scholar]
- High Level Panel of Experts on Food Security and Nutrition. HLPE Report #14—Agroecological and Other Innovative Approaches for Sustainable Agriculture and Food Systems That Enhance Food Security and Nutrition; FAO: Rome, Italy, 2019. [Google Scholar]
- Wezel, A.; Bellon, S.; Doré, T.; Francis, C.; Vallod, D.; David, C. Agroecology as a Science, a Movement and a Practice. A Review. Agron. Sustain. Dev. 2009, 29, 503–515. [Google Scholar] [CrossRef]
- Toledo, V.M. Agroecology and Spirituality: Reflections about an Unrecognized Link. Agroecol. Sustain. Food Syst. 2022, 46, 626–641. [Google Scholar] [CrossRef]
- James, D.; Wolff, R.; Wittman, H. Agroecology as a Philosophy of Life. Agric. Hum. Values 2023, 40, 1437–1450. [Google Scholar] [CrossRef]
- Whelan, M.P. Agroecology’s Moral Vision. Agric. Hum. Values 2024, 41, 413–426. [Google Scholar] [CrossRef]
- Mendez, V.E.; Bacon, C.M.; Cohen, R.; Gliessman, S.R. (Eds.) Agroecology: A Transdisciplinary, Participatory and Action-Oriented Approach; CRC Press: Boca Raton, FL, USA, 2015; ISBN 978-0-429-18373-7. [Google Scholar]
- Bell, M.M.; Bellon, S. Generalization without Universalization: Towards an Agroecology Theory. Agroecol. Sustain. Food Syst. 2018, 42, 605–611. [Google Scholar] [CrossRef]
- Bell, M.M.; Decré, B. La Transition Agroécologique. In La Transition Agroécologique; Les Presses des Mines: Paris, France, 2021; pp. 47–58. ISBN 978-2-35671-620-0. [Google Scholar]
- Tittonell, P.; El Mujtar, V.; Felix, G.; Kebede, Y.; Laborda, L.; Luján Soto, R.; De Vente, J. Regenerative Agriculture—Agroecology without Politics? Front. Sustain. Food Syst. 2022, 6, 844261. [Google Scholar] [CrossRef]
- Otte, J.; Roland-Holst, D.; Pfeiffer, D.; Soares-Magalhaes, R.; Rushton, J.; Graham, J.; Silbergeld, E. Industrial Livestock Production and Global Health Risks; Food and Agriculture Organization of the United Nations: Rome, Italy, 2007. [Google Scholar]
- IPES-Food. From Uniformity to Diversity: A Paradigm Shift from Industrial Agriculture to Diversified Agroecological Systems; International Panel of Experts on Sustainable Food Systems: Brussels, Belgium, 2016. [Google Scholar]
- Goodman, D. The Quality ‘Turn’ and Alternative Food Practices: Reflections and Agenda. J. Rural Stud. 2003, 19, 1–7. [Google Scholar] [CrossRef]
- Goodman, D.; DuPuis, E.M.; Goodman, M.K. Alternative Food Networks: Knowledge, Practice, and Politics; Routledge Studies of Gastronomy, Food and Drink; 1. Publ. in Paperback; Routledge: London, UK, 2014; ISBN 978-0-415-67146-0. [Google Scholar]
- Forssell, S.; Lankoski, L. The Sustainability Promise of Alternative Food Networks: An Examination through “Alternative” Characteristics. Agric. Hum. Values 2015, 32, 63–75. [Google Scholar] [CrossRef]
- Rausser, G.; Zilberman, D.; Kahn, G. An Alternative Paradigm for Food Production, Distribution, and Consumption: A Noneconomist’s Perspective. Annu. Rev. Resour. Econ. 2015, 7, 309–331. [Google Scholar] [CrossRef]
- Le Velly, R. Allowing for the Projective Dimension of Agency in Analysing Alternative Food Networks. Sociol. Rural. 2019, 59, 2–22. [Google Scholar] [CrossRef]
- Migliorini, P.; Wezel, A. Converging and Diverging Principles and Practices of Organic Agriculture Regulations and Agroecology. A Review. Agron. Sustain. Dev. 2017, 37, 63. [Google Scholar] [CrossRef]
- FAO. The 10 Elements of Agroecology: Guiding the Transition to Sustainable Food and Agricultural Systems; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018. [Google Scholar]
- Dumont, A.M.; Wartenberg, A.C.; Baret, P.V. Bridging the Gap between the Agroecological Ideal and Its Implementation into Practice. A Review. Agron. Sustain. Dev. 2021, 41, 32. [Google Scholar] [CrossRef]
- Wezel, A.; David, C. Agroecology and the Food System. In Agroecology and Strategies for Climate Change; Lichtfouse, E., Ed.; Springer: Dordrecht, The Netherlands, 2012; pp. 17–33. ISBN 978-94-007-1904-0. [Google Scholar]
- Wezel, A.; Casagrande, M.; Celette, F.; Vian, J.-F.; Ferrer, A.; Peigné, J. Agroecological Practices for Sustainable Agriculture. A Review. Agron. Sustain. Dev. 2014, 34, 1–20. [Google Scholar] [CrossRef]
- Moeller, N.I.; Geck, M.; Anderson, C.; Barahona, C.; Broudic, C.; Cluset, R.; Henriques, G.; Leippert, F.; Mills, D.; Minhaj, A.; et al. Measuring Agroecology: Introducing a Methodological Framework and a Community of Practice Approach. Elem. Sci. Anth. 2023, 11, 00042. [Google Scholar] [CrossRef]
- Mottet, A.; Bicksler, A.; Lucantoni, D.; De Rosa, F.; Scherf, B.; Scopel, E.; López-Ridaura, S.; Gemmil-Herren, B.; Bezner Kerr, R.; Sourisseau, J.-M.; et al. Assessing Transitions to Sustainable Agricultural and Food Systems: A Tool for Agroecology Performance Evaluation (TAPE). Front. Sustain. Food Syst. 2020, 4, 579154. [Google Scholar] [CrossRef]
- Zahm, F.; Viaux, P.; Vilain, L.; Girardin, P.; Mouchet, C. Assessing Farm Sustainability with the IDEA Method—From the Concept of Agriculture Sustainability to Case Studies on Farms. Sustain. Dev. 2008, 16, 271–281. [Google Scholar] [CrossRef]
- Zahm, F.; Alonso Ugaglia, A.; Barbier, J.-M.; Boureau, H.; Del’homme, B.; Gafsi, M.; Gasselin, P.; Girard, S.; Guichard, L.; Loyce, C.; et al. Évaluer la durabilité des exploitations agricoles. La méthode IDEA v4, un cadre conceptuel combinant dimensions et propriétés de la durabilité. Cah. Agric. 2019, 28, 5. [Google Scholar] [CrossRef]
- Landert, J.; Pfeifer, C.; Carolus, J.F. Assessing Agro-Ecological Practices Using a Combination of Three Sustainability Assessment Tools. Landbauforsch. J. Sustain. Org. Agric. Syst. 2020, 70, 129–144. [Google Scholar] [CrossRef]
- Namirembe, S.; Mhango, W.; Njoroge, R.; Tchuwa, F.; Wellard, K.; Coe, R. Grounding a Global Tool—Principles and Practice for Agroecological Assessments Inspired by TAPE. Elem. Sci. Anthr. 2022, 10, 00022. [Google Scholar] [CrossRef]
- El Mujtar, V.A.; Zamor, R.; Salmerón, F.; Guerrero, A.D.S.; Laborda, L.; Tittonell, P.; Hogan, R. Lexical Analysis Improves the Identification of Contextual Drivers and Farm Typologies in the Assessment of Transitions to Agroecology through TAPE—A Case Study from Rural Nicaragua. Agric. Syst. 2023, 209, 103686. [Google Scholar] [CrossRef]
- Gomori-Ruben, L.; Reid, C. Using TAPE to Assess Agroecology on Women-Led Farms in the U.S.: Support for Environmental and Social Practices. J. Agric. Food Syst. Community Dev. 2023, 13, 129–150. [Google Scholar] [CrossRef]
- Lucantoni, D.; Sy, M.R.; Goïta, M.; Veyret-Picot, M.; Vicovaro, M.; Bicksler, A.; Mottet, A. Evidence on the Multidimensional Performance of Agroecology in Mali Using TAPE. Agric. Syst. 2023, 204, 103499. [Google Scholar] [CrossRef]
- Wordofa, M.G.; Aweke, C.S.; Endris, G.S.; Tolesa, G.N.; Lemma, T.; Hassen, J.Y.; Lucantoni, D.; Mottet, A. Multidimensional Performance of Agroecology in Mixed and Agropastoral Farming Systems of Ethiopia: Empirical Evidence Based on the Tool for Agroecological Performance Evaluation (TAPE). Agroecol. Sustain. Food Syst. 2024, 48, 1240–1264. [Google Scholar] [CrossRef]
- Prost, L.; Martin, G.; Ballot, R.; Benoit, M.; Bergez, J.-E.; Bockstaller, C.; Cerf, M.; Deytieux, V.; Hossard, L.; Jeuffroy, M.-H.; et al. Key Research Challenges to Supporting Farm Transitions to Agroecology in Advanced Economies. A Review. Agron. Sustain. Dev. 2023, 43, 11. [Google Scholar] [CrossRef]
- Dumont, B.; Groot, J.C.J.; Tichit, M. Review: Make Ruminants Green Again—How Can Sustainable Intensification and Agroecology Converge for a Better Future? Animal 2018, 12, s210–s219. [Google Scholar] [CrossRef]
- Ryschawy, J.; Dumont, B.; Therond, O.; Donnars, C.; Hendrickson, J.; Benoit, M.; Duru, M. Review: An Integrated Graphical Tool for Analysing Impacts and Services Provided by Livestock Farming. Animal 2019, 13, 1760–1772. [Google Scholar] [CrossRef] [PubMed]
- Van Der Linden, A.; De Olde, E.M.; Mostert, P.F.; De Boer, I.J.M. A Review of European Models to Assess the Sustainability Performance of Livestock Production Systems. Agric. Syst. 2020, 182, 102842. [Google Scholar] [CrossRef]
