Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (347)

Search Parameters:
Keywords = integral state feedback control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2584 KiB  
Article
Precise and Continuous Biomass Measurement for Plant Growth Using a Low-Cost Sensor Setup
by Lukas Munser, Kiran Kumar Sathyanarayanan, Jonathan Raecke, Mohamed Mokhtar Mansour, Morgan Emily Uland and Stefan Streif
Sensors 2025, 25(15), 4770; https://doi.org/10.3390/s25154770 (registering DOI) - 2 Aug 2025
Abstract
Continuous and accurate biomass measurement is a critical enabler for control, decision making, and optimization in modern plant production systems. It supports the development of plant growth models for advanced control strategies like model predictive control, and enables responsive, data-driven, and plant state-dependent [...] Read more.
Continuous and accurate biomass measurement is a critical enabler for control, decision making, and optimization in modern plant production systems. It supports the development of plant growth models for advanced control strategies like model predictive control, and enables responsive, data-driven, and plant state-dependent cultivation. Traditional biomass measurement methods, such as destructive sampling, are time-consuming and unsuitable for high-frequency monitoring. In contrast, image-based estimation using computer vision and deep learning requires frequent retraining and is sensitive to changes in lighting or plant morphology. This work introduces a low-cost, load-cell-based biomass monitoring system tailored for vertical farming applications. The system operates at the level of individual growing trays, offering a valuable middle ground between impractical plant-level sensing and overly coarse rack-level measurements. Tray-level data allow localized control actions, such as adjusting light spectrum and intensity per tray, thereby enhancing the utility of controllable LED systems. This granularity supports layer-specific optimization and anomaly detection, which are not feasible with rack-level feedback. The biomass sensor is easily scalable and can be retrofitted, addressing common challenges such as mechanical noise and thermal drift. It offers a practical and robust solution for biomass monitoring in dynamic, growing environments, enabling finer control and smarter decision making in both commercial and research-oriented vertical farming systems. The developed sensor was tested and validated against manual harvest data, demonstrating high agreement with actual plant biomass and confirming its suitability for integration into vertical farming systems. Full article
(This article belongs to the Special Issue Feature Papers in Smart Agriculture 2025)
Show Figures

Figure 1

27 pages, 12164 KiB  
Article
Neural Network Adaptive Attitude Control of Full-States Quad Tiltrotor UAV
by Jiong He, Binwu Ren, Yousong Xu, Qijun Zhao, Siliang Du and Bo Wang
Aerospace 2025, 12(8), 684; https://doi.org/10.3390/aerospace12080684 - 30 Jul 2025
Viewed by 180
Abstract
The control stability and accuracy of quad tiltrotor UAVs is improved when encountering external disturbances during automatic flight by an active disturbance rejection control (ADRC) parameter self-tuning control strategy based on a radial basis function (RBF) neural network. Firstly, a nonlinear flight dynamics [...] Read more.
The control stability and accuracy of quad tiltrotor UAVs is improved when encountering external disturbances during automatic flight by an active disturbance rejection control (ADRC) parameter self-tuning control strategy based on a radial basis function (RBF) neural network. Firstly, a nonlinear flight dynamics model of the quad tiltrotor UAV is established based on the approach of component-based mechanistic modeling. Secondly, the effects of internal uncertainties and external disturbances on the model are eliminated, whilst the online adaptive parameter tuning problem for the nonlinear active disturbance rejection controller is addressed. The superior nonlinear function approximation capability of the RBF neural network is then utilized by taking both the control inputs computed by the controller and the system outputs of the quad tiltrotor model as neural network inputs to implement adaptive parameter adjustments for the Extended State Observer (ESO) component responsible for disturbance estimation and the Nonlinear State Error Feedback (NLSEF) control law of the active disturbance rejection controller. Finally, an adaptive attitude control system for the quad tiltrotor UAV is constructed, centered on the ADRC-RBF controller. Subsequently, the efficacy of the attitude control system is validated through simulation, encompassing a range of flight conditions. The simulation results demonstrate that the Integral of Absolute Error (IAE) of the pitch angle response controlled by the ADRC-RBF controller is reduced to 37.4° in comparison to the ADRC controller in the absence of external disturbance in the full-states mode state of the quad tiltrotor UAV, and the oscillation amplitude of the pitch angle response controlled by the ADRC-RBF controller is generally reduced by approximately 50% in comparison to the ADRC controller in the presence of external disturbance. In comparison with the conventional ADRC controller, the proposed ADRC-RBF controller demonstrates superior performance with regard to anti-disturbance capability, adaptability, and tracking accuracy. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

