Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = integrated electrolyte/cathode structure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
45 pages, 2145 KB  
Review
MXenes in Solid-State Batteries: Multifunctional Roles from Electrodes to Electrolytes and Interfacial Engineering
by Francisco Márquez
Batteries 2025, 11(10), 364; https://doi.org/10.3390/batteries11100364 - 2 Oct 2025
Viewed by 610
Abstract
MXenes, a rapidly emerging family of two-dimensional transition metal carbides and nitrides, have attracted considerable attention in recent years for their potential in next-generation energy storage technologies. In solid-state batteries (SSBs), they combine metallic-level conductivity (>103 S cm−1), adjustable surface [...] Read more.
MXenes, a rapidly emerging family of two-dimensional transition metal carbides and nitrides, have attracted considerable attention in recent years for their potential in next-generation energy storage technologies. In solid-state batteries (SSBs), they combine metallic-level conductivity (>103 S cm−1), adjustable surface terminations, and mechanical resilience, which makes them suitable for diverse functions within the cell architecture. Current studies have shown that MXene-based anodes can deliver reversible lithium storage with Coulombic efficiencies approaching ~98% over 500 cycles, while their use as conductive additives in cathodes significantly improves electron transport and rate capability. As interfacial layers or structural scaffolds, MXenes effectively buffer volume fluctuations and suppress lithium dendrite growth, contributing to extended cycle life. In solid polymer and composite electrolytes, MXene fillers have been reported to increase Li+ conductivity to the 10−3–10−2 S cm−1 range and enhance Li+ transference numbers (up to ~0.76), thereby improving both ionic transport and mechanical stability. Beyond established Ti-based systems, double transition metal MXenes (e.g., Mo2TiC2, Mo2Ti2C3) and hybrid heterostructures offer expanded opportunities for tailoring interfacial chemistry and optimizing energy density. Despite these advances, large-scale deployment remains constrained by high synthesis costs (often exceeding USD 200–400 kg−1 for Ti3C2Tx at lab scale), restacking effects, and stability concerns, highlighting the need for greener etching processes, robust quality control, and integration with existing gigafactory production lines. Addressing these challenges will be crucial for enabling MXene-based SSBs to transition from laboratory prototypes to commercially viable, safe, and high-performance energy storage systems. Beyond summarizing performance, this review elucidates the mechanistic roles of MXenes in SSBs—linking lithiophilicity, field homogenization, and interphase formation to dendrite suppression at Li|SSE interfaces, and termination-assisted salt dissociation, segmental-motion facilitation, and MWS polarization to enhanced electrolyte conductivity—thereby providing a clear design rationale for practical implementation. Full article
(This article belongs to the Collection Feature Papers in Batteries)
Show Figures

Figure 1

25 pages, 6367 KB  
Article
Multiphysics Optimization of Graphite-Buffered Bilayer Anodes with Diverse Inner Materials for High-Energy Lithium-Ion Batteries
by Juan C. Rubio and Martin Bolduc
Batteries 2025, 11(10), 350; https://doi.org/10.3390/batteries11100350 - 25 Sep 2025
Viewed by 700
Abstract
This study presents a multiphysics simulation approach to optimize graphite-buffered bilayer anodes for enhanced energy density in lithium-ion batteries, assessing the electrochemical impact of diverse inner-layer materials, including silicon, hard carbon, lithium titanate (LTO), and metallic lithium, in pure and graphite-composite forms. A [...] Read more.
This study presents a multiphysics simulation approach to optimize graphite-buffered bilayer anodes for enhanced energy density in lithium-ion batteries, assessing the electrochemical impact of diverse inner-layer materials, including silicon, hard carbon, lithium titanate (LTO), and metallic lithium, in pure and graphite-composite forms. A coupled finite-element model implemented in COMSOL Multiphysics 6.2 was used to integrate spherical lithium diffusion, charge conservation, and the solid electrolyte interphase (SEI) formation kinetics. The evaluated anode structure consisted of a 60 µm-thick bilayer: a 30 µm graphite surface layer coupled with a 30 µm inner layer of alternative active materials. Simulations were performed using an NMC622 cathode, LiPF6 in EC:EMC electrolyte, at room temperature, under a charge rate of 1 C, considering realistic particle sizes (graphite: 2.5 µm; Si: 0.1 µm; hard carbon: 2.5 µm; LTO: 0.2 µm; Li metal: 0.5 µm), and evaluated over 2000 cycles. The hard carbon/graphite configuration exhibited a capacity fade of 5.8% compared with 7.1% in pure graphite. Additionally, the SEI thickness decreased to 0.20 µm (from 0.25 µm), the overpotential dropped to −17 mV (from −59 mV), and the electrolyte consumption was reduced to 20.8% (from 42.9%). The analysis highlights hard carbon and LTO inner layers as optimal trade-offs between capacity and cycle stability, whereas silicon and lithium metal significantly increased the initial capacity but accelerated SEI formation and impedance growth. These findings demonstrate the graphite-buffered bilayer’s potential to decouple interfacial degradation from high-capacity materials, providing valuable guidelines for the design of advanced lithium-ion battery anodes. Full article
Show Figures