- Martin, G.; Barth, K.; Benoit, M.; Brock, C.; Destruel, M.; Dumont, B.; Grillot, M.; Hübner, S.; Magne, M.-A.; Moerman, M.; et al. Potential of Multi-Species Livestock Farming to Improve the Sustainability of Livestock Farms: A Review. Agric. Syst. 2020, 181, 102821. [Google Scholar] [CrossRef]
- Sukhera, J. Narrative Reviews: Flexible, Rigorous, and Practical. J. Grad. Med. Educ. 2022, 14, 414–417. [Google Scholar] [CrossRef] [PubMed]
- Wong, G.; Greenhalgh, T.; Westhorp, G.; Buckingham, J.; Pawson, R. RAMESES Publication Standards: Meta-Narrative Reviews. BMC Med. 2013, 69, 987–1004. [Google Scholar] [CrossRef]
- Kremen, C.; Iles, A.; Bacon, C. Diversified Farming Systems: An Agroecological, Systems-Based Alternative to Modern Industrial Agriculture. Ecol. Soc. 2012, 17, art44. [Google Scholar] [CrossRef]
- Bonaudo, T.; Bendahan, A.B.; Sabatier, R.; Ryschawy, J.; Bellon, S.; Leger, F.; Magda, D.; Tichit, M. Agroecological Principles for the Redesign of Integrated Crop–Livestock Systems. Eur. J. Agron. 2014, 57, 43–51. [Google Scholar] [CrossRef]
- Garbach, K.; Milder, J.C.; DeClerck, F.A.J.; Montenegro De Wit, M.; Driscoll, L.; Gemmill-Herren, B. Examining Multi-Functionality for Crop Yield and Ecosystem Services in Five Systems of Agroecological Intensification. Int. J. Agric. Sustain. 2017, 15, 11–28. [Google Scholar] [CrossRef]
- Steinfeld, H.; FAO (Eds.) Livestock’s Long Shadow: Environmental Issues and Options; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006; ISBN 978-92-5-105571-7. [Google Scholar]
- Russelle, M.P.; Entz, M.H.; Franzluebbers, A.J. Reconsidering Integrated Crop–Livestock Systems in North America. Agron. J. 2007, 99, 325–334. [Google Scholar] [CrossRef]
- Soussana, J.-F.; Lemaire, G. Coupling Carbon and Nitrogen Cycles for Environmentally Sustainable Intensification of Grasslands and Crop-Livestock Systems. Agric. Ecosyst. Environ. 2014, 190, 9–17. [Google Scholar] [CrossRef]
- Martel, G.; Dieulot, R.; Durant, D.; Guilbert, C.; Mischler, P.; Veysset, P. Mieux coupler cultures et élevage dans les exploitations d’herbivores conventionnelles et biologiques: Une voie d’amélioration de leur durabilité? Fourrages 2017, 231, 235–245. [Google Scholar]
- Ryschawy, J.; Choisis, N.; Choisis, J.P.; Joannon, A.; Gibon, A. Mixed Crop-Livestock Systems: An Economic and Environmental-Friendly Way of Farming? Animal 2012, 6, 1722–1730. [Google Scholar] [CrossRef] [PubMed]
- Ulukan, D.; Grillot, M.; Benoit, M.; Bernes, G.; Dumont, B.; Magne, M.-A.; Monteiro, L.; Parsons, D.; Veysset, P.; Ryschawy, J.; et al. Positive Deviant Strategies Implemented by Organic Multi-Species Livestock Farms in Europe. Agric. Syst. 2022, 201, 103453. [Google Scholar] [CrossRef]
- Stark, F.; Fanchone, A.; Semjen, I.; Moulin, C.-H.; Archimède, H. Crop-Livestock Integration, from Single Practice to Global Functioning in the Tropics: Case Studies in Guadeloupe. Eur. J. Agron. 2016, 80, 9–20. [Google Scholar] [CrossRef]
- Steinmetz, L.; Veysset, P.; Benoit, M.; Dumont, B. Ecological Network Analysis to Link Interactions between System Components and Performances in Multispecies Livestock Farms. Agron. Sustain. Dev. 2021, 41, 42. [Google Scholar] [CrossRef]
- Puech, T.; Stark, F. Diversification of an Integrated Crop-Livestock System: Agroecological and Food Production Assessment at Farm Scale. Agric. Ecosyst. Environ. 2023, 344, 108300. [Google Scholar] [CrossRef]
- Van Zanten, H.H.E.; Mollenhorst, H.; Klootwijk, C.W.; Van Middelaar, C.E.; De Boer, I.J.M. Global Food Supply: Land Use Efficiency of Livestock Systems. Int. J. Life Cycle Assess. 2016, 21, 747–758. [Google Scholar] [CrossRef]
- Van Zanten, H.H.E.; Herrero, M.; Van Hal, O.; Röös, E.; Muller, A.; Garnett, T.; Gerber, P.J.; Schader, C.; De Boer, I.J.M. Defining a Land Boundary for Sustainable Livestock Consumption. Glob. Chang. Biol. 2018, 24, 4185–4194. [Google Scholar] [CrossRef]
- Röös, E.; Bajželj, B.; Smith, P.; Patel, M.; Little, D.; Garnett, T. Greedy or Needy? Land Use and Climate Impacts of Food in 2050 under Different Livestock Futures. Glob. Environ. Chang. 2017, 47, 1–12. [Google Scholar] [CrossRef]
- Breewood, H.; Garnett, T. Meat, Metrics and Mindsets: Exploring Debates on the Role of Livestock and Alternatives in Diets and Farming; TABLE Debates: Oxford, UK, 2023. [Google Scholar] [CrossRef]
- Peterson, G.M.; Galbraith, J.K. The Concept of Marginal Land. J. Farm Econ. 1932, 14, 295. [Google Scholar] [CrossRef]
- Schader, C.; Muller, A.; Scialabba, N.E.-H.; Hecht, J.; Isensee, A.; Erb, K.-H.; Smith, P.; Makkar, H.P.S.; Klocke, P.; Leiber, F.; et al. Impacts of Feeding Less Food-Competing Feedstuffs to Livestock on Global Food System Sustainability. J. R. Soc. Interface 2015, 12, 20150891. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, J.O.; Parodi, A.; Van Zanten, H.H.E.; Hansson, P.-A.; Röös, E. Halting European Union Soybean Feed Imports Favours Ruminants over Pigs and Poultry. Nat. Food 2020, 2, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Röös, E.; Patel, M.; Spångberg, J.; Carlsson, G.; Rydhmer, L. Limiting Livestock Production to Pasture and By-Products in a Search for Sustainable Diets. Food Policy 2016, 58, 1–13. [Google Scholar] [CrossRef]
- Röös, E.; Bajželj, B.; Smith, P.; Patel, M.; Little, D.; Garnett, T. Protein Futures for Western Europe: Potential Land Use and Climate Impacts in 2050. Reg. Environ. Chang. 2017, 17, 367–377. [Google Scholar] [CrossRef]
- Møller, H.; Lyng, K.-A.; Röös, E.; Samsonstuen, S.; Olsen, H.F. Circularity Indicators and Added Value to Traditional LCA Impact Categories: Example of Pig Production. Int. J. Life Cycle Assess. 2023, 29, 1380–1392. [Google Scholar] [CrossRef]
- Cassidy, E.S.; West, P.C.; Gerber, J.S.; Foley, J.A. Redefining Agricultural Yields: From Tonnes to People Nourished per Hectare. Environ. Res. Lett. 2013, 8, 034015. [Google Scholar] [CrossRef]
- Wirsenius, S.; Azar, C.; Berndes, G. How Much Land Is Needed for Global Food Production under Scenarios of Dietary Changes and Livestock Productivity Increases in 2030? Agric. Syst. 2010, 103, 621–638. [Google Scholar] [CrossRef]
- Poore, J.; Nemecek, T. Reducing Food’s Environmental Impacts through Producers and Consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef]
- Ertl, P.; Knaus, W.; Zollitsch, W. An Approach to Including Protein Quality When Assessing the Net Contribution of Livestock to Human Food Supply. Animal 2016, 10, 1883–1889. [Google Scholar] [CrossRef]
- Hennessy, D.P.; Shalloo, L.; Van Zanten, H.H.E.; Schop, M.; De Boer, I.J.M. The Net Contribution of Livestock to the Supply of Human Edible Protein: The Case of Ireland. J. Agric. Sci. 2021, 159, 463–471. [Google Scholar] [CrossRef]
- Dumont, B.; Benoit, M.; Chauvat, S.; Cournut, S.; Martin, G.; Mischler, P.; Magne, M.-A. Durabilité des exploitations d’élevage multi-espèces en France et en Europe: Bénéfices observés, freins et leviers pour leur déploiement. INRAE Prod. Anim. 2023, 36, 13. [Google Scholar] [CrossRef]
- Van Kernebeek, H.R.J.; Oosting, S.J.; Van Ittersum, M.K.; Bikker, P.; De Boer, I.J.M. Saving Land to Feed a Growing Population: Consequences for Consumption of Crop and Livestock Products. Int. J. Life Cycle Assess. 2016, 21, 677–687. [Google Scholar] [CrossRef]
- Sijpestijn, G.F.; Wezel, A.; Chriki, S. Can Agroecology Help in Meeting Our 2050 Protein Requirements? Livest. Sci. 2022, 256, 104822. [Google Scholar] [CrossRef]
- Hallström, E.; Carlsson-Kanyama, A.; Börjesson, P. Environmental Impact of Dietary Change: A Systematic Review. J. Clean. Prod. 2015, 91, 1–11. [Google Scholar] [CrossRef]
- Aleksandrowicz, L.; Green, R.; Joy, E.J.M.; Smith, P.; Haines, A. The Impacts of Dietary Change on Greenhouse Gas Emissions, Land Use, Water Use, and Health: A Systematic Review. PLoS ONE 2016, 11, e0165797. [Google Scholar] [CrossRef]
