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Abstract: Despite substantial research efforts in developing high-voltage sodium-ion batteries (SIBs)
as high-energy-density alternatives to complement lithium-ion-based energy storage technologies,
the lifetime of high-voltage SIBs is still associated with many fundamental scientific questions. In
particular, the structure phase transition, oxygen loss, and cathode–electrolyte interphase (CEI)
decay are intensely discussed in the field. Synchrotron X-ray and neutron scattering characterization
techniques offer unique capabilities for investigating the complex structure and dynamics of high-
voltage cathode behavior. In this review, to accelerate the development of stable high-voltage
SIBs, we provide a comprehensive and thorough overview of the use of synchrotron X-ray and
neutron scattering in studying SIB cathode materials with an emphasis on high-voltage layered
transition metal oxide cathodes. We then discuss these characterizations in relation to polyanion-type
cathodes, Prussian blue analogues, and organic cathode materials. Finally, future directions of these
techniques in high-voltage SIB research are proposed, including CEI studies for polyanion-type
cathodes and the extension of neutron scattering techniques, as well as the integration of morphology
and phase characterizations.

Keywords: sodium-ion batteries; cathode materials; high voltage; synchrotron X-ray scattering;
neutron scattering

1. Introduction

To address global climate change by decreasing greenhouse gas emission, one of
the decarbonization efforts is to widely use renewable clean energy such as solar, tidal,
and wind energy. However, the integration of clean energy into the global grid network
suffers from challenges in terms of stability and reliability due to the intermittent nature of
renewable sources. The use of energy storage systems (ESSs) could mitigate this issue by
storing electricity from renewable sources at off-peak times and discharging electricity at
peak times [1,2].

Lithium-ion battery (LIB) technology is one of the most successful EESs and has been
widely used in consumer electronics, electric vehicles (EVs), and electric grid networks [3–5].
However, the increasing demands in many energy sectors, including energy grid systems
and EVs, highlight the need for dependable and cost-effective EESs that can serve as
reliable alternatives to lithium and other critical elements such as cobalt [6,7]. Sodium-
ion battery (SIB) technology has been considered as a viable option to supplement LIB
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technology, especially in applications where high energy density is not a priority, such
as grid ESSs [8,9]. This is due to the plentiful supply of sodium and the identification of
cathode active materials containing inexpensive and abundant elements such as copper,
iron, and manganese [10,11]. In addition, SIBs are closer to real-world applications than
other “beyond-Li” battery chemistries including Zn, Mg, and Al due to the better kinetics of
the monovalent working ion and the higher reversibility of working ions intercalation/de-
intercalation compared to the stripping/plating process.

Common SIB cathode active materials (Figure 1) include: (1) layered transition
metal oxides (NaxMO2, M = Co, Mn, Fe, Ni, Cu, etc.) [12–16]; (2) polyanionic com-
pounds, such as phosphates (e.g., Na3V2(PO4)3 [17,18], NaFePO4 [19,20]), fluoride phos-
phates (e.g., Na2FePO4F [21,22]), pyrophosphates (e.g., Na2FeP2O7 [23,24]), and sulfates
(e.g., Na2Fe2(SO4)3 [25,26]); (3) Prussian blue analogues (PBAs) compounds, such as
NaxFeFe(CN)6 [27,28], NaxMnFe(CN)6 [29,30], and NaxNiFe(CN)6 [31,32]; (4) organic
materials [8,33]. Classified by Delmas et al. [34,35], layered transition metal oxides have
two structural forms including Pn and On, where P and O stands for prismatic and octahe-
dral coordination, respectively, for the position of Na+ in the edge-sharing MO6 octahedra.
n represents the number of transition metal layer repetitions within the stacking repeat unit.
Polyanionic compounds are a broad category of compounds characterized by the presence
of an anionic structural unit (XOm)n− (P, S, and others) with a tetrahedral or octahedral
structure [36,37]. Prussian blue analogues are compounds formed by the coordination of
transition metal ions with a cyanide ion (CN−) and have been widely used in many dif-
ferent applications due to their controllable structures [38]. Being different from inorganic
materials, organic cathode materials consist of naturally light elements (C, H, O, etc.) with
the unique advantages of stable redox characteristics and multi-electron reactions [33,39,40].
It is recognized that the increase in the operation voltage of these cathode materials is a
feasible way of improving the energy density of SIBs.