30 pages, 5612 KiB  
Review
In-Situ Monitoring and Process Control in Material Extrusion Additive Manufacturing: A Comprehensive Review
by Alexander Isiani, Kelly Crittenden, Leland Weiss, Okeke Odirachukwu, Ramanshu Jha, Okoye Johnson and Osinachi Abika
J. Exp. Theor. Anal. 2025, 3(3), 21; https://doi.org/10.3390/jeta3030021 - 29 Jul 2025
Viewed by 143
Abstract
Material extrusion additive manufacturing (MEAM) has emerged as a versatile and widely adopted 3D printing technology due to its cost-effectiveness and ability to process a diverse range of materials. However, achieving consistent part quality and repeatability remains a challenge, mainly due to variations [...] Read more.
Material extrusion additive manufacturing (MEAM) has emerged as a versatile and widely adopted 3D printing technology due to its cost-effectiveness and ability to process a diverse range of materials. However, achieving consistent part quality and repeatability remains a challenge, mainly due to variations in process parameters and material behavior during fabrication. In-situ monitoring and advanced process control systems have been increasingly integrated into MEAM to address these issues, enabling real-time detection of defects, optimization of printing conditions, reliability of fabricated parts, and enhanced control over mechanical properties. This review examines the state-of-the-art in-situ monitoring techniques, including thermal imaging, vibrational sensing, rheological monitoring, printhead positioning, acoustic sensing, image recognition, and optical scanning, and their integration with process control strategies, such as closed-loop feedback systems and machine learning algorithms. Key challenges, including sensor accuracy, data processing complexity, and scalability, are discussed alongside recent advancements and their implications for industrial applications. By synthesizing current research, this work highlights the critical role of in-situ monitoring and process control in advancing the reliability and precision of MEAM, paving the way for its broader adoption in high-performance manufacturing. Full article
Show Figures

Figure 1

20 pages, 5404 KiB  
Article
Adaptive Transient Synchronization Support Strategy for Grid-Forming Energy Storage Facing Inverter Faults
by Chao Xing, Jiajie Xiao, Peiqiang Li, Xinze Xi, Yunhe Chen and Qi Guo
Electronics 2025, 14(15), 2980; https://doi.org/10.3390/electronics14152980 - 26 Jul 2025
Viewed by 250
Abstract
Aiming at the transient synchronization instability problem of grid-forming energy storage under a fault in the grid-connected inverter, this paper proposes an adaptive transient synchronization support strategy for grid-forming energy storage facing inverter faults. First, the equal area rule is employed to analyze [...] Read more.
Aiming at the transient synchronization instability problem of grid-forming energy storage under a fault in the grid-connected inverter, this paper proposes an adaptive transient synchronization support strategy for grid-forming energy storage facing inverter faults. First, the equal area rule is employed to analyze the transient response mechanism of the grid-forming energy storage grid-connected inverter under faults, revealing the negative coupling relationship between active power output and transient stability, as well as the positive coupling relationship between reactive power output and transient stability. Based on this, through the analysis of the dynamic characteristics of the fault overcurrent, the negative correlation between the fault inrush current and impedance and the positive correlations among the fault steady-state current, active power, and voltage at the point of common coupling are identified. Then, a variable proportional–integral controller is designed to adaptively correct the active power reference value command, and the active power during the fault is gradually restored via the frequency feedback mechanism. Meanwhile, the reactive power reference value is dynamically adjusted according to the voltage at the point of common coupling to effectively support the voltage. Finally, the effectiveness of the proposed strategy is verified in MATLAB/Simulink. Full article
(This article belongs to the Special Issue Energy Saving Management Systems: Challenges and Applications)
Show Figures