- Semba, R.D.; Rahman, N.; Du, S.; Ramsing, R.; Sullivan, V.; Nussbaumer, E.; Love, D.; Bloem, M.W. Patterns of Legume Purchases and Consumption in the United States. Front. Nutr. 2021, 8, 732237. [Google Scholar] [CrossRef]
- Smil, V. Eating Meat: Constants and Changes. Glob. Food Secur. 2014, 3, 67–71. [Google Scholar] [CrossRef]
- Nath, P.C.; Ojha, A.; Debnath, S.; Sharma, M.; Nayak, P.K.; Sridhar, K.; Inbaraj, B.S. Valorization of Food Waste as Animal Feed: A Step towards Sustainable Food Waste Management and Circular Bioeconomy. Animals 2023, 13, 1366. [Google Scholar] [CrossRef]
- WIAS; Animal Nutrition; LR—Animal Nutrition; Quantitative Veterinary Epidemiology; Business Economics; Mens, A.; Cone, J.; Van Den Borne, B.; Bosch, G. Capacities of Animals to Make Agri-Food Systems More Circular; Wageningen Livestock Research: Wageningen, The Netherlands, 2021. [Google Scholar]
- zu Ermgassen, E.K.H.J.; Phalan, B.; Green, R.E.; Balmford, A. Reducing the Land Use of EU Pork Production: Where There’s Swill, There’s a Way. Food Policy 2016, 58, 35–48. [Google Scholar] [CrossRef]
- Dou, Z.; Toth, J.D.; Westendorf, M.L. Food Waste for Livestock Feeding: Feasibility, Safety, and Sustainability Implications. Glob. Food Secur. 2018, 17, 154–161. [Google Scholar] [CrossRef]
- Gerber, P.J.; FAO (Eds.) Tackling Climate Change Through Livestock: A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013; ISBN 978-92-5-107920-1. [Google Scholar]
- Waite, R.; Zionts, J.; Cho, C. Toward “Better” Meat? Aligning Meat Sourcing Strategies with Corporate Climate and Sustainability Goals. World Resour. Inst. 2024, 76. [Google Scholar] [CrossRef]
- Pelletier, N.; Arsenault, N.; Tyedmers, P. Scenario Modeling Potential Eco-Efficiency Gains from a Transition to Organic Agriculture: Life Cycle Perspectives on Canadian Canola, Corn, Soy, and Wheat Production. Environ. Manag. 2008, 42, 989–1001. [Google Scholar] [CrossRef] [PubMed]
- Van Der Werf, H.M.G.; Salou, T. Economic Value as a Functional Unit for Environmental Labelling of Food and Other Consumer Products. J. Clean. Prod. 2015, 94, 394–397. [Google Scholar] [CrossRef]
- Haas, G.; Wetterich, F.; Köpke, U. Comparing Intensive, Extensified and Organic Grassland Farming in Southern Germany by Process Life Cycle Assessment. Agric. Ecosyst. Environ. 2001, 83, 43–53. [Google Scholar] [CrossRef]
- Escribano, M.; Horrillo, A.; Mesías, F.J. Greenhouse Gas Emissions and Carbon Sequestration in Organic Dehesa Livestock Farms. Does Technical-Economic Management Matters? J. Clean. Prod. 2022, 372, 133779. [Google Scholar] [CrossRef]
- Stewart, A.A.; Little, S.M.; Ominski, K.H.; Wittenberg, K.M.; Janzen, H.H. Evaluating Greenhouse Gas Mitigation Practices in Livestock Systems: An Illustration of a Whole-Farm Approach. J. Agric. Sci. 2009, 147, 367–382. [Google Scholar] [CrossRef]
- Pelletier, N.; Pirog, R.; Rasmussen, R. Comparative Life Cycle Environmental Impacts of Three Beef Production Strategies in the Upper Midwestern United States. Agric. Syst. 2010, 103, 380–389. [Google Scholar] [CrossRef]
- Crosson, P.; Shalloo, L.; O’Brien, D.; Lanigan, G.J.; Foley, P.A.; Boland, T.M.; Kenny, D.A. A Review of Whole Farm Systems Models of Greenhouse Gas Emissions from Beef and Dairy Cattle Production Systems. Anim. Feed Sci. Technol. 2011, 166–167, 29–45. [Google Scholar] [CrossRef]
- Silva, J.P.; Giehl, C.J.; Cardinal, K.M.; Andretta, I.; Ribeiro, A.M.L. Different Life Cycle Assessment Methods and Causes of Variation in Estimates of Global Warming in Chicken and Pork Production Systems: A Critical Systematic Review. Livest. Sci. 2023, 276, 105320. [Google Scholar] [CrossRef]
- Rowntree, J.E.; Stanley, P.L.; Maciel, I.C.F.; Thorbecke, M.; Rosenzweig, S.T.; Hancock, D.W.; Guzman, A.; Raven, M.R. Ecosystem Impacts and Productive Capacity of a Multi-Species Pastured Livestock System. Front. Sustain. Food Syst. 2020, 4, 544984. [Google Scholar] [CrossRef]
- Bai, Y.; Cotrufo, M.F. Grassland Soil Carbon Sequestration: Current Understanding, Challenges, and Solutions. Science 2022, 377, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Cotrufo, M.F.; Ranalli, M.G.; Haddix, M.L.; Six, J.; Lugato, E. Soil Carbon Storage Informed by Particulate and Mineral-Associated Organic Matter. Nat. Geosci. 2019, 12, 989–994. [Google Scholar] [CrossRef]
- Yang, Y.; Tilman, D.; Furey, G.; Lehman, C. Soil Carbon Sequestration Accelerated by Restoration of Grassland Biodiversity. Nat. Commun. 2019, 10, 718. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; O’Mara, F.; Rice, C.; et al. Greenhouse Gas Mitigation in Agriculture. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 789–813. [Google Scholar] [CrossRef] [PubMed]
- Henderson, B.B.; Gerber, P.J.; Hilinski, T.E.; Falcucci, A.; Ojima, D.S.; Salvatore, M.; Conant, R.T. Greenhouse Gas Mitigation Potential of the World’s Grazing Lands: Modeling Soil Carbon and Nitrogen Fluxes of Mitigation Practices. Agric. Ecosyst. Environ. 2015, 207, 91–100. [Google Scholar] [CrossRef]
- Herrero, M.; Henderson, B.; Havlík, P.; Thornton, P.K.; Conant, R.T.; Smith, P.; Wirsenius, S.; Hristov, A.N.; Gerber, P.; Gill, M.; et al. Greenhouse Gas Mitigation Potentials in the Livestock Sector. Nat. Clim. Chang. 2016, 6, 452–461. [Google Scholar] [CrossRef]
- Florindo, T.J.; Bom De Medeiros Florindo, G.I.; Ruviaro, C.F.; Pinto, A.T. Multicriteria Decision-Making and Probabilistic Weighing Applied to Sustainable Assessment of Beef Life Cycle. J. Clean. Prod. 2020, 242, 118362. [Google Scholar] [CrossRef]
- Herron, J.; Curran, T.P.; Moloney, A.P.; McGee, M.; O’Riordan, E.G.; O’Brien, D. Life Cycle Assessment of Pasture-Based Suckler Steer Weanling-to-Beef Production Systems: Effect of Breed and Slaughter Age. Animal 2021, 15, 100247. [Google Scholar] [CrossRef]
- Zira, S.; Röös, E.; Rydhmer, L.; Hoffmann, R. Sustainability Assessment of Economic, Environmental and Social Impacts, Feed-Food Competition and Economic Robustness of Dairy and Beef Farming Systems in South Western Europe. Sustain. Prod. Consum. 2023, 36, 439–448. [Google Scholar] [CrossRef]
- Von Greyerz, K.; Tidåker, P.; Karlsson, J.O.; Röös, E. A Large Share of Climate Impacts of Beef and Dairy Can Be Attributed to Ecosystem Services Other than Food Production. J. Environ. Manag. 2023, 325, 116400. [Google Scholar] [CrossRef]
- Brand, F.S.; Jax, K. Focusing the Meaning(s) of Resilience: Resilience as a Descriptive Concept and a Boundary Object. Ecol. Soc. 2007, 12, art23. [Google Scholar] [CrossRef]
- Pickett, S.T.A.; Cadenasso, M.L.; Grove, J.M. Resilient Cities: Meaning, Models, and Metaphor for Integrating the Ecological, Socio-Economic, and Planning Realms. Landsc. Urban Plan. 2004, 69, 369–384. [Google Scholar] [CrossRef]
- Ge, L.; Anten, N.P.; Van Dixhoorn, I.D.; Feindt, P.H.; Kramer, K.; Leemans, R.; Meuwissen, M.P.; Spoolder, H.; Sukkel, W. Why We Need Resilience Thinking to Meet Societal Challenges in Bio-Based Production Systems. Curr. Opin. Environ. Sustain. 2016, 23, 17–27. [Google Scholar] [CrossRef]
- Meuwissen, M.P.M.; Feindt, P.H.; Spiegel, A.; Termeer, C.J.A.M.; Mathijs, E.; Mey, Y.D.; Finger, R.; Balmann, A.; Wauters, E.; Urquhart, J.; et al. A Framework to Assess the Resilience of Farming Systems. Agric. Syst. 2019, 176, 102656. [Google Scholar] [CrossRef]
- Doran, J.W.; Zeiss, M.R. Soil Health and Sustainability: Managing the Biotic Component of Soil Quality. Appl. Soil Ecol. 2000, 15, 3–11. [Google Scholar] [CrossRef]
- Janzen, H.H.; Janzen, D.W.; Gregorich, E.G. The ‘Soil Health’ Metaphor: Illuminating or Illusory? Soil Biol. Biochem. 2021, 159, 108167. [Google Scholar] [CrossRef]
- Andrews, S.S.; Karlen, D.L.; Cambardella, C.A. The Soil Management Assessment Framework: A Quantitative Soil Quality Evaluation Method. Soil Sci. Soc. Am. J. 2004, 68, 1945–1962. [Google Scholar] [CrossRef]