Despite the growing expectations for SIBs, their practical application is restricted
by their limited lifetime. Typically, cell degradation can originate from different parts,
including the cathode, electrolyte, separator, and anode. The current challenges that
SIB cathodes suffer from, especially at high voltage, can be summarized as follows [41]:
(1) irreversible bulk phase transitions, which are accompanied by a large volume expansion
and shrinkage as well as sluggish kinetics; and (2) surface-related degradation including
surface instability in the air and interphasial side reactions between cathodes and elec-
trolytes. A comprehensive and in-depth study of these fundamental issues is essential
for developing high-voltage SIBs with an extended lifetime and higher energy density.
Synchrotron X-ray and neutron scattering techniques significantly improve the efficiency
and reliability of materials characterization by providing insight into the materials’ bulk
structure, electrode–electrolyte interphase evolution, and ionic motion dynamics [42–45].
Herein, a systematic and comprehensive summary of the synchrotron-X-ray- and neutron-
scattering-based techniques used in characterizing high-voltage SIB cathode materials
is introduced. We start with a brief overview of both synchrotron X-ray and neutron
scattering techniques and their classifications. We then particularly highlight the funda-
mental scientific understanding of the high-voltage behavior of layered transition metal
oxide SIB cathodes gained using these techniques. Polyanion-type cathodes, PBAs, and
organic cathode materials are also discussed. Moreover, an outlook on the extension of
synchrotron-X-ray- and neutron-scattering-based techniques regarding investigation into
the cathode–electrolyte interphase (CEI), introduction of novel techniques (e.g., dark-field
X-ray microscopy), and integration of morphology and phase characterizations is proposed
for the study of high-voltage SIB cathode materials.
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2. Brief Overview of Synchrotron Radiation

According to classical electrodynamics, synchrotron radiation is generated as a narrow
tangent to the path of charged particles with a relativistic speed [42]. Figure 2A shows a
schematic of the basic components of a modern synchrotron facility. The acceleration of
electrons begins by obtaining them from a source, such as a heated filament in an electron
gun. Subsequently, these electrons are propelled forward through a linear accelerator
(LINAC) before being introduced into a booster ring, where their acceleration continues.
These electrons are then injected into the designated storage ring. Within this ring, bending
magnet achromats are employed at arc sections to confine the electrons within a closed path.
At the experimental hutch, the beamlines make use of the radiation emitted by insertion
devices (IDs, e.g., wigglers, undulators) positioned at the straight sections between the
arcs in the storage ring. The energy dissipated by the electrons due to the emission of
synchrotron light is restored through radio frequency (RF) supplies.
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Figure 2. Schematics on the introduction of synchrotron techniques used in battery research.
(A) A schematic of the basic components of a modern synchrotron facility. (B) Photon energy and
the wavelength spectrum with common synchrotron X-ray techniques and their applications in
battery research (IR—infrared; UV—ultraviolet; sXAS—soft X-ray absorption spectroscopy; XRD—
X-ray diffraction; PDF—pair distribution function; hXAS—hard X-ray absorption spectroscopy;
XANES—X-ray absorption near-edge structure; EXAFS—extended X-ray absorption fine structure;
RIXS—resonant inelastic X-ray scattering; STXM/TXM—scanning/transmission X-ray microscopy).

While different photon energy ranges can be accessed through synchrotron radia-
tion [42] (Figure 2B) and have been utilized for studying battery materials, this work only
focuses on synchrotron-based X-ray techniques for the discussion and understanding of
SIB cathode materials failure mechanisms. X-rays can be classified as hard, “tender”, or soft
according to their different photon energy range [42]. Hard X-rays have a photon energy
range of a few kiloelectron volts (keV) to tens of keV while soft X-rays range from several
tens of eVs to about 2 keV. The photon energy range of a “tender” X-ray is between the soft
and hard X-ray ranges. Leveraging the different interactions between X-ray and matter, a
combination of diverse X-ray techniques is preferred for disclosing detailed information on
the surface, interphase, and bulk of battery materials (Figures 2B and 3).
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3. Brief Overview of Neutron Technology

Neutrons, having no charge, possess a remarkable ability to penetrate through materi-
als. Unlike X-rays, neutrons can traverse long distances without encountering significant
scattering or absorption. Additionally, neutrons exhibit considerably lower levels of ma-
terial damage compared to X-ray analysis [44,45]. These unique characteristics provide
neutrons with distinct advantages for battery studies, offering complementary information
to X-ray studies. Due to its high sensitivity to light elements, especially Li, Na, and O, the
neutron technology is able to distinguish them from other heavy elements, such as Ni, Mn,
and Fe, which are common elements in SIB cathode materials [46].

Some typical neutron scattering technologies are suitable for battery research including
neutron diffraction (ND), small-angle neutron scattering (SANS), neutron total scattering
combined with pair distribution function (PDF), inelastic neutron scattering (INS), quasi-
elastic neutron scattering (QENS), and neutron imaging [46–49]. Leveraging Bragg’s
law, ND is used to study the crystal structures of materials at an atomic scale. PDF is a
mathematical function that characterizes the probability of finding two atoms separated
by a particular distance, which offers information about the spatial distribution of atom
pairs. The combination of PDF with neutron total scattering is able to give insights into
the structural characteristics and chemical environments of disordered materials. SANS
is especially suitable for determining the structure of materials at the nanoscale in terms
of the size, shape, and spatial arrangement of particles. QENS provides insights into the
dynamic behavior (e.g., motion and diffusion) of atoms and molecules within materials by
examining the energy and momentum transfer of neutrons during scattering. By offering
enhanced penetration and elemental contrast capabilities, neutron imaging allows for
the visualization of certain elements’ distribution. Typically, these neutron scattering
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techniques can serve as complementary support for synchrotron X-ray characterizations to
obtain a comprehensive understanding of high-voltage cathode behavior (Figure 3).