Figure 1

27 pages, 6990 KB  
Review
Multiscale Insights into Inorganic Filler Regulation, Ion Transport Mechanisms, and Characterization Advances in Composite Solid-State Electrolytes
by Xinhao Xu, Dingyuan Lu, Sipeng Huang, Fuming Wang, Yulin Min and Qunjie Xu
Processes 2025, 13(9), 2795; https://doi.org/10.3390/pr13092795 - 1 Sep 2025
Viewed by 670
Abstract
All-solid-state lithium batteries (ASSLBs) are emerging as a promising alternative to conventional lithium-ion batteries, offering solutions to challenges related to energy density and safety. Their core advancement relies on breakthroughs in solid-state electrolytes (SEs). SEs can be broadly grouped into two main types: [...] Read more.
All-solid-state lithium batteries (ASSLBs) are emerging as a promising alternative to conventional lithium-ion batteries, offering solutions to challenges related to energy density and safety. Their core advancement relies on breakthroughs in solid-state electrolytes (SEs). SEs can be broadly grouped into two main types: inorganic solid electrolytes (ISEs) and organic solid electrolytes (OSEs). ISEs offer high ionic conductivity (0.1~1 mS cm−1), a lithium-ion transference number close to 1, and excellent thermal stability, but their intrinsic brittleness leads to poor interfacial wettability and processing difficulties, limiting practical applications. In contrast, OSEs exhibit good flexibility and interfacial compatibility but suffer from poor ionic conductivity (10−4~10−2 mS cm−1) due to high crystallinity at room temperature, in addition to poor thermal stability and weak mechanical integrity, making it difficult to match high-voltage cathodes and suppress lithium dendrite growth. Against this backdrop, the stability of the organic–inorganic interface plays a crucial role. However, challenges such as low overall conductivity and unstable interfaces still limit their performance. This review provides a microscopic perspective on lithium-ion transport pathways across the polymer phase, the inorganic filler phase, and their interfacial regions. It categorizes inert fillers and active fillers, analyzing their structure–performance relationships and emphasizing the synergistic effects of filler dimensionality, surface chemistry, and interfacial interactions. In addition, cutting-edge analytical methods such as time-of-flight secondary ion mass spectrometry (TOF-SIMS) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) have also been employed and are summarized into their roles for revealing the microstructures and dynamic interfacial behaviors of OICSEs. Finally, future directions are proposed, such as hierarchical pore structure design, surface functionalization, and simulation-guided optimization, aiming to provide theoretical insights and technological strategies for the development of high-performance composite electrolytes for ASSLBs. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