- Moebius-Clune, B.N. Comprehensive Assessment of Soil Health: The Cornell Framework Manual, 3rd ed.; Cornell University: Ithaca, NY, USA, 2016; ISBN 978-0-9676507-6-0. [Google Scholar]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; De Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil Quality—A Critical Review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Gauthier, M.; Hogue, R.; D’Astous-Pagé, J.; Champagne, M.; Halde, C. Developing Scoring Functions Based on Soil Texture to Assess Agricultural Soil Health in Quebec, Canada. Can. J. Soil Sci. 2023, 103, 618–633. [Google Scholar] [CrossRef]
- Xu, S.; Jagadamma, S.; Rowntree, J. Response of Grazing Land Soil Health to Management Strategies: A Summary Review. Sustainability 2018, 10, 4769. [Google Scholar] [CrossRef]
- Zhang, F.; Li, Y.; Yang, M.; Li, W. Content of Heavy Metals in Animal Feeds and Manures from Farms of Different Scales in Northeast China. Int. J. Environ. Res. Public Health 2012, 9, 2658–2668. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, P.L.; Hatfield, J.L. Dairy Manure and Synthetic Fertilizer: A Meta-Analysis of Crop Production and Environmental Quality. Agrosystems Geosci. Environ. 2019, 2, 1–12. [Google Scholar] [CrossRef]
- Thornton, P.K. Livestock Production: Recent Trends, Future Prospects. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2853–2867. [Google Scholar] [CrossRef] [PubMed]
- Boogaard, B.K.; Bock, B.B.; Oosting, S.J.; Wiskerke, J.S.C.; Van Der Zijpp, A.J. Social Acceptance of Dairy Farming: The Ambivalence Between the Two Faces of Modernity. J. Agric. Environ. Ethics 2011, 24, 259–282. [Google Scholar] [CrossRef]
- Bartlett, H.; Balmford, A.; Holmes, M.A.; Wood, J.L.N. Advancing the Quantitative Characterization of Farm Animal Welfare. Proc. R. Soc. B Biol. Sci. 2023, 290, 20230120. [Google Scholar] [CrossRef]
- Mellor, D. Updating Animal Welfare Thinking: Moving beyond the “Five Freedoms” towards “A Life Worth Living.”. Animals 2016, 6, 21. [Google Scholar] [CrossRef]
- Meijboom, F.L.B.; Staman, J.; Pothoven, R. From Blind Spot to Crucial Concept: On the Role of Animal Welfare in Food System Changes towards Circular Agriculture. J. Agric. Environ. Ethics 2023, 36, 14. [Google Scholar] [CrossRef]
- Jamali, H.; Barkema, H.W.; Jacques, M.; Lavallée-Bourget, E.-M.; Malouin, F.; Saini, V.; Stryhn, H.; Dufour, S. Invited Review: Incidence, Risk Factors, and Effects of Clinical Mastitis Recurrence in Dairy Cows. J. Dairy Sci. 2018, 101, 4729–4746. [Google Scholar] [CrossRef]
- Merialdi, G.; Dottori, M.; Bonilauri, P.; Luppi, A.; Gozio, S.; Pozzi, P.; Spaggiari, B.; Martelli, P. Survey of Pleuritis and Pulmonary Lesions in Pigs at Abattoir with a Focus on the Extent of the Condition and Herd Risk Factors. Vet. J. 2012, 193, 234–239. [Google Scholar] [CrossRef]
- Hartcher, K.M.; Lum, H.K. Genetic Selection of Broilers and Welfare Consequences: A Review. Worlds Poult. Sci. J. 2020, 76, 154–167. [Google Scholar] [CrossRef]
- Prunier, A.; Mounier, A.M.; Hay, M. Effects of Castration, Tooth Resection, or Tail Docking on Plasma Metabolites and Stress Hormones in Young Pigs1. J. Anim. Sci. 2005, 83, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Von Borell, E.; Baumgartner, J.; Giersing, M.; Jäggin, N.; Prunier, A.; Tuyttens, F.A.M.; Edwards, S.A. Animal Welfare Implications of Surgical Castration and Its Alternatives in Pigs. Animal 2009, 3, 1488–1496. [Google Scholar] [CrossRef] [PubMed]
- Stafford, K.J.; Mellor, D.J. Addressing the Pain Associated with Disbudding and Dehorning in Cattle. Appl. Anim. Behav. Sci. 2011, 135, 226–231. [Google Scholar] [CrossRef]
- Tang, K.L.; Caffrey, N.P.; Nóbrega, D.B.; Cork, S.C.; Ronksley, P.E.; Barkema, H.W.; Polachek, A.J.; Ganshorn, H.; Sharma, N.; Kellner, J.D.; et al. Restricting the Use of Antibiotics in Food-Producing Animals and Its Associations with Antibiotic Resistance in Food-Producing Animals and Human Beings: A Systematic Review and Meta-Analysis. Lancet Planet. Health 2017, 1, e316–e327. [Google Scholar] [CrossRef]
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Åkerfeldt, M.P.; Gunnarsson, S.; Bernes, G.; Blanco-Penedo, I. Health and Welfare in Organic Livestock Production Systems—A Systematic Mapping of Current Knowledge. Org. Agric. 2021, 11, 105–132. [Google Scholar] [CrossRef]
- Zira, S.; Röös, E.; Ivarsson, E.; Hoffmann, R.; Rydhmer, L. Social Life Cycle Assessment of Swedish Organic and Conventional Pork Production. Int. J. Life Cycle Assess. 2020, 25, 1957–1975. [Google Scholar] [CrossRef]
- Petherick, J.C.; Phillips, C.J.C. Space Allowances for Confined Livestock and Their Determination from Allometric Principles. Appl. Anim. Behav. Sci. 2009, 117, 1–12. [Google Scholar] [CrossRef]
- Leeb, C. The Concept of Animal Welfare at the Interface between Producers and Scientists: The Example of Organic Pig Farming. Acta Biotheor. 2011, 59, 173–183. [Google Scholar] [CrossRef]
- Modernel, P.; Picasso, V.; Do Carmo, M.; Rossing, W.A.H.; Corbeels, M.; Soca, P.; Dogliotti, S.; Tittonell, P. Grazing Management for More Resilient Mixed Livestock Farming Systems on Native Grasslands of Southern South America. Grass Forage Sci. 2019, 74, 636–649. [Google Scholar] [CrossRef]
- Bartlett, H.; Zanella, M.; Kaori, B.; Sabei, L.; Araujo, M.S.; De Paula, T.M.; Zanella, A.J.; Holmes, M.A.; Wood, J.L.N.; Balmford, A. Trade-Offs in the Externalities of Pig Production Are Not Inevitable. Nat. Food 2024, 5, 312–322. [Google Scholar] [CrossRef] [PubMed]
- Delsart, M.; Pol, F.; Dufour, B.; Rose, N.; Fablet, C. Pig Farming in Alternative Systems: Strengths and Challenges in Terms of Animal Welfare, Biosecurity, Animal Health and Pork Safety. Agriculture 2020, 10, 261. [Google Scholar] [CrossRef]
- Petherick, J.C. Animal Welfare Issues Associated with Extensive Livestock Production: The Northern Australian Beef Cattle Industry. Appl. Anim. Behav. Sci. 2005, 92, 211–234. [Google Scholar] [CrossRef]
- Pietrosemoli, S.; Tang, C. Animal Welfare and Production Challenges Associated with Pasture Pig Systems: A Review. Agriculture 2020, 10, 223. [Google Scholar] [CrossRef]
- Rook, A.J.; Dumont, B.; Isselstein, J.; Osoro, K.; WallisDeVries, M.F.; Parente, G.; Mills, J. Matching Type of Livestock to Desired Biodiversity Outcomes in Pastures—A Review. Biol. Conserv. 2004, 119, 137–150. [Google Scholar] [CrossRef]
- Wang, L.; Delgado-Baquerizo, M.; Wang, D.; Isbell, F.; Liu, J.; Feng, C.; Liu, J.; Zhong, Z.; Zhu, H.; Yuan, X.; et al. Diversifying Livestock Promotes Multidiversity and Multifunctionality in Managed Grasslands. Proc. Natl. Acad. Sci. USA 2019, 116, 6187–6192. [Google Scholar] [CrossRef]
- Hessle, A.; Rutter, M.; Wallin, K. Effect of Breed, Season and Pasture Moisture Gradient on Foraging Behaviour in Cattle on Semi-Natural Grasslands. Appl. Anim. Behav. Sci. 2008, 111, 108–119. [Google Scholar] [CrossRef]
- Dumont, B.; Franca, A.; López-i-Gelats, F.; Mosnier, C.; Pauler, C.M. Diversification Increases the Resilience of European Grassland-Based Systems but Is Not a One-Size-Fits-All Strategy. Grass Forage Sci. 2022, 77, 247–256. [Google Scholar] [CrossRef]
- Resare Sahlin, K.; Gordon, L.J.; Lindborg, R.; Piipponen, J.; Van Rysselberge, P.; Rouet-Leduc, J.; Röös, E. An Exploration of Biodiversity Limits to Grazing Ruminant Milk and Meat Production. Nat. Sustain. 2024, 7, 1160–1170. [Google Scholar] [CrossRef]
- Dominati, E.J.; Mackay, A.D.; Rendel, J.M.; Wall, A.; Norton, D.A.; Pannell, J.; Devantier, B. Farm Scale Assessment of the Impacts of Biodiversity Enhancement on the Financial and Environmental Performance of Mixed Livestock Farms in New Zealand. Agric. Syst. 2021, 187, 103007. [Google Scholar] [CrossRef]
- Cole, L.J.; Stockan, J.; Helliwell, R. Managing Riparian Buffer Strips to Optimise Ecosystem Services: A Review. Agric. Ecosyst. Environ. 2020, 296, 106891. [Google Scholar] [CrossRef]
- Frei, B.; Renard, D.; Mitchell, M.G.E.; Seufert, V.; Chaplin-Kramer, R.; Rhemtulla, J.M.; Bennett, E.M. Bright Spots in Agricultural Landscapes: Identifying Areas Exceeding Expectations for Multifunctionality and Biodiversity. J. Appl. Ecol. 2018, 55, 2731–2743. [Google Scholar] [CrossRef]