4. Layered Oxide Cathode Materials

The sodium-based layered transition metal oxide NaxMO2 (M: transition metal) con-
sists of stacked edge-sharing MO6 octahedral sheets. In accordance with Delmas’ nota-
tion [13,50], NaxMO2 can be categorized into O3 and P2 structures. In the O3 structure, the
Na+ ions are located in octahedral sites, whereas, in the P2 structure, they occupy prismatic
sites. Typically, NaxMO2 can be operated at a relatively high operating voltage based on
transition metal redox couples (e.g., Ni2+/Ni4+) [37,51,52]. In addition, the participation of
anionic (oxygen) redox activity leads to extra capacities at higher voltages [37]. However, it
is challenging to realize a long-lifetime high-voltage SIB with NaxMO2 (Table 1) partially
due to the degradation processes at the cathode side including structural transitions, oxygen
loss, and interphasial reactions. Here, we discuss the use of synchrotron X-ray scattering
and neutron scattering techniques to understand these NaxMO2 failure mechanisms and
move towards addressing them.

Table 1. A summary of the selected electrochemical performance of high-voltage SIBs with NaxTMO2.

Material Electrolyte Temperature Cycling Rate Voltage Range Cycling No. Until 80%
Capacity Retention Ref.

Na0.5Cu0.15Ni0.2Mn0.65O2/
Na 1M NaClO4 in PC + 5%FEC Room

temperature 1000 mA/g 3–4.2 V 1000 [53]

Na0.66Ni0.26Zn0.07Mn0.67O2/
Na 1M NaClO4 in PC + 2%FEC Room

temperature 12 mA/g 2–4.4 V 30 [54]

NaxNi1/3Co1/3Mn1/3O2/
Na 1M NaPF6 in PC + 2%FEC Room

temperature 0.5C 2–4.4 V 100 [55]

Na0.67Ni0.23Mn0.67Mg0.1O2/
Na 1M NaClO4 in PC + 5%FEC Room

temperature 0.1C 2–4.5 V 100 [56]

Na2/3[(Ni0.5Zn0.5)0.3Mn0.7]O2/
Na 0.5M NaPF6 in PC + 2%FEC Room

temperature 0.1C 2.3–4.6 V >200 [57]

Na0.6-xCaxNi1/3Mn1/3Co1/3O2/
Na

1M NaPF6 in EC/DEC 1/1 +
3%FEC

Room
temperature 200 mA/g 2.5–4.2 V ~100 [58]

Ru-substituted Na0.6MnO2/hard
carbon 1M NaClO4 in PC + 5%FEC Room

temperature 100 mA/g 1.5–4.4 V 50 [59]

Na0.67Ni0.19Cu0.14Mn0.52Ti0.15O2/
Na

1M NaClO4 in EC/DEC 1/1
+ 5%FEC

Room
temperature 0.1C 2–4.5 V 100 [60]

Structural transitions: Phase transition of cathode materials, especially at high voltage,
can be detrimental to the cell performance due to the potential changes of crystal structure
and lattice parameters, which could result in the following: cracking, pulverization, a
loss of active material, and inferior kinetics of ion transportation [37]. Substitution and
doping are widely used to suppress phase changes of NaxMO2 during cell operation at
a high voltage, especially when synchrotron X-ray [15,55,61–66] and neutron scattering
techniques [16,67–69] are used to obtain a comprehensive understanding of their effects.
Synchrotron X-ray diffraction (XRD) and ND are typically used for characterizing phase
changes of NaxMO2 as a function of potential. Tapia-Ruiz et al. [62] investigated the
effects of Mg substitution on P2-type Na2/3Ni1/3−xMgxMn2/3O2 (0 < x < 0.2) with XRD
to realize the suppression of the O2 phase by the formation of an OP4 phase above 4V.
ND was utilized to explain the substituted sites of Ni2+ from ordered [(Ni2+/Mn4+)O6]
honeycomb units by Mg2+. Liu et al. [16] studied the structure of a P3-type layered oxide
Na0.5Ni0.25Mn0.75O2 cathode, especially the nature of the high-voltage phase above 4 V,
using in situ neutron diffraction (Figure 4A). They clearly showed the phase above 4 V
(O3s phase) has a dramatically shorter interlayer distance when all sodium has been
removed. The substitution or doping elements could be involved in the redox process and
affect charge compensation mechanisms, which can be elaborated using synchrotron X-ray
absorption spectroscopy (XAS). Liu et al. [15] developed the Fe/Ti co-substitution strategy
to suppress P2–O2 phase transition and Na+/vacancy ordering at high voltages for P2–
Na2/3Ni1/3Mn2/3O2 cathode material. They demonstrated the incorporation of an Fe3+/4+

redox couple in the charge compensation using ex situ XAS (Figure 4B). XAS can also be
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used to study local atomic structure because it provides information on the short-range
order of atoms surrounding the absorbing atom. With detailed analysis, one can determine
the types of atoms surrounding the absorbing atom, bond distances, and coordination
numbers. Leveraging extended X-ray absorption fine-structure (EXAFS) spectroscopy
combined with fitting analysis, Bhange et al. [61] revealed unique local structure changes
around Ni atoms due to the honeycomb ordering and size mismatch between Ni2+ and Bi5+

cations (Figure 4C).
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electrode. Reproduced from ref. [15], copyright 2021 Elsevier. (C) Ni K-edge EXAFS spectra of
Na3Ni2BiO6 samples at different states of charge. Reproduced from ref. [61], copyright 2016 Royal
Society of Chemistry.