15 pages, 4358 KB  
Article
Nickel-Rich Cathodes for Solid-State Lithium Batteries: Comparative Study Between PVA and PIB Binders
by José M. Pinheiro, Beatriz Moura Gomes, Manuela C. Baptista and M. Helena Braga
Molecules 2025, 30(14), 2974; https://doi.org/10.3390/molecules30142974 - 15 Jul 2025
Cited by 1 | Viewed by 807
Abstract
The growing demand for high-energy, safe, and sustainable lithium-ion batteries has increased interest in nickel-rich cathode materials and solid-state electrolytes. This study presents a scalable wet-processing method for fabricating composite cathodes for all-solid-state batteries. The cathodes studied herein are high-nickel LiNi0.90Mn [...] Read more.
The growing demand for high-energy, safe, and sustainable lithium-ion batteries has increased interest in nickel-rich cathode materials and solid-state electrolytes. This study presents a scalable wet-processing method for fabricating composite cathodes for all-solid-state batteries. The cathodes studied herein are high-nickel LiNi0.90Mn0.05Co0.05O2, NMC955, the sulfide-based electrolyte Li6PS5Cl, and alternative binders—polyvinyl alcohol (PVA) and polyisobutylene (PIB)—dispersed in toluene, a non-polar solvent compatible with the electrolyte. After fabrication, the cathodes were characterized using SEM/EDX, sheet resistance, and Hall effect measurements. Electrochemical tests were additionally performed in all-solid-state battery half-cells comprising the synthesized cathodes, lithium metal anodes, and Li6PS5Cl as the separator and electrolyte. The results show that both PIB and PVA formulations yielded conductive cathodes with stable microstructures and uniform particle distribution. Electrochemical characterization exposed that the PVA-based cathode outperformed the PIB-based counterpart, achieving the theoretical capacity of 192 mAh·g−1 even at 1C, whereas the PIB cathode reached a maximum capacity of 145 mAh.g−1 at C/40. Post-mortem analysis confirmed the structural integrity of the cathodes. These findings demonstrate the viability of NMC955 as a high-capacity cathode material compatible with solid-state systems. Full article
Show Figures

Figure 1

17 pages, 5491 KB  
Article
Electrode Design Based on Porous MnO2/PPy Hybrid Nanocomposite and Its Application in Zinc-Ion Batteries
by Shilin Li, Taoyun Zhou, Muzhou Liu, Qiaomei Zhao, Yi Liu, Yun Cheng and Xinyu Li
Micromachines 2025, 16(5), 536; https://doi.org/10.3390/mi16050536 - 29 Apr 2025
Cited by 3 | Viewed by 813
Abstract
The development of safe, cost-effective, and environmentally friendly energy storage systems has spurred growing interest in aqueous ZIBs. However, the poor cycling stability of cathode materials—mainly due to manganese dissolution and structural degradation—remains a major bottleneck. In this work, a porous MnO2 [...] Read more.
The development of safe, cost-effective, and environmentally friendly energy storage systems has spurred growing interest in aqueous ZIBs. However, the poor cycling stability of cathode materials—mainly due to manganese dissolution and structural degradation—remains a major bottleneck. In this work, a porous MnO2/PPy hybrid nanocomposite is successfully synthesized via an in situ co-precipitation strategy. The conductive PPy buffer layer not only alleviates Mn dissolution and buffers volume expansion during cycling but also enhances ion/electron transport and facilitates electrolyte infiltration due to its high surface area. Electrochemical evaluation reveals that the MnO2/PPy electrode delivers excellent cycling stability, retaining 75% of its initial capacity after 1000 cycles at a current density of 1 A·g−1. Comparative performance analysis shows that MnO2/PPy exhibits superior capacity retention and rate capability, especially under high current densities and prolonged cycling. These results underscore the effectiveness of the PPy interfacial layer in improving structural integrity and electrochemical performance, offering a promising route for designing high-performance cathode materials for aqueous ZIBs. Full article
Show Figures