- Karlsson, J.O.; Tidåker, P.; Röös, E. Smaller Farm Size and Ruminant Animals Are Associated with Increased Supply of Non-Provisioning Ecosystem Services. Ambio 2022, 51, 2025–2042. [Google Scholar] [CrossRef]
- Torralba, M.; Fagerholm, N.; Burgess, P.J.; Moreno, G.; Plieninger, T. Do European Agroforestry Systems Enhance Biodiversity and Ecosystem Services? A Meta-Analysis. Agric. Ecosyst. Environ. 2016, 230, 150–161. [Google Scholar] [CrossRef]
- Fahad, S.; Chavan, S.B.; Chichaghare, A.R.; Uthappa, A.R.; Kumar, M.; Kakade, V.; Pradhan, A.; Jinger, D.; Rawale, G.; Yadav, D.K.; et al. Agroforestry Systems for Soil Health Improvement and Maintenance. Sustainability 2022, 14, 14877. [Google Scholar] [CrossRef]
- Matos, P.S.; Cherubin, M.R.; Damian, J.M.; Rocha, F.I.; Pereira, M.G.; Zonta, E. Short-Term Effects of Agroforestry Systems on Soil Health in Southeastern Brazil. Agrofor. Syst. 2022, 96, 897–908. [Google Scholar] [CrossRef]
- McClelland, S.C.; Arndt, C.; Gordon, D.R.; Thoma, G. Type and Number of Environmental Impact Categories Used in Livestock Life Cycle Assessment: A Systematic Review. Livest. Sci. 2018, 209, 39–45. [Google Scholar] [CrossRef]
- Chaudhary, A.; Brooks, T.M. Land Use Intensity-Specific Global Characterization Factors to Assess Product Biodiversity Footprints. Environ. Sci. Technol. 2018, 52, 5094–5104. [Google Scholar] [CrossRef]
- Pépin, A.; Morel, K.; Van Der Werf, H.M.G. Conventionalised vs. Agroecological Practices on Organic Vegetable Farms: Investigating the Influence of Farm Structure in a Bifurcation Perspective. Agric. Syst. 2021, 190, 103129. [Google Scholar] [CrossRef]
- Jeanneret, P.; Baumgartner, D.U.; Freiermuth Knuchel, R.; Koch, B.; Gaillard, G. An Expert System for Integrating Biodiversity into Agricultural Life-Cycle Assessment. Ecol. Indic. 2014, 46, 224–231. [Google Scholar] [CrossRef]
- Knudsen, M.T.; Hermansen, J.E.; Cederberg, C.; Herzog, F.; Vale, J.; Jeanneret, P.; Sarthou, J.-P.; Friedel, J.K.; Balázs, K.; Fjellstad, W.; et al. Characterization Factors for Land Use Impacts on Biodiversity in Life Cycle Assessment Based on Direct Measures of Plant Species Richness in European Farmland in the ‘Temperate Broadleaf and Mixed Forest’ Biome. Sci. Total Environ. 2017, 580, 358–366. [Google Scholar] [CrossRef] [PubMed]
- Pépin, A.; Guidoboni, M.V.; Jeanneret, P.; Van Der Werf, H.M.G. Using an Expert System to Assess Biodiversity in Life Cycle Assessment of Vegetable Crops. Ecol. Indic. 2023, 148, 110098. [Google Scholar] [CrossRef]
- Fischer, J.; Abson, D.J.; Butsic, V.; Chappell, M.J.; Ekroos, J.; Hanspach, J.; Kuemmerle, T.; Smith, H.G.; Von Wehrden, H. Land Sparing Versus Land Sharing: Moving Forward. Conserv. Lett. 2014, 7, 149–157. [Google Scholar] [CrossRef]
- Bennett, E.M. Changing the Agriculture and Environment Conversation. Nat. Ecol. Evol. 2017, 1, 0018. [Google Scholar] [CrossRef]
- Fraanje, W.; Garnett, T.; Lee-Gammage, S. What Is the Land Sparing-Sharing Continuum? Food Climate Research Network: Oxford, UK, 2018. [Google Scholar]
- Balmford, A. Concentrating vs. Spreading Our Footprint: How to Meet Humanity’s Needs at Least Cost to Nature. J. Zool. 2021, 315, 79–109. [Google Scholar] [CrossRef]
- Kremen, C. Reframing the Land-sparing/Land-sharing Debate for Biodiversity Conservation. Ann. N. Y. Acad. Sci. 2015, 1355, 52–76. [Google Scholar] [CrossRef]
- Grass, I.; Loos, J.; Baensch, S.; Batáry, P.; Librán-Embid, F.; Ficiciyan, A.; Klaus, F.; Riechers, M.; Rosa, J.; Tiede, J.; et al. Land-sharing/-sparing Connectivity Landscapes for Ecosystem Services and Biodiversity Conservation. People Nat. 2019, 1, 262–272. [Google Scholar] [CrossRef]
- Feniuk, C.; Balmford, A.; Green, R.E. Land Sparing to Make Space for Species Dependent on Natural Habitats and High Nature Value Farmland. Proc. R. Soc. B Biol. Sci. 2019, 286, 20191483. [Google Scholar] [CrossRef]
- Harvey, C.A.; Villanueva, C.; Villacís, J.; Chacón, M.; Muñoz, D.; López, M.; Ibrahim, M.; Gómez, R.; Taylor, R.; Martinez, J.; et al. Contribution of Live Fences to the Ecological Integrity of Agricultural Landscapes. Agric. Ecosyst. Environ. 2005, 111, 200–230. [Google Scholar] [CrossRef]
- Tiang, D.C.F.; Morris, A.; Bell, M.; Gibbins, C.N.; Azhar, B.; Lechner, A.M. Ecological Connectivity in Fragmented Agricultural Landscapes and the Importance of Scattered Trees and Small Patches. Ecol. Process. 2021, 10, 20. [Google Scholar] [CrossRef]
- Botzas-Coluni, J.; Crockett, E.T.H.; Rieb, J.T.; Bennett, E.M. Farmland Heterogeneity Is Associated with Gains in Some Ecosystem Services but Also Potential Trade-Offs. Agric. Ecosyst. Environ. 2021, 322, 107661. [Google Scholar] [CrossRef]
- Des Roches, S.; Pendleton, L.H.; Shapiro, B.; Palkovacs, E.P. Conserving Intraspecific Variation for Nature’s Contributions to People. Nat. Ecol. Evol. 2021, 5, 574–582. [Google Scholar] [CrossRef] [PubMed]
- Selmi, A.; Joly, P.-B.; Remondet, M. La construction d’un «animal nouveau»: La sélection génétique entre production de savoirs, marchés et action collective. Nat. Sci. Sociétés 2014, 22, 33–41. [Google Scholar] [CrossRef]
- FAO (Ed.) The State of the World’s Animal Genetic Resources for Food and Agriculture: (Including Annexes); Also Included: In Brief Versions in 6 Languages and Full Report in Chinese; FAO: Rome, Italy, 2007; ISBN 978-92-5-105762-9. [Google Scholar]
- Monsón, F.; Sañudo, C.; Sierra, I. Influence of Cattle Breed and Ageing Time on Textural Meat Quality. Meat Sci. 2004, 68, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Ryu, Y.C.; Choi, Y.M.; Lee, S.H.; Shin, H.G.; Choe, J.H.; Kim, J.M.; Hong, K.C.; Kim, B.C. Comparing the Histochemical Characteristics and Meat Quality Traits of Different Pig Breeds. Meat Sci. 2008, 80, 363–369. [Google Scholar] [CrossRef]
- FAO. The Second Report on the State of the World’s Animal Genetic Resources for Food and Agriculture; FAO: Rome, Italy, 2015. [Google Scholar]
- Benoit, M.; Martin, G.; Steinmetz, L.; Ulukan, D.; Bernes, G.; Brock, C.; De La Foye, A.; Grillot, M.; Magne, M.-A.; Meischner, T.; et al. Interactions between Animal Enterprises and Marketing Strategies Shape Organic Multispecies Farming Systems. Agron. Sustain. Dev. 2023, 43, 77. [Google Scholar] [CrossRef]
- Bell, L.W.; Moore, A.D. Integrated Crop–Livestock Systems in Australian Agriculture: Trends, Drivers and Implications. Agric. Syst. 2012, 111, 1–12. [Google Scholar] [CrossRef]
- Wilkins, R.J. Eco-Efficient Approaches to Land Management: A Case for Increased Integration of Crop and Animal Production Systems. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 517–525. [Google Scholar] [CrossRef]
- Ryschawy, J.; Martin, G.; Moraine, M.; Duru, M.; Therond, O. Designing Crop–Livestock Integration at Different Levels: Toward New Agroecological Models? Nutr. Cycl. Agroecosystems 2017, 108, 5–20. [Google Scholar] [CrossRef]
- Ryschawy, J.; Moraine, M.; Péquignot, M.; Martin, G. Trade-Offs among Individual and Collective Performances Related to Crop–Livestock Integration among Farms: A Case Study in Southwestern France. Org. Agric. 2019, 9, 399–416. [Google Scholar] [CrossRef]
- Martin, G.; Moraine, M.; Ryschawy, J.; Magne, M.-A.; Asai, M.; Sarthou, J.-P.; Duru, M.; Therond, O. Crop–Livestock Integration beyond the Farm Level: A Review. Agron. Sustain. Dev. 2016, 36, 53. [Google Scholar] [CrossRef]
- Afi, M.; Parsons, J. Integrated vs. Specialized Farming Systems for Sustainable Food Production: Comparative Analysis of Systems’ Technical Efficiency in Nebraska. Sustainability 2023, 15, 5413. [Google Scholar] [CrossRef]
- Mundler, P.; Jean-Gagnon, J. Short Food Supply Chains, Labor Productivity and Fair Earnings: An Impossible Equation? Renew. Agric. Food Syst. 2020, 35, 697–709. [Google Scholar] [CrossRef]
- Hardesty, S.D.; Leff, P. Determining Marketing Costs and Returns in Alternative Marketing Channels. Renew. Agric. Food Syst. 2010, 25, 24–34. [Google Scholar] [CrossRef]
- Uematsu, H.; Mishra, A.K. Use of Direct Marketing Strategies by Farmers and Their Impact on Farm Business Income. Agric. Resour. Econ. Rev. 2011, 40, 1–19. [Google Scholar] [CrossRef]