Irreversible oxygen redox activity: As a special case of structural transition, oxygen
loss, is discussed here as an independent section because of its universality for NaxMO2
cathodes when charging to high voltage. To further increase the energy density of SIBs,
it is urgent to utilize the extra capacity caused by the oxygen redox activity. However,
large, irreversible capacity accompanied by oxygen loss and voltage decay typically oc-
curs after the first charge process [70]. Thus, to develop NaxMO2 cathode materials with
highly reversible oxygen redox activity, fundamental studies of the redox reactions are
required from the perspective of charge compensation mechanisms and rational materials
design principles. X-ray absorption near-edge structure (XANES) spectroscopy has been
demonstrated to be a reliable method of determining the redox contribution from oxygen
(Figure 5A) [57,71,72]. Structural modification using element substitution [73–75] or dop-
ing [12,14,72] has been reported to suppress oxygen redox activity and decrease voltage
hysteresis. Ji et al. [73] reported that the substitution of Mg and Zn in a cathode material,
Na0.67Mg0.1Zn0.1Mn0.8O2, could deliver an ultra-high capacity of ~233 mAh/g at 0.1 C by
preventing the oxygen loss. Combining neutron PDF (Figure 5B) and resonant inelastic
X-ray scattering (RIXS, Figure 5C), they illustrated the migration of Mg2+ and Zn2+ out of
the layer with consequent vacancy cluster structures that could trap O2 molecules when
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fully charged. Yu et al. [72] improved the reversibility and stability of O2− by tuning the
Na–O–TM structure to increase the energy level of the O 2p electronic state using a Zr4+

doping strategy in an O3-type NaMn1/3Fe1/3Ni1/3O2 cathode material, which was proved
by the O K-edge ex situ XAS results. The oxygen loss in oxygen redox cathodes can also be
avoided by forming certain types of superstructures in the transition metal layers that can
suppress transition metal migration [70]. House et al. [76] demonstrated that the formation
of ribbon superstructure in Na0.6[Li0.2Mn0.8]O2 could inhibit Mn disorder, O2 formation,
and voltage hysteresis by synchrotron XAS (Figure 5D).

Batteries 2023, 9, x FOR PEER REVIEW 9 of 22 
 

ribbon superstructure in Na0.6[Li0.2Mn0.8]O2 could inhibit Mn disorder, O2 formation, and 
voltage hysteresis by synchrotron XAS (Figure 5D). 

 
Figure 5. Examples of synchrotron X-ray or neutron scattering techniques used in characterizing 
oxygen redox activity of NaxMO2 cathode materials. (A) O K-edge of ex situ XANES spectra for P2-
Na2/3[(Ni0.5Zn0.5)0.3Mn0.7]O2. Reproduced from ref. [57], copyright 2020 Wiley. (B) Neutron PDF pat-
terns of Na0.67Mg0.1Zn0.1Mn0.8O2 collected at the OCV and 4.5 V. The low r region labeled by a light-
blue square was analyzed to obtain information on the shrinkage of the O−O bond length. (C) O K-
edge RIXS measurements taken on Na0.67Mg0.2Mn0.8O2, Na0.67Zn0.2Mn0.8O2, and 
Na0.67Mg0.1Zn0.1Mn0.8O2 charged to 4.5 V at 531 eV. Reproduced from ref. [73], copyright 2023 Else-
vier. (D) O K-edge XAS (right panel) and RIXS spectra (left panel) recorded at an excitation energy 
of 531 eV for ribbon-ordered Na0.6[Li0.2Mn0.8]O2 at different states of charge (i.e., pristine, 4.5 V, and 
2 V). Reproduced from ref. [76], copyright 2019 Nature Springer. 

Cathode-electrolyte interphasial reactions: It has been reported that cathode–electro-
lyte interphasial reactions can compromise SIBs lifetime by causing transition metal re-
duction and dissolution, electrolyte oxidation, heterogeneous surface reconstruction, and 
intragranular nanocracks [11,77,78]. However, the complicated chemical species and some 
native surface film (e.g., NaOH, Na2CO3) on cathode surfaces make it difficult to discern 
the products from the electrochemical process [79]. Here, we summarize the use of syn-
chrotron X-ray techniques to diagnose the interphasial chemistries with the hope of 
providing scientific insights into stabilizing the interphase through cathode modification, 
electrolyte design, and artificial interphase fabrication. Soft XAS is a common technique 
used to investigate the surface chemical environments with both fluorescence yield (FY) 
and total electron yield (TEY) modes. Comparing the FY and TEY spectra of the same 
element, one can study the depth-dependent chemical changes because FY mode is used 
for probing the subsurface ( 50 nm) while TEY mode is used for studying the surface 
( 10 nm) [77,80,81]. Mu et al. [77] realized electrolyte oxidation on the cathode surface by 