Figure 1

14 pages, 3629 KB  
Article
Enhanced Nitrate Production via Electrocatalytic Nitric Oxide Oxidation Reaction over MnO2 with Different Crystal Facets
by Xiaoyu Qin, Dongcai Shen, Quan Li, Xin Liu, Mingrui Wu and Wentai Wang
Catalysts 2025, 15(4), 342; https://doi.org/10.3390/catal15040342 - 1 Apr 2025
Viewed by 1015
Abstract
The synthesis of nitrate (NO3) via electrocatalytic nitric oxide oxidation reaction (NOOR) is a green and efficient strategy for nitrogen fixation, which has great advantages over conventional nitrate synthesis. Notably, it also presents a promising solution for the remediation of [...] Read more.
The synthesis of nitrate (NO3) via electrocatalytic nitric oxide oxidation reaction (NOOR) is a green and efficient strategy for nitrogen fixation, which has great advantages over conventional nitrate synthesis. Notably, it also presents a promising solution for the remediation of NO pollutants. In this study, the structure–performance correlations of α-, β-, and δ-MnO2 catalysts were investigated. These three polymorphs of MnO2 exhibited disparate surface chemistries, NO adsorption capabilities, and NOOR catalytic activities. In a 1.0 M KOH electrolyte, α-MnO2, characterized by its large-sized (2 × 2) one-dimensional tunnel structure, demonstrated the most outstanding NOOR catalytic performance, which achieved a remarkable NO3 yield of 665.2 mg·h−1·mgcat−1 at a potential of 1.9 V, along with excellent stability and durability. Furthermore, a Zn-NO system was constructed, employing α-MnO2 as the anode and a Zn plate as the cathode. This innovative setup integrated an energy storage system with NO electrochemical capture, yielding a NO3 production rate of 265.5 mg·h−1·mgcat−1. The density functional theory calculations confirm the NO adsorption performance and catalytic activity of three different crystal forms of MnO2. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Figure 1

12 pages, 3358 KB  
Article
Water-Soluble Sacrificial Layer of Sr3Al2O6 for the Synthesis of Free-Standing Doped Ceria and Strontium Titanate
by Simone Sanna, Olga Krymskaya and Antonello Tebano
Appl. Sci. 2025, 15(4), 2192; https://doi.org/10.3390/app15042192 - 19 Feb 2025
Viewed by 3614
Abstract
Epitaxial layers of water-soluble Sr3Al2O6 were fabricated as sacrificial layers on SrTiO3 (100) single-crystal substrates using the Pulsed Laser Deposition technique. This approach envisages the possibility of developing a new generation of micro-Solid Oxide Fuel Cells and [...] Read more.
Epitaxial layers of water-soluble Sr3Al2O6 were fabricated as sacrificial layers on SrTiO3 (100) single-crystal substrates using the Pulsed Laser Deposition technique. This approach envisages the possibility of developing a new generation of micro-Solid Oxide Fuel Cells and micro-Solid Oxide Electrochemical Cells for portable energy conversion and storage devices. The sacrificial layer technique offers a pathway to engineering free-standing membranes of electrolytes, cathodes, and anodes with total thicknesses on the order of a few nanometers. Furthermore, the ability to etch the SAO sacrificial layer and transfer ultra-thin oxide films from single-crystal substrates to silicon-based circuits opens possibilities for creating a novel class of mixed electronic and ionic devices with unexplored potential. In this work, we report the growth mechanism and structural characterization of the SAO sacrificial layer. Epitaxial samarium-doped ceria films, grown on SrTiO3 substrates using Sr3Al2O6 as a buffer layer, were successfully transferred onto silicon wafers. This demonstration highlights the potential of the sacrificial layer method for integrating high-quality oxide thin films into advanced device architectures, bridging the gap between oxide materials and silicon-based technologies. Full article
(This article belongs to the Special Issue Advanced Materials for Photoelectrochemical Energy Conversion)
Show Figures