- Van Der Ploeg, J.D.; Barjolle, D.; Bruil, J.; Brunori, G.; Costa Madureira, L.M.; Dessein, J.; Drąg, Z.; Fink-Kessler, A.; Gasselin, P.; Gonzalez De Molina, M.; et al. The Economic Potential of Agroecology: Empirical Evidence from Europe. J. Rural Stud. 2019, 71, 46–61. [Google Scholar] [CrossRef]
- Gale, F. Direct Farm Marketing as a Rural Development Tool. Rural. Am. Rural. Dev. Perspect. 1997, 12, 19–25. [Google Scholar]
- Martinez, S.; Hand, M.; Pra, M.D.; Pollack, S.; Ralston, K.; Smith, T.; Vogel, S.; Clark, S.; Lohr, L.; Low, S.; et al. Local Food Systems: Concepts, Impacts, and Issues; Economic Research Report Number 97; United States Department of Agriculture: Washington, DC, USA, 2010. [Google Scholar]
- Utter, A.; White, A.; Méndez, V.E.; Morris, K. Co-Creation of Knowledge in Agroecology. Elem. Sci. Anthr. 2021, 9, 00026. [Google Scholar] [CrossRef]
- Beckie, M.A.; Kennedy, E.H.; Wittman, H. Scaling up Alternative Food Networks: Farmers’ Markets and the Role of Clustering in Western Canada. Agric. Hum. Values 2012, 29, 333–345. [Google Scholar] [CrossRef]
- Triste, L.; Debruyne, L.; Vandenabeele, J.; Marchand, F.; Lauwers, L. Communities of Practice for Knowledge Co-Creation on Sustainable Dairy Farming: Features for Value Creation for Farmers. Sustain. Sci. 2018, 13, 1427–1442. [Google Scholar] [CrossRef]
- Dolinska, A.; d’Aquino, P. Farmers as Agents in Innovation Systems. Empowering Farmers for Innovation through Communities of Practice. Agric. Syst. 2016, 142, 122–130. [Google Scholar] [CrossRef]
- Nelson, E.; Hargreaves, S.; Muldoon, D. Farmer Knowledge as Formal Knowledge: A Case Study of Farmer-Led Research in Ontario, Canada. J. Agric. Food Syst. Community Dev. 2023, 12, 15–38. [Google Scholar] [CrossRef]
- Peyraud, J.-L.; Taboada, M.; Delaby, L. Integrated Crop and Livestock Systems in Western Europe and South America: A Review. Eur. J. Agron. 2014, 57, 31–42. [Google Scholar] [CrossRef]
- Lander, B.; Schneider, M.; Brunson, K. A History of Pigs in China: From Curious Omnivores to Industrial Pork. J. Asian Stud. 2020, 79, 865–889. [Google Scholar] [CrossRef]
- Leroy, F.; Praet, I. Meat Traditions. The Co-Evolution of Humans and Meat. Appetite 2015, 90, 200–211. [Google Scholar] [CrossRef]
- Tittonell, P.; Hara, S.M.; Álvarez, V.E.; Aramayo, V.M.; Bruzzone, O.A.; Easdale, M.H.; Enriquez, A.S.; Laborda, L.; Trinco, F.D.; Villagra, S.E.; et al. Ecosystem Services and Disservices Associated with Pastoral Systems from Patagonia, Argentina—A Review. Cah. Agric. 2021, 30, 43. [Google Scholar] [CrossRef]
- McCarthy, J.; Meredith, D.; Bonnin, C. ‘You Have to Keep It Going’: Relational Values and Social Sustainability in Upland Agriculture. Sociol. Rural. 2023, 63, 588–610. [Google Scholar] [CrossRef]
- Reyes-Palomo, C.; Aguilera, E.; Llorente, M.; Díaz-Gaona, C.; Moreno, G.; Rodríguez-Estévez, V. Free-Range Acorn Feeding Results in Negative Carbon Footprint of Iberian Pig Production in the Dehesa Agro-Forestry System. J. Clean. Prod. 2023, 418, 138170. [Google Scholar] [CrossRef]
- Ryschawy, J.; Disenhaus, C.; Bertrand, S.; Allaire, G.; Aznar, O.; Plantureux, S.; Josien, E.; Guinot, C.; Lasseur, J.; Perrot, C.; et al. Assessing Multiple Goods and Services Derived from Livestock Farming on a Nation-Wide Gradient. Animal 2017, 11, 1861–1872. [Google Scholar] [CrossRef]
- Beudou, J.; Martin, G.; Ryschawy, J. Cultural and Territorial Vitality Services Play a Key Role in Livestock Agroecological Transition in France. Agron. Sustain. Dev. 2017, 37, 36. [Google Scholar] [CrossRef]
- Biewener, C. Paid Work, Unpaid Work, and Economic Viability in Alternative Food Initiatives: Reflections from Three Boston Urban Agriculture Endeavors. J. Agric. Food Syst. Community Dev. 2016, 6, 35–53. [Google Scholar] [CrossRef]
- Erwin, A. Pondering Farmworker Justice: The Visible and Invisible Borders of Social Change. J. Agric. Food Syst. Community Dev. 2016, 6, 29–33. [Google Scholar] [CrossRef]
- Galt, R.E. The Moral Economy Is a Double-edged Sword: Explaining Farmers’ Earnings and Self-exploitation in Community-Supported Agriculture. Econ. Geogr. 2013, 89, 341–365. [Google Scholar] [CrossRef]
- Bruce, A.B.; Som Castellano, R.L. Labor and Alternative Food Networks: Challenges for Farmers and Consumers. Renew. Agric. Food Syst. 2017, 32, 403–416. [Google Scholar] [CrossRef]
- Norris, G.A. Integrating Life Cycle Cost Analysis and LCA. Int. J. Life Cycle Assess. 2001, 6, 118–120. [Google Scholar] [CrossRef]
- Neugebauer, S.; Forin, S.; Finkbeiner, M. From Life Cycle Costing to Economic Life Cycle Assessment—Introducing an Economic Impact Pathway. Sustainability 2016, 8, 428. [Google Scholar] [CrossRef]
- Degieter, M.; Gellynck, X.; Goyal, S.; Ott, D.; De Steur, H. Life Cycle Cost Analysis of Agri-Food Products: A Systematic Review. Sci. Total Environ. 2022, 850, 158012. [Google Scholar] [CrossRef]
- Florindo, T.J.; De Medeiros Florindo, G.I.B.; Talamini, E.; Da Costa, J.S.; Ruviaro, C.F. Carbon Footprint and Life Cycle Costing of Beef Cattle in the Brazilian Midwest. J. Clean. Prod. 2017, 147, 119–129. [Google Scholar] [CrossRef]
- Trabelsi, M.; Mandart, E.; Le Grusse, P.; Bord, J.-P. ESSIMAGE: A Tool for the Assessment of the Agroecological Performance of Agricultural Production Systems. Environ. Sci. Pollut. Res. 2019, 26, 9257–9280. [Google Scholar] [CrossRef]
- Duval, J.; Cournut, S.; Hostiou, N. Livestock Farmers’ Working Conditions in Agroecological Farming Systems. A Review. Agron. Sustain. Dev. 2021, 41, 22. [Google Scholar] [CrossRef]
- Duval, J.E.; Blanchonnet, A.; Hostiou, N. How Agroecological Farming Practices Reshape Cattle Farmers’ Working Conditions. Agroecol. Sustain. Food Syst. 2021, 45, 1480–1499. [Google Scholar] [CrossRef]
- Bendahan, A.B.; Poccard-Chapuis, R.; De Medeiros, R.D.; De Lucena Costa, N.; Tourrand, J.-F. Management and Labour in an Integrated Crop-Livestock-Forestry System in Roraima, Brazilian Amazonia. Cah. Agric. 2018, 27, 25005. [Google Scholar] [CrossRef]
- Lusson, J.-M.; Coquil, X. Transitions vers des systèmes autonomes et économes en intrants avec élevages de bovins: Freins, motivations, apprentissages. Innov. Agron. 2016, 49, 353–364. [Google Scholar] [CrossRef]
- Cournut, S.; Chauvat, S.; Correa, P.; Santos Filho, J.C.D.; Diéguez, F.; Hostiou, N.; Pham, D.K.; Servière, G.; Sraïri, M.T.; Turlot, A.; et al. Analyzing Work Organization on Livestock Farm by the Work Assessment Method. Agron. Sustain. Dev. 2018, 38, 58. [Google Scholar] [CrossRef]
- Kling-Eveillard, F.; Cerf, M.; Chauvat, S.; Sabatte, N. Le travail, sujet intime et multifacette: Premières recommandations pour l’aborder dans le conseil en élevage. INRAE Prod. Anim. 2012, 25, 211–220. [Google Scholar] [CrossRef]
- Besser, T.; Mann, S. Which Farm Characteristics Influence Work Satisfaction? An Analysis of Two Agricultural Systems. Agric. Syst. 2015, 141, 107–112. [Google Scholar] [CrossRef]
- Schanz, L.; Oehen, B.; Benoit, M.; Bernes, G.; Magne, M.-A.; Martin, G.; Winckler, C. High Work Satisfaction despite High Workload among European Organic Mixed Livestock Farmers: A Mixed-Method Approach. Agron. Sustain. Dev. 2023, 43, 4. [Google Scholar] [CrossRef]
- Mundler, P.; Laughrea, S. The Contributions of Short Food Supply Chains to Territorial Development: A Study of Three Quebec Territories. J. Rural Stud. 2016, 45, 218–229. [Google Scholar] [CrossRef]
- Loconto, A.; Jimenez, A.; Vandecandelaere, E.; Tartanac, F. Agroecology, Local Food Systems and Their Markets. Ager Rev. Estud. Sobre Despoblación Desarro. Rural 2018, 25, 13–42. [Google Scholar] [CrossRef]
- Azima, S.; Mundler, P. Does Direct Farm Marketing Fulfill Its Promises? Analyzing Job Satisfaction among Direct-Market Farmers in Canada. Agric. Hum. Values 2022, 39, 791–807. [Google Scholar] [CrossRef]
- Azima, S.; Mundler, P. Farmer Satisfaction and Short Food Supply Chains. Agric. Hum. Values 2023, 40, 1531–1536. [Google Scholar] [CrossRef] [PubMed]