Figure 5. Examples of synchrotron X-ray or neutron scattering techniques used in characterizing
oxygen redox activity of NaxMO2 cathode materials. (A) O K-edge of ex situ XANES spectra for
P2-Na2/3[(Ni0.5Zn0.5)0.3Mn0.7]O2. Reproduced from ref. [57], copyright 2020 Wiley. (B) Neutron
PDF patterns of Na0.67Mg0.1Zn0.1Mn0.8O2 collected at the OCV and 4.5 V. The low r region labeled
by a light-blue square was analyzed to obtain information on the shrinkage of the O–O bond
length. (C) O K-edge RIXS measurements taken on Na0.67Mg0.2Mn0.8O2, Na0.67Zn0.2Mn0.8O2, and
Na0.67Mg0.1Zn0.1Mn0.8O2 charged to 4.5 V at 531 eV. Reproduced from ref. [73], copyright 2023
Elsevier. (D) O K-edge XAS (right panel) and RIXS spectra (left panel) recorded at an excitation
energy of 531 eV for ribbon-ordered Na0.6[Li0.2Mn0.8]O2 at different states of charge (i.e., pristine,
4.5 V, and 2 V). Reproduced from ref. [76], copyright 2019 Nature Springer.

Cathode-electrolyte interphasial reactions: It has been reported that cathode–electrolyte
interphasial reactions can compromise SIBs lifetime by causing transition metal reduction
and dissolution, electrolyte oxidation, heterogeneous surface reconstruction, and intragran-
ular nanocracks [11,77,78]. However, the complicated chemical species and some native
surface film (e.g., NaOH, Na2CO3) on cathode surfaces make it difficult to discern the
products from the electrochemical process [79]. Here, we summarize the use of synchrotron
X-ray techniques to diagnose the interphasial chemistries with the hope of providing sci-
entific insights into stabilizing the interphase through cathode modification, electrolyte
design, and artificial interphase fabrication. Soft XAS is a common technique used to
investigate the surface chemical environments with both fluorescence yield (FY) and total
electron yield (TEY) modes. Comparing the FY and TEY spectra of the same element, one
can study the depth-dependent chemical changes because FY mode is used for probing the
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subsurface (≈50 nm) while TEY mode is used for studying the surface (≈10 nm) [77,80,81].
Mu et al. [77] realized electrolyte oxidation on the cathode surface by revealing a lower
Ni oxidation state at the surface using TEY mode compared to FY mode at all states of
charge (Figure 6A). Being similar to conventional XPS, synchrotron-based hard X-ray pho-
toelectron spectroscopy (HAXPES) is able to provide interphasial chemical information by
analyzing the electronic properties of materials with an extended penetration depth and
improved sensitivity. Doubaji et al. [82] demonstrated the interphasial chemistries evolu-
tion on the surface of NaxCo2/3Mn2/9Ni1/9O2 during cycling using HAXPES (Figure 6B).
Transmission X-ray microscopy (TXM), a non-destructive imaging technique, allows for
the tracking of transition metal migration, which can be caused by interphasial reactions,
through visualizing and analyzing the three-dimensional (3D) distribution of transition
metal cations [83,84]. For example, Rahman et al. [83] confirmed the Mn migration to
the Na0.9Cu0.2Fe0.28Mn0.52O2 particle surface during cycling by using TXM (Figure 6C).
Although there are rare reports discussing the use of neutron scattering technology in
studying CEI, there is plenty of scope for applying this technique in this area. We discuss it
in the perspective section.
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Figure 6. Examples of synchrotron X-ray techniques used in characterizing the NaxMO2 cathode–
electrolyte interphasial chemical process. Soft XAS spectroscopy of Ni L-edge in FY mode (A) and
TEY mode (B) of the O3–NaNi1/3Fe1/3Mn1/3O2 cathode at different charge states. Reproduced from
ref. [77], copyright 2018 Wiley. (C) Neutron PDF patterns of Na0.67Mg0.1Zn0.1Mn0.8O2 collected
at the OCV and 4.5 V. (C) C1s HAXPES spectra for NaxCo2/3Mn2/9Ni1/9O2 at different voltage
stages during charge. Reproduced from ref. [82], copyright 2016 Wiley. (D) 3D morphology of the
Na0.9Cu0.2Fe0.28Mn0.52O2 particle after cycling rendered from single-energy TXM data. Reproduced
from ref. [83], copyright 2018 Royal Society of Chemistry.



Batteries 2023, 9, 461 10 of 20

5. Polyanion Compounds

Polyanion-type compounds, built with (XO4)n− (X = B, S, P, Si, etc.) units or their
derivatives, have also attracted substantial research interest [36,37]. They are able to
exhibit higher operating potentials, which is due to the inductive effect of polyanion
groups [85]. The strong X–O covalent bonds dramatically improve the stability of lattice
oxygen, thus increasing the thermal stability of polyanion-type cathode materials compared
to layered oxide cathodes. However, polyanion-type cathode materials have a relatively
low gravimetric specific capacity because of the heavy polyanion groups’ presence. To
increase the SIBs’ energy density, it is important to explore high-voltage polyanion materials
(e.g., phosphates, fluoride phosphates, pyrophosphates) to obtain more capacity. However,
polyanion cathode materials can suffer from structural transition and severe interphasial
reactions at high voltages, thus decreasing cell lifetime (Table 2). In addition, it is difficult
to understand the charge compensation mechanisms because the transition metal redox
couple varies significantly with different structures and polyanionic groups.