Figure 1

12 pages, 4033 KB  
Article
Enhanced Interfacial Contact and Lithium-Ion Transport in Ionic Liquid Polymer Electrolyte via In-Situ Electrolyte-Cathode Integration
by Zehua Chen, Mianrui Li, Shengguang Qi and Li Du
Molecules 2025, 30(2), 395; https://doi.org/10.3390/molecules30020395 - 18 Jan 2025
Cited by 1 | Viewed by 1663
Abstract
Solid polymer electrolytes (SPEs) have attracted much attention due to their excellent flexibility, strong interfacial adhesion, and good processibility. However, the poor interfacial contact between the separate solid polymer electrolytes and electrodes leads to large interfacial impedance and, thus, hinders Li transport. In [...] Read more.
Solid polymer electrolytes (SPEs) have attracted much attention due to their excellent flexibility, strong interfacial adhesion, and good processibility. However, the poor interfacial contact between the separate solid polymer electrolytes and electrodes leads to large interfacial impedance and, thus, hinders Li transport. In this work, an ionic liquid-modified comb-like crosslinked network composite solid-state electrolyte with an integrated electrolyte/cathode structure is prepared by in situ ultraviolet (UV) photopolymerization. Combining the enhanced interfacial contact and the introduction of ionic liquid, a continuous and fast Li+ transport channel at the electrolyte–cathode interface is established, ultimately enhancing the overall performance of solid-state lithium batteries. The composite solid electrolytes (CSEs) exhibit an ionic conductivity of 0.44 mS cm−1 at 60 °C. LiFePO4//Li cells deliver a high discharge capacity (154 mAh g−1 at 0.5 C) and cycling stability (with a retention rate of more than 80% at 0.5 C after 200 cycles) at 60 °C. Full article
Show Figures

Figure 1

12 pages, 3498 KB  
Article
An Integrated Na2S−Electrocatalyst Nanostructured Cathode for Sodium–Sulfur Batteries at Room Temperature
by Sichang Ma, Yueming Zhu, Yadong Yang, Dongyang Li, Wendong Tan, Ling Gao, Wanwei Zhao, Wenbo Liu, Wenyu Liang and Rui Xu
Batteries 2025, 11(1), 9; https://doi.org/10.3390/batteries11010009 - 27 Dec 2024
Viewed by 1447
Abstract
Room-temperature sodium–sulfur (RT Na–S) batteries offer a superior, high-energy-density solution for rechargeable batteries using earth-abundant materials. However, conventional RT Na–S batteries typically use sulfur as the cathode, which suffers from severe volume expansion and requires pairing with a sodium metal anode, raising significant [...] Read more.
Room-temperature sodium–sulfur (RT Na–S) batteries offer a superior, high-energy-density solution for rechargeable batteries using earth-abundant materials. However, conventional RT Na–S batteries typically use sulfur as the cathode, which suffers from severe volume expansion and requires pairing with a sodium metal anode, raising significant safety concerns. Utilizing Na2S as the cathode material addresses these issues, yet challenges such as Na2S’s low conductivity as well as the shuttle effect of polysulfide still hinder RT Na–S battery development. Herein, we present a simple and cost-effective method to fabricate a Na2S–Na6CoS4/Co@C cathode, wherein Na2S nanoparticles are embedded in a conductive carbon matrix and coupled with dual catalysts, Na6CoS4 and Co, generated via the in situ carbothermal reduction of Na2SO4 and CoSO4. This approach creates a three-dimensional porous composite cathode structure that facilitates electrolyte infiltration and forms a continuous conductive network for efficient electron transport. The in situ formed Na6CoS4/Co electrocatalysts, tightly integrated with Na2S, exhibit strong catalytic activity and robust physicochemical stabilization, thereby accelerating redox kinetics and mitigating the polysulfide shuttle effect. As a result, the Na2S–Na6CoS4/Co@C cathode achieves superior capacity retention, demonstrating a discharge capacity of 346 mAh g−1 after 100 cycles. This work highlights an effective strategy for enhancing Na2S cathodes with embedded catalysts, leading to enhanced reaction kinetics and superior cycling stability. Full article
(This article belongs to the Special Issue Energy-Dense Metal–Sulfur Batteries)
Show Figures