- Mundler, P. The Role of Proximity in Food Systems. In Handbook of Proximity Relations; Torre, A., Gallaud, D., Eds.; Edward Elgar Publishing: Cheltenham, UK, 2022; ISBN 978-1-78643-478-4. [Google Scholar]
- Schoolman, E.D. Do Direct Market Farms Use Fewer Agricultural Chemicals? Evidence from the US Census of Agriculture. Renew. Agric. Food Syst. 2019, 34, 415–429. [Google Scholar] [CrossRef]
- Chiaverina, P.; Drogué, S.; Jacquet, F. Do Farmers Participating in Short Food Supply Chains Use Less Pesticides? Evidence from France. Ecol. Econ. 2024, 216, 108034. [Google Scholar] [CrossRef]
- Mundler, P.; Rumpus, L. The Energy Efficiency of Local Food Systems: A Comparison between Different Modes of Distribution. Food Policy 2012, 37, 609–615. [Google Scholar] [CrossRef]
- Enthoven, L.; Van Den Broeck, G. Local Food Systems: Reviewing Two Decades of Research. Agric. Syst. 2021, 193, 103226. [Google Scholar] [CrossRef]
- Alonso, A.D. To What Extent Do Farmers Educate Consumers? A Case Study from Alabama. J. Agric. Food Inf. 2010, 11, 307–321. [Google Scholar] [CrossRef]
- Vittersø, G.; Torjusen, H.; Laitala, K.; Tocco, B.; Biasini, B.; Csillag, P.; De Labarre, M.D.; Lecoeur, J.-L.; Maj, A.; Majewski, E.; et al. Short Food Supply Chains and Their Contributions to Sustainability: Participants’ Views and Perceptions from 12 European Cases. Sustainability 2019, 11, 4800. [Google Scholar] [CrossRef]
- Goland, C.; Bauer, S. When the Apple Falls Close to the Tree: Local Food Systems and the Preservation of Diversity. Renew. Agric. Food Syst. 2004, 19, 228–236. [Google Scholar] [CrossRef]
- Björklund, J.; Westberg, L.; Geber, U.; Milestad, R.; Ahnström, J. Local Selling as a Driving Force for Increased On-Farm Biodiversity. J. Sustain. Agric. 2009, 33, 885–902. [Google Scholar] [CrossRef]
- Wells, B.L.; Gradwell, S. Gender and Resource Management: Community Supported Agriculture as Caring-Practice. Agric. Hum. Values 2001, 18, 107–119. [Google Scholar] [CrossRef]
- Mann, S.; Lanz, S. Happy Tinbergen: Switzerland’s New Direct Payment System. EuroChoices 2013, 12, 24–28. [Google Scholar] [CrossRef]
- Mann, S.; Hunziker, M.; Torregroza, L.; Wartmann, F.; Kienast, F.; Schüpbach, B. Landscape Quality Payments in Switzerland: The Congruence between Policy and Preferences. J. Policy Model. 2023, 45, 251–265. [Google Scholar] [CrossRef]
- Hinrichs, C.C. Embeddedness and Local Food Systems: Notes on Two Types of Direct Agricultural Market. J. Rural Stud. 2000, 16, 295–303. [Google Scholar] [CrossRef]
- Paul, M. Community-supported Agriculture in the United States: Social, Ecological, and Economic Benefits to Farming. J. Agrar. Chang. 2019, 19, 162–180. [Google Scholar] [CrossRef]
- Turunen, A.; Aro, R.; Huttunen, S. Intra-Acting Food Citizenship in Community-Supported Agriculture in Finland. J. Agric. Environ. Ethics 2023, 36, 15. [Google Scholar] [CrossRef]
- Wezel, A.; Fleury, P.; David, C.; Mundler, P. The Food System Approach in Agroecology Supported by Natural and Social Sciences: Topics, Concepts, Applications. In Agroecology, Ecosystems, and Sustainability; Benkeblia, N., Ed.; CRC Press: Boca Raton, FL, USA, 2014; pp. 198–217. ISBN 978-0-429-15937-4. [Google Scholar]
- Hochedez, C. Food Justice: Processes, Practices and Perspectives. Rev. Agric. Food Environ. Stud. 2022, 103, 305–320. [Google Scholar] [CrossRef]
- Sosa Varrotti, A.P.; Ramírez, D.C.; Serpe, P.C. Land Grabbing and Agribusiness in Argentina: Five Critical Dimensions for Analysing Corporate Strategies and Its Impacts over Unequal Actors. Rev. Agric. Food Environ. Stud. 2022, 103, 417–437. [Google Scholar] [CrossRef]
- Gallardo Gomez, J.; Darrot, C. The Role of Low-Income Consumers in Food System Transitions: Case Studies of Community Supported Agriculture and Social Groceries in France. Rev. Agric. Food Environ. Stud. 2022, 103, 369–392. [Google Scholar] [CrossRef]
- Guillemin, P. Food (in)Justice and Social Inequalities in Vegetable and Market Garden Production in Normandy, France. Rev. Agric. Food Environ. Stud. 2022, 103, 321–345. [Google Scholar] [CrossRef]
- Sage, C.L. The Food System, Planetary Boundaries and Eating for 1.5 °C: The Case for Mutualism and Commensality Within a Safe and Just Operating Space for Humankind; Edward Elgar Publishing: Cheltenham, UK, 2022; ISBN 978-1-80088-026-9. [Google Scholar]
- Hernandez-Espallardo, M.; Arcas-Lario, N.; Marcos-Matas, G. Farmers’ Satisfaction and Intention to Continue Membership in Agricultural Marketing Co-Operatives: Neoclassical versus Transaction Cost Considerations. Eur. Rev. Agric. Econ. 2013, 40, 239–260. [Google Scholar] [CrossRef]
- Laughrea, S.; Mundler, P.; Royer, A. Les coopératives alimentaires en circuits courts: Quelles motivations d’adhésion et d’engagement chez les agriculteurs? RECMA 2018, 347, 111–127. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Barr, M. The Transformative Power of Commoning and Alternative Food Networks. Environ. Polit. 2019, 28, 771–789. [Google Scholar] [CrossRef]
- Bain, J.; Harden, N.; Nordrum, S.; Olive, R. Cultivating Powerful Participation: Reflections from a Food Justice and Facilitation Learning Experience. J. Agric. Food Syst. Community Dev. 2021, 11, 59–80. [Google Scholar] [CrossRef]
- Candemir, A.; Duvaleix, S.; Latruffe, L. Agricultural cooperatives and farm sustainability—A literature review. J. Econ. Surv. 2021, 35, 1118–1144. [Google Scholar] [CrossRef]
- Van Der Ploeg, J.D. Peasant-Driven Agricultural Growth and Food Sovereignty. J. Peasant Stud. 2014, 41, 999–1030. [Google Scholar] [CrossRef]
- Barbieri, P.; Dumont, B.; Benoit, M.; Nesme, T. Opinion Paper: Livestock Is at the Heart of Interacting Levers to Reduce Feed-Food Competition in Agroecological Food Systems. Animal 2022, 16, 100436. [Google Scholar] [CrossRef]
- Van Der Ploeg, J.D. The Political Economy of Agroecology. J. Peasant Stud. 2021, 48, 274–297. [Google Scholar] [CrossRef]
- Manzano, P.; Rowntree, J.; Thompson, L.; del Prado, A.; Ederer, P.; Windisch, W.; Lee, M.R.F. Challenges for the Balanced Attribution of Livestock’s Environmental Impacts: The Art of Conveying Simple Messages around Complex Realities. Anim. Front. 2023, 13, 35–44. [Google Scholar] [CrossRef]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on Healthy Diets from Sustainable Food Systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Resare Sahlin, K.; Röös, E.; Gordon, L.J. ‘Less but Better’ Meat Is a Sustainability Message in Need of Clarity. Nat. Food 2020, 1, 520–522. [Google Scholar] [CrossRef]
- Resare Sahlin, K.; Trewern, J. A Systematic Review of the Definitions and Interpretations in Scientific Literature of ‘Less but Better’ Meat in High-Income Settings. Nat. Food 2022, 3, 454–460. [Google Scholar] [CrossRef] [PubMed]
- Henchion, M.M. The Many Meanings of ‘Less but Better’ Meat. Nat. Food 2022, 3, 408. [Google Scholar] [CrossRef] [PubMed]
- Meeh, D.C.; Rowntree, J.E.; Hamm, M.W. Feeding a Population with Smaller Scale and Alternate System Production: An Examination of Farm Requirements with a Multi-Species Pasture System to Feed 10 Million People. Renew. Agric. Food Syst. 2014, 29, 176–185. [Google Scholar] [CrossRef]
- Vranken, L.; Avermaete, T.; Petalios, D.; Mathijs, E. Curbing Global Meat Consumption: Emerging Evidence of a Second Nutrition Transition. Environ. Sci. Policy 2014, 39, 95–106. [Google Scholar] [CrossRef]
- Hoy, K.; Clemens, J.; Moshfegh, A. Estimated Protein Intake from Animal and Plant Foods by U.S. Adults, What We Eat in America, NHANES, 2015–2016. Curr. Dev. Nutr. 2021, 5, 133. [Google Scholar] [CrossRef]
- Torpman, O.; Röös, E. Are Animals Needed for Food Supply, Efficient Resource Use, and Sustainable Cropping Systems? An Argumentation Analysis Regarding Livestock Farming. Food Ethics 2024, 9, 15. [Google Scholar] [CrossRef]
- Cusworth, G.; Garnett, T.; Lorimer, J. Legume Dreams: The Contested Futures of Sustainable Plant-Based Food Systems in Europe. Glob. Environ. Chang. 2021, 69, 102321. [Google Scholar] [CrossRef]