Table 2. A summary of the selected electrochemical performance of high-voltage SIBs with
polyanion cathodes.

Material Electrolyte Temperature Cycling Rate Voltage
Range

Cycling No. Until 80%
Capacity Retention Ref.

NaVOPO4//Na 1M NaClO4 in EC/DEC
1/1

Room
temperature 0.5C 2–4.2 V 1000 [86]

Na3V2(PO4)2F3/Na 1M NaClO4 in EC/DEC
1/1 + 5%FEC

Room
temperature 10C 2.5–4.5 V >1000 [87]

Na2Fe(C2O4)SO4·H2O/Na 1M NaClO4 in PC +
3%FEC

Room
temperature 0.2C 1.7–4.2 V 500 [88]

Na1.4Fe1.3P2O7/Na 1M NaClO4 in EC/PC 1/1
+ 5%FEC

Room
temperature 1C 1.5–4.2 V 650 [89]

Na2VTi(PO4)2F3/Na NaPF6 in PC/EC/DMC
1/1/1

Room
temperature 0.1C 3–4.4 V >100 [90]

Na3MnZr(PO4)3/Na 1M NaClO4 in PC/FEC
9/1

Room
temperature 0.5C 2.5–4.2 V >500 [91]

Na4MnCr(PO4)3/Na 1M NaClO4 in PC/FEC
9/1

Room
temperature 10C 1.5–4.3 V >500 [92]

To address these challenges, researchers have utilized state-of-the-art characterization
techniques to investigate the micro/macro structure, chemical composition changes, and
sodium storage mechanism of polyanion-type cathode materials. The use of ND (Figure 7A)
and synchrotron XRD (Figure 7B) has been widely reported in the illustration of the
structural transition of polyanion-type cathode materials, especially during high-voltage
operation [93–97]. Leveraging in situ synchrotron XRD, Chen et al. [93] revealed a near-zero
volume change for N-doped graphene-oxide-wrapped Na3V(PO3)3N cathode materials
during cycling. Wang et al. [94] developed a new cathode, Na4MnCr(PO4)3, with a high
specific capacity of 130 mAh g−1. Its structural evolution with a sequence of single phase,
two phases, and single phase during discharge was confirmed by the synchrotron XRD
data. Synchrotron-based XAS has also been utilized to study transition metal redox activity
to understand the charge compensation mechanisms for high-voltage polyanion-type
cathode materials (Figure 7C) [88,93,98]. Kawai et al. [98] demonstrated the activity of a
Cr4+/Cr3+ redox couple in Na3–xCr2(PO4)3 at 4.5 V vs. Na/Na+ using Cr K-edge XANES
spectra. When more transition metal redox couples were involved in the Na4MnCr(PO4)3
cathode, Zhang et al. [96] were able to reveal the underlying mechanism of the Mn2+/Mn3+,
Mn3+/Mn4+, and Cr3+/Cr4+ redox couples via XANES spectroscopy.
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Figure 7. Examples of synchrotron X-ray techniques used in characterizing polyanion-type cathode
materials. (A) Observed and calculated scattering intensity versus scattering vector Q for ND pattern
of Na2.5Fe1.75(SO4)3 at 620 K. Reproduced from ref. [95], copyright 2016 American Chemical Society.
(B) Ex situ synchrotron XRD patterns of Na4MnCr(PO4)3 at various states of charge. Reproduced
from ref. [94], copyright 2020 Wiley. (C) Cr K-edge XANES spectra of Na3Cr2(PO4)3/acetylene
black electrode in the first charging process. Reproduced from ref. [98], copyright 2018 American
Chemical Society.

To develop high-voltage, friendly electrolyte systems for polyanion-type cathode
materials, there have been many studies discussing the CEI [99–104]. However, synchrotron
X-ray and neutron scattering techniques have not been widely used in investigating the
interphasial chemical evolutions for polyanion-type cathode materials. We discuss their
potential applications in this area in the perspective section.

6. Prussian Blue Analogue and Organic Materials

Due to the advantages of excellent redox activity, low cost, and elemental Earth abun-
dance, Prussian blue (PB), its analogues (PBAs), and organic materials have been widely
investigated as promising cathode active materials for SIBs. However, their average work-
ing voltage is not as satisfactory as the one from transition metal oxides and polyanionic
compounds. To further improve cell energy density, recently emerging efforts have been
devoted to increasing the working voltage of PBAs and organic cathode materials from the
perspective of tuning the materials’ structure [105–107]. Although synchrotron X-ray and
neutron scattering have less often been used with a focus on investigating high-voltage
PBAs and organic cathodes, it is urgent to highlight the application of these advanced
characterizations in these existing cathode chemistries with the hope of increasing the use
of these techniques in future high-voltage PBAs and organic cathodes.