Figure 1

18 pages, 8439 KB  
Review
Energy Storage in Carbon Fiber-Based Batteries: Trends and Future Perspectives
by Antonio del Bosque, Diego Vergara, Georgios Lampropoulos and Pablo Fernández-Arias
Appl. Sci. 2024, 14(21), 10034; https://doi.org/10.3390/app142110034 - 3 Nov 2024
Cited by 8 | Viewed by 4127
Abstract
Carbon fiber-based batteries, integrating energy storage with structural functionality, are emerging as a key innovation in the transition toward energy sustainability. Offering significant potential for lighter and more efficient designs, these advanced battery systems are increasingly gaining ground. Through a bibliometric analysis of [...] Read more.
Carbon fiber-based batteries, integrating energy storage with structural functionality, are emerging as a key innovation in the transition toward energy sustainability. Offering significant potential for lighter and more efficient designs, these advanced battery systems are increasingly gaining ground. Through a bibliometric analysis of scientific literature, the study identifies three primary research areas: (i) the development of anodes for lithium-ion batteries, tackling challenges such as dendrite formation and performance degradation; (ii) the creation of new carbon fiber-based cathodes with coatings of LiFePO4, LiCoO2, or other nanoparticles, alongside efforts to develop cobalt-free alternatives; and (iii) the advancement of solid electrolytes that achieve a balance between ionic conductivity and mechanical strength. These advancements position carbon fiber-based batteries as promising solutions for seamless integration into various structural applications. The analysis of publication trends, citation patterns, and collaboration networks provides critical insights into the ongoing technological developments, current research challenges, and emerging trends in this field. Moreover, the study highlights potential research directions, underscoring the importance of continuous innovation to fully realize the potential of carbon fiber-based energy storage technologies. Full article
Show Figures

Figure 1

11 pages, 2852 KB  
Article
A MEMS Electrochemical Angular Accelerometer with Silicon-Based Four-Electrode Structure
by Mingbo Zhang, Qinghua Liu, Maoqi Zhu, Jian Chen, Deyong Chen, Junbo Wang and Yulan Lu
Micromachines 2024, 15(3), 351; https://doi.org/10.3390/mi15030351 - 29 Feb 2024
Cited by 10 | Viewed by 1926
Abstract
This paper presents a MEMS electrochemical angular accelerometer with a silicon-based four-electrode structure, which was made of thousands of interconnected microchannels for electrolyte flow, anodes uniformly coated on structure surfaces and cathodes located on the sidewalls of flow holes. From the perspective of [...] Read more.
This paper presents a MEMS electrochemical angular accelerometer with a silicon-based four-electrode structure, which was made of thousands of interconnected microchannels for electrolyte flow, anodes uniformly coated on structure surfaces and cathodes located on the sidewalls of flow holes. From the perspective of device fabrication, in this study, the previously reported multi-piece assembly was simplified into single-piece integrative manufacturing, effectively addressing the problems of complex assembly and manual alignment. From the perspective of the sensitive structure, in this study, the silicon-based four-electrode structure featuring with complete insulation layers between anodes and cathodes can enable fast electrochemical reactions with improved sensitivities. Numerical simulations were conducted to optimize the geometrical parameters of the silicon-based four-electrode structure, where increases in fluid resistance and cathode area were found to expand working bandwidths and improve device sensitivity, respectively. Then, the silicon-based four-electrode structure was fabricated by conventional MEMS processes, mainly composed of wafer-level bonding and wafer-level etching. As to device characterization, the MEMS electrochemical angular accelerometer with the silicon-based four-electrode structure exhibited a maximum sensitivity of 1458 V/(rad/s2) at 0.01 Hz and a minimum noise level of −164 dB at 1 Hz. Compared with previously reported electrochemical angular accelerometers, the angular accelerometer developed in this study offered higher sensitivities and lower noise levels, indicating strong potential for applications in the field of rotational seismology. Full article
(This article belongs to the Special Issue Design and Fabrication of Micro/Nano Sensors and Actuators, Volume II)
Show Figures