- Cusworth, G.; Lorimer, J.; Brice, J.; Garnett, T. Green Rebranding: Regenerative Agriculture, Future-pasts, and the Naturalisation of Livestock. Trans. Inst. Br. Geogr. 2022, 47, 1009–1027. [Google Scholar] [CrossRef]
- Milou, C.; Del Corso, J.-P.; Képhaliacos, C. Understanding Farmers’ Motivations to Produce Pulses and Promote Better Agroecological Practices. Agroecol. Sustain. Food Syst. 2023, 47, 950–971. [Google Scholar] [CrossRef]
- Brown, J.; Barton, P.; Cunningham, S.A. How Bioregional History Could Shape the Future of Agriculture. In Advances in Ecological Research; Elsevier: Amsterdam, The Netherlands, 2021; Volume 64, pp. 149–189. ISBN 978-0-12-822979-8. [Google Scholar]
- Harder, R.; Giampietro, M.; Mullinix, K.; Smukler, S. Assessing the Circularity of Nutrient Flows Related to the Food System in the Okanagan Bioregion, BC Canada. Resour. Conserv. Recycl. 2021, 174, 105842. [Google Scholar] [CrossRef]
- IPES-Food. Who’s Tipping the Scales? The Growing Influence of Corporations on the Governance of Food Systems, and How to Counter It; International Panel of Experts on Sustainable Food Systems: Brussels, Belgium, 2023. [Google Scholar]
Agroecology Principles as Defined by HLPE (2019) | Scale of Application | Performance of Alternative Livestock Farms | References | |
---|---|---|---|---|
Improve resource efficiency | ||||
1 | Recycling. Preferentially use local renewable resources and close as far as possible resource cycles of nutrients and biomass. | field, farm | Use of byproducts and food waste as feed for monogastric animals and pasture of ruminants on marginal land reduces feed vs. food competition, crop–livestock integration promotes closing of nutrient and biomass cycles. | Ryschawy et al. (2012; 2019); van Zanten et al. (2016; 2018); Röös et al. (2016; 2017) |
2 | Input reduction. Reduce or eliminate dependency on purchased inputs and increase self-sufficiency. | farm, food system | ||
Strengthen resilience | ||||
3 | Soil health. Secure and enhance soil health and functioning for improved plant growth, particularly by managing organic matter and enhancing soil biological activity. | field | Reliance on pasture and manure instead of mineral fertilizer can promote soil health, but is highly dependent on pasture and manure management. | Xu et al. (2018); O’Brien and Hatfield (2019); Bai and Cotrufo (2022) |
4 | Animal health. Ensure animal health and welfare. | farm | Pasture, traditional breeds, low animal density and limited use of antibiotics promote animal welfare. | Modernel et al. (2019); Delsart et al. (2020) |
5 | Biodiversity. Maintain and enhance diversity of species, functional diversity and genetic resources and thereby maintain overall agroecosystem biodiversity in time and space at field, farm and landscape scales. | field, farm | Pasture, and traditional breeds maintain plant and farm animal diversity; smaller farm sizes promote varied landscapes and habitats. | Karlsson et al. (2022); Dominati et al. (2021); FAO (2015) |
6 | Synergy. Enhance positive ecological interaction, synergy, integration and complementarity among the elements of agroecosystems (animals, crops, trees, soil, and water). | field, farm | Crop–livestock integration or multi-species farms generate synergies such as recycling manure as fertilizer on pasture and forage crop fields (see principles 1 and 2). | Ryschawy et al. (2019); Dumont et al. (2023) |
7 | Economic diversification. Diversify on-farm incomes by ensuring that small-scale farmers have greater financial independence and value addition opportunities while enabling them to respond to demand from consumers. | farm, food system | Production and marketing diversification through economies of scope, diversification of economic activities such as combining production with processing and marketing. | Mundler and Jean-Gagnon (2020); Rowntree et al. (2020); Martin et al. (2020) |
Secure social equity/responsibility | ||||
8 | Co-creation of knowledge. Enhance co-creation and horizontal sharing of knowledge including local and scientific innovation, especially through farmer-to-farmer exchange. | farm, food system | Literature on alternative food networks does not show explicit links between taking part in such networks and co-creation and horizontal sharing of knowledge. | Dolinska and d’Aquino (2016); Utter et al. (2021) |
9 | Social values and diets. Build food systems based on the culture, identity, tradition, social and gender equity of local communities that provide healthy, diversified, seasonally and culturally appropriate diets. | farm, food system | Cultural heritage and traditions around livestock are important for farmers and the rural populations where livestock has traditionally been part of the landscape. | Ryschawy et al. (2017); Beudou et al. (2017) |
10 | Fairness. Support dignified and robust livelihoods for all actors engaged in food systems, especially small-scale food producers, based on fair trade, fair employment, and fair treatment of intellectual property rights. | farm, food system | Farmers display high work satisfaction but there is a reliance on low paid labor and risk of overwork due to lack of specialization. | Mundler and Jean-Gagnon (2020); Ulukan et al. (2022); Steinmetz et al. (2021) |
11 | Connectivity. Ensure proximity and confidence between producers and consumers through promotion of fair and short distribution networks and by re-embedding food systems into local economies. | farm, food system | Direct or short supply chain marketing fosters consumer education through the farmer-to-consumer link and integration of alternative livestock farms in local food systems. | Alonso (2010); Forssell and Lankoski (2015) |
12 | Land and natural resource governance. Strengthen institutional arrangements to improve, including the recognition and support of family farmers, smallholders and peasant food producers as sustainable managers of natural and genetic resources. | farm, food system | Livestock systems relying on pasture and traditional breeds are considered good land stewards in some jurisdictions. | Wells and Gradwell (2001); Mann and Lanz (2013); von Greyerz et al. (2023) |
13 | Participation. Encourage social organization and greater participation in decision-making by food producers and consumers to support decentralized governance and local adaptive management of agricultural and food systems. | food system | Alternative food networks actors participate in food system governance, albeit with less power than actors along the industrial food chain. | Van Der Ploeg (2014); Zhang and Barr (2019) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 Pascal Genest-Richard, Caroline Halde, Patrick Mundler and His Majesty the King in Right of Canada, as represented by the Minister of Agriculture and Agri-Food Canada for the contribution of Nicolas Devillers. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Genest-Richard, P.; Halde, C.; Mundler, P.; Devillers, N. A Promising Niche: Current State of Knowledge on the Agroecological Contribution of Alternative Livestock Farming Practices. Agriculture 2025, 15, 235. https://doi.org/10.3390/agriculture15030235
Genest-Richard P, Halde C, Mundler P, Devillers N. A Promising Niche: Current State of Knowledge on the Agroecological Contribution of Alternative Livestock Farming Practices. Agriculture. 2025; 15(3):235. https://doi.org/10.3390/agriculture15030235
Chicago/Turabian StyleGenest-Richard, Pascal, Caroline Halde, Patrick Mundler, and Nicolas Devillers. 2025. "A Promising Niche: Current State of Knowledge on the Agroecological Contribution of Alternative Livestock Farming Practices" Agriculture 15, no. 3: 235. https://doi.org/10.3390/agriculture15030235
APA StyleGenest-Richard, P., Halde, C., Mundler, P., & Devillers, N. (2025). A Promising Niche: Current State of Knowledge on the Agroecological Contribution of Alternative Livestock Farming Practices. Agriculture, 15(3), 235. https://doi.org/10.3390/agriculture15030235