PBAs, typically represented by a chemical formula of AxM1[M2(CN)6]y�1-y zH2O, con-
sist of more than 100 family members with different crystal phases [38]. Here, A represents
an alkali metal while M1 and M2 represent transition metals. Typically, these transition
metals are bonded with a C≡N− anion to form a three-dimensional open structure for
hosting working ions (i.e., A). The sign of “�” represents the structural vacancy associated
with the lack of M2(CN)6 group. The electrochemical activity with electron transfer of
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PBA cathode materials is typically associated with the valence change of M1 and M2. Due
to the crystallinity and the involvement of transition metals, synchrotron XRD and XAS
are typically used in characterizing PBAs to investigate bulk structure changes and redox
mechanisms, respectively [108–111]. To extend the cell lifetime, it is important to eliminate
crystal water from PBAs. Wang et al. [111] illustrated phase transformation for a dehy-
drated Na2−xFeFe(CN)6 sample during cycling in situ by synchrotron XRD (Figure 8A).
Seok et al. [110] studied the structure of a PBA using synchrotron XRD when iron was
substituted with nickel (PBN). They demonstrated that the addition of nickel could dra-
matically decrease the volumetric expansion, thus improving cycling stability. In addition,
the added nickel was electrochemically inactive, which was proved by the XANES data
(Figure 8B). X-ray total scattering combined with the PDF technique has also been used to
study the local structure and coordination geometry of PBAs. Xu et al. [112] identified the
structure difference in a short range (r < 10 Å, Figure 8C) between cubic structured nickel
hexacyanoferrate (NiHCF) and monoclinic NiHCF using synchrotron X-ray total scattering
with PDF analysis. This could have been caused by the lattice distortion and Fe−C≡N−Ni
skeleton twisting in the monoclinic phase. As a complementary technique, ND combined
with refinement has been used in characterizing the bulk structure of PBAs. Using ND,
Peng et al. [113] identified the structure of a rust-derived Prussian blue as an SIB cathode
material with the Na+ occupying the 8c and 24d positions. Leveraging ND with the refine-
ment of the oxygen occupancies, Nielsen et al. [114] reported that water molecules do not
induce phase transitions for Na2Fe [Fe(CN)6]·zH2O. Other neutron scattering techniques
also need to be applied in studying PBAs to obtain more insights into further high-voltage
chemistries, which are discussed in the perspective section.
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(104), and (024) reflection planes from in situ synchrotron XRD of the high-temperature-treated
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spectra at Ni K-edge of PBN during discharging process. Reproduced from ref. [110], copyright
2020 American Chemical Society. (C) PDF pattern of cubic (purplish blue) and monoclinic (orange)
structured NiHCF. Reproduced from ref. [112], copyright 2019 Wiley.
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Organic cathode materials, typically consisting of light elements (e.g., C, H, O, N), can
be divided into n type, p type, and bipolar type according to their different redox-active
units or moieties with redox mechanisms [33,39]. Typically, many n-type organic materials
involve an initial reduction process that leads to the formation of a negatively charged state
to combine with metal cations. Usually p-type organic materials undergo an oxidation
process to combine with anions in the electrolytes. By incorporating the two characteristics
described above, bipolar-type organic materials exhibit the capability to undergo either
oxidation or reduction processes. Due to the lack of redox activities from transition metals,
the use of synchrotron X-ray techniques to characterize typical organic cathodes has not
attracted substantial interest. However, the proper use of synchrotron X-ray combined
with ab initio molecular dynamics (MD) simulations is also able to illustrate short-range
structural features of organic materials at different states of charge. Kuan et al. [115]
reported a novel small molecule, hexaazatrianthranylene embedded quinone (HATAQ,
Figure 9A), as an SIB cathode material with 99% capacity retention over 5000 cycles at a
high rate of 60 A g−1. Leveraging ex situ synchrotron total X-ray scattering measurements
(Figure 9B) with theoretical modeling, they illustrated the sodium storage mechanism by
elaborating the appearance of Na–C, Na–O, and Na–N correlations.
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Figure 9. Examples of synchrotron X-ray techniques used in organic SIB cathode materials.
(A) Chemical structure of the small-molecule HATAQ; (B) synchrotron X-ray PDFs of pristine
and sodiated HATAQ. Reproduced from ref. [115], copyright 2022 Royal Society of Chemistry.
(C) Schematic representation of the pillar-layered structures of CPL-4; (D) operando Cu K-edge
XANES spectra of the CPL-4 cathode during the first discharging process. Reproduced from ref. [116],
copyright 2022 American Chemical Society.

To improve the working potential of organic cathodes, it is feasible to combine or-
ganic redox species with transition-metal-containing compounds. Shimizu et al. [116]
investigated CPL-4 ([Cu2(pzdc)2(azpy)], pzdc = pyrazine-2,3-dicarboxylate, azpy = 4,4-
azopyridine, Figure 9C) as an SIB cathode material, which is a combination of aromatic azo
compounds with metal carboxylates. The Cu element in this cathode material facilitates
the use of synchrotron X-ray characterization to illustrate the redox reaction mechanism.
The operando Cu K-edge XANES spectra (Figure 9D) were collected to demonstrate the
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reversible redox reaction of Cu2+/Cu+. The use of neutron characterization in organic
cathode materials needs to be extended, which is discussed in the perspective section.