Figure 1

18 pages, 5083 KB  
Article
Enhancing Efficiency in Alkaline Electrolysis Cells: Optimizing Flow Channels through Multiphase Computational Fluid Dynamics Modeling
by Longchang Xue, Shuaishuai Song, Wei Chen, Bin Liu and Xin Wang
Energies 2024, 17(2), 448; https://doi.org/10.3390/en17020448 - 16 Jan 2024
Cited by 11 | Viewed by 6009
Abstract
The efficient operation of alkaline water electrolysis cells hinges upon understanding and optimizing gas–liquid flow dynamics. Achieving uniform flow patterns is crucial to minimize stagnant regions, prevent gas bubble accumulation, and establish optimal conditions for electrochemical reactions. This study employed a comprehensive, three-dimensional [...] Read more.
The efficient operation of alkaline water electrolysis cells hinges upon understanding and optimizing gas–liquid flow dynamics. Achieving uniform flow patterns is crucial to minimize stagnant regions, prevent gas bubble accumulation, and establish optimal conditions for electrochemical reactions. This study employed a comprehensive, three-dimensional computational fluid dynamics Euler–Euler multiphase model, based on a geometric representation of an alkaline electrolytic cell. The electrochemical model, responsible for producing hydrogen and oxygen at the cathode and anode during water electrolysis, is integrated into the flow model by introducing mass source terms within the user-defined function. The membrane positioned between the flow channels employs a porous medium model to selectively permit specific components to pass through while restricting others. To validate the accuracy of the model, comparisons were made with measured data available in the literature. We obtained an optimization design method for the channel structure; the three-inlet model demonstrated improved speed and temperature uniformity, with a 22% reduction in the hydrogen concentration at the outlet compared to the single-inlet model. This resulted in the optimization of gas emission efficiency. As the radius of the spherical convex structure increased, the influence of the spherical convex structure on the electrolyte intensified, resulting in enhanced flow uniformity within the flow field. This study may help provide recommendations for designing and optimizing flow channels to enhance the efficiency of alkaline water electrolysis cells. Full article
(This article belongs to the Special Issue Advances in Numerical Modeling of Multiphase Flow and Heat Transfer)
Show Figures

Figure 1

27 pages, 3536 KB  
Review
Polymeric Binder Design for Sustainable Lithium-Ion Battery Chemistry
by Juhee Yoon, Jeonghun Lee, Hyemin Kim, Jihyeon Kim and Hyoung-Joon Jin
Polymers 2024, 16(2), 254; https://doi.org/10.3390/polym16020254 - 16 Jan 2024
Cited by 41 | Viewed by 17780
Abstract
The design of binders plays a pivotal role in achieving enduring high power in lithium-ion batteries (LIBs) and extending their overall lifespan. This review underscores the indispensable characteristics that a binder must possess when utilized in LIBs, considering factors such as electrochemical, thermal, [...] Read more.
The design of binders plays a pivotal role in achieving enduring high power in lithium-ion batteries (LIBs) and extending their overall lifespan. This review underscores the indispensable characteristics that a binder must possess when utilized in LIBs, considering factors such as electrochemical, thermal, and dispersion stability, compatibility with electrolytes, solubility in solvents, mechanical properties, and conductivity. In the case of anode materials, binders with robust mechanical properties and elasticity are imperative to uphold electrode integrity, particularly in materials subjected to substantial volume changes. For cathode materials, the selection of a binder hinges on the crystal structure of the cathode material. Other vital considerations in binder design encompass cost effectiveness, adhesion, processability, and environmental friendliness. Incorporating low-cost, eco-friendly, and biodegradable polymers can significantly contribute to sustainable battery development. This review serves as an invaluable resource for comprehending the prerequisites of binder design in high-performance LIBs and offers insights into binder selection for diverse electrode materials. The findings and principles articulated in this review can be extrapolated to other advanced battery systems, charting a course for developing next-generation batteries characterized by enhanced performance and sustainability. Full article
(This article belongs to the Special Issue Advances in Polymer Applied in Batteries and Capacitors)
Show Figures

Figure 1

17 pages, 8351 KB  
Article
Sterical Self-Consistency of Carbonaceous Nanopolyhedra Triggered by Introduced CNTs to Optimize ORR Performance
by Yuanhui Zuo, Yanlong Tang, Huancong Shi, Shijian Lu and Paitoon Tontiwachwuthikul
Catalysts 2023, 13(9), 1307; https://doi.org/10.3390/catal13091307 - 19 Sep 2023
Cited by 1 | Viewed by 1567
Abstract
The electrocatalyst of oxygen reduction reactions is one of the basic components of a fuel cell. In addition to costly Pt/C benchmark catalysts, cost-effective carbon-based catalysts have received the most attention. Enormous efforts have been dedicated to trade off the catalyst performance against [...] Read more.
The electrocatalyst of oxygen reduction reactions is one of the basic components of a fuel cell. In addition to costly Pt/C benchmark catalysts, cost-effective carbon-based catalysts have received the most attention. Enormous efforts have been dedicated to trade off the catalyst performance against the economic benefit. Optimizing composition and/or structure is a universal strategy for improving performance, but it is typically limited by tedious synthesis steps. Herein, we have found that directly introducing CNT into MOF-derived carbonaceous nanopolyhedra, i.e., introduced carbon nanotubes (CNTs) penetrated porous nitrogen-doped carbon polyhedra (NCP) dotted with cobalt nanoparticles (denoted as CNTs-Co@NCP), can optimize the catalytic activity, stability, and methanol tolerance. The hierarchical architecture combines the 0D/1D/3D Co/CNT/NCP interfaces and 1D/3D CNT/NCP junctions with the frameworks with a greatly exposed active surface, strengthened mass transport kinetics, stereoscopic electrical conductivity networks and structural robustness. The sterical self-consistency of MOF-self-assembly triggered by introduced CNTs demonstrates tactful ORR electrocatalytic activity regulation. Eventually, the CNTs-Co@NCP showed a half-wave potential (E1/2) of 0.86 V and a diffusion-limited current density (JL) of 5.94 mA/cm2 in alkaline electrolyte. The CNTs-Co@NCP was integrated into the cathode of a direct methanol fuel cell (DMFC) with an anion-exchange membrane, and an open-circuit voltage (OCV) of 0.93 V and a high power density of 46.6 mW cm−2 were achieved. This work successfully developed a catalyst with competitive ORR performance through plain parameter fine-tuning without complex material design. Full article
(This article belongs to the Special Issue Catalysis and Carbon-Based Materials, 2nd Edition)
Show Figures

Figure 1

20 pages, 7957 KB  
Review
Understanding High-Voltage Behavior of Sodium-Ion Battery Cathode Materials Using Synchrotron X-ray and Neutron Techniques: A Review
by Vadim Shipitsyn, Rishivandhiga Jayakumar, Wenhua Zuo, Bing Sun and Lin Ma
Batteries 2023, 9(9), 461; https://doi.org/10.3390/batteries9090461 - 11 Sep 2023
Cited by 8 | Viewed by 4948
Abstract
Despite substantial research efforts in developing high-voltage sodium-ion batteries (SIBs) as high-energy-density alternatives to complement lithium-ion-based energy storage technologies, the lifetime of high-voltage SIBs is still associated with many fundamental scientific questions. In particular, the structure phase transition, oxygen loss, and cathode–electrolyte interphase [...] Read more.
Despite substantial research efforts in developing high-voltage sodium-ion batteries (SIBs) as high-energy-density alternatives to complement lithium-ion-based energy storage technologies, the lifetime of high-voltage SIBs is still associated with many fundamental scientific questions. In particular, the structure phase transition, oxygen loss, and cathode–electrolyte interphase (CEI) decay are intensely discussed in the field. Synchrotron X-ray and neutron scattering characterization techniques offer unique capabilities for investigating the complex structure and dynamics of high-voltage cathode behavior. In this review, to accelerate the development of stable high-voltage SIBs, we provide a comprehensive and thorough overview of the use of synchrotron X-ray and neutron scattering in studying SIB cathode materials with an emphasis on high-voltage layered transition metal oxide cathodes. We then discuss these characterizations in relation to polyanion-type cathodes, Prussian blue analogues, and organic cathode materials. Finally, future directions of these techniques in high-voltage SIB research are proposed, including CEI studies for polyanion-type cathodes and the extension of neutron scattering techniques, as well as the integration of morphology and phase characterizations. Full article
(This article belongs to the Special Issue Behavior of Cathode Materials at High Voltage)
Show Figures

Graphical abstract

Back to TopTop