7. Conclusions and Perspectives

High-voltage materials have shot to notability as a promising research area for SIBs
because of their advantage of improving cell energy density with Earth-abundant elements.
However, they face several serious problems such as bulk structure transition, lattice
oxygen irreversibility, and cathode–electrolyte interphase evolution. Different strategies
have been performed to improve the performance of high-voltage SIB cathode materials,
such as element substitution or doping, rational electrolyte design, and artificial interphase
fabrication. Simultaneously, state-of-art characterization techniques need to be applied to
comprehensively understand the relationship between electrochemical performance and
the evolution of the bulk and interphase during high-voltage operation.

In this review, synchrotron-X-ray- and neutron-scattering-based characterization tech-
niques applied in high-voltage SIB cathode materials with both ex situ and in situ methods
are summarized systematically. These characterization techniques are related to crystal
structure, chemical composition and distribution, and valence state changes. The crystal-
structure-related techniques (e.g., XRD, ND, PDF) have been proven as powerful tools
to track the phase transformation and local atomic structures during the electrochemical
processes. Composition- and valence-state-related techniques, such as RIXS, HAXPES, and
XAS, can provide valuable information about potential reaction pathways and charge com-
pensation mechanisms. Morphology- and element-distribution-related techniques, such as
TXM, are able to provide detailed information about the internal structure, morphology,
and elemental distribution of materials at the micrometer or nanometer scale. Despite the
advantages of these characterizations mentioned above, there is plenty scope to use these
characterizations to address the challenges of high-voltage SIB cathodes, especially when
synchrotron X-ray and neutron scattering techniques are updated. We would like to sum-
marize a few specific and practical directions for further research using synchrotron-X-ray-
and neutron-scattering-based techniques (Scheme 1).
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using synchrotron X-ray and neutron scattering technology.

1. Investigating CEI in high-voltage polyanion-type cathode: Investigations into the CEI
of polyanion-type cathode materials have attracted substantial interest. However,
most of the reported results in this area are from lab-based characterizations, which
suggests that there is plenty of scope for applying synchrotron X-ray and neutron
scattering techniques. As a successful example, the use of synchrotron-based soft XAS
with both FY and TEY mode was able to reveal the transition metal activity in the
CEI of layered transition metal oxide cathodes. More similar advanced techniques are
encouraged for application in the investigation of the CEI of high-voltage polyanion-
type cathodes to obtain more insights with the hope of extending cell lifetime;

2. Extending neutron scattering techniques: In the research area of high-voltage SIB
cathode materials, ND has been widely used to study the bulk structure of layered
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transition metal oxide cathodes and polyanion-type cathodes. There remains wide
scope for using neutron scattering techniques in CEI studies. SANS is a powerful
tool for obtaining the size and shape information of materials at the nanometer scale
which has been successfully used in studying the chemical nature, morphology, and
size evolution of the solid–electrolyte interphase (SEI) in LIBs [117,118]. Neutron
reflection testing is able to probe the structure and kinetics at the materials’ interphase
by detecting the reflected intensity as a function of angle, which has been used to study
the structure and composition gradients of SEI in LIBs [119,120]. These successful
examples from LIBs suggest the possibility of involving these neutron-scattering-
based techniques in SIB CEI studies from different perspectives;

3. Exploring new techniques: To accelerate the understanding of the SIB cathode’s
behavior at high voltage, more synchrotron-X-ray- and neutron-based complementary
techniques are needed to obtain a more complete picture of the material’s structure,
dynamics, and electrochemical behavior. For example, the introduction of dark-field X-
ray microscopy [121] could complement TXM in characterizing material morphology
by enhancing contrast with selective detection of scattered X-rays. Especially, dark-
field X-ray microscopy [121] is highly sensitive to surface features, which could
provide valuable information about the interphase morphology. Due to the sensitivity
to the dynamic behavior of nanoscale features, the use of X-ray photon correlation
spectroscopy (XPCS) could provide information about the movement and fluctuations
of nanoparticles and crystal domains [122,123]. This is important for understanding
working ion diffusion, phase transitions, and structural heterogeneities or defects on
the nanosecond to microsecond timescales;

4. Bridging materials characterizations to electrode performance: Although there have
been substantial efforts towards understanding high-voltage SIB cathode materials
using synchrotron X-ray and neutron scattering techniques, it is challenging to di-
rectly link the materials characterization results with the electrode, as well as cell
device performance partially due to the disconnection between morphology and
phase characterization. One finds it is difficult to perform transmission microscopy
and diffraction for the same batch of particles to obtain morphology and phase change
information simultaneously. It would be ideal if we could collect morphology and
structural phase information for a controllable number of particles at the same time
in the near future. By studying the behavior of these particles statistically, one could
establish a model to predict the electrode performance with the aid of artificial intelli-
gence, which could also guide the selection of the materials synthesis methodology.
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