Figure 1

23 pages, 3371 KiB  
Article
Scheduling Control Considering Model Inconsistency of Membrane-Wing Aircraft
by Yanxuan Wu, Yifan Fu, Zhengjie Wang, Yang Yu and Hao Li
Processes 2025, 13(8), 2367; https://doi.org/10.3390/pr13082367 - 25 Jul 2025
Viewed by 196
Abstract
Inconsistency in the structural strengths of a membrane wing under positive and negative loads has undesirable impacts on the aeroelastic deflections of the wing, which results in more significant flight control system modeling errors and worsens the performance of the aircraft. In this [...] Read more.
Inconsistency in the structural strengths of a membrane wing under positive and negative loads has undesirable impacts on the aeroelastic deflections of the wing, which results in more significant flight control system modeling errors and worsens the performance of the aircraft. In this paper, an integrated dynamic model is derived for a membrane-wing aircraft based on the structural dynamics equation of the membrane wing and the flight dynamics equation of the traditional fixed wing. Based on state feedback control theory, an autopilot system is designed to unify the flight and control properties of different flight and wing deformation statuses. The system uses models of different operating regions to estimate the dynamic response of the vehicle and compares the estimation results with the sensor signals. Based on the compared results, the autopilot can identify the overall flight and select the correct operating region for the control system. By switching to the operating region with the minimum modeling error, the autopilot system maintains good flight performance while flying in turbulence. According to the simulation results, compared with traditional rigid aircraft autopilots, the proposed autopilot can reduce the absolute maximum attack angles by nearly 27% and the absolute maximum wingtip twist angles by nearly 25% under gust conditions. This enhanced robustness and stability performance demonstrates the autopilot’s significant potential for practical deployment in micro-aerial vehicles, particularly in applications demanding reliable operation under turbulent conditions, such as military surveillance, environmental monitoring, precision agriculture, or infrastructure inspection. Full article
(This article belongs to the Special Issue Design and Analysis of Adaptive Identification and Control)
Show Figures

Figure 1

20 pages, 1848 KiB  
Article
Integrated Intelligent Control for Trajectory Tracking of Nonlinear Hydraulic Servo Systems Under Model Uncertainty
by Haoren Zhou, Jinsheng Zhang and Heng Zhang
Actuators 2025, 14(8), 359; https://doi.org/10.3390/act14080359 - 22 Jul 2025
Viewed by 313
Abstract
To address the challenges of model uncertainty, strong nonlinearities, and controller tuning in high-precision trajectory tracking for hydraulic servo systems, this paper proposes a hierarchical GA-PID-MPC fusion strategy. The architecture integrates three functional layers: a Genetic Algorithm (GA) for online parameter optimization, a [...] Read more.
To address the challenges of model uncertainty, strong nonlinearities, and controller tuning in high-precision trajectory tracking for hydraulic servo systems, this paper proposes a hierarchical GA-PID-MPC fusion strategy. The architecture integrates three functional layers: a Genetic Algorithm (GA) for online parameter optimization, a Model Predictive Controller (MPC) for future-oriented planning, and a Proportional–Integral–Derivative (PID) controller for fast feedback correction. These modules are dynamically coordinated through an adaptive cost-aware blending mechanism based on real-time performance evaluation. The MPC module operates on a linearized state–space model and performs receding-horizon control with weights and horizon length θ=[q,r,Tp] tuned by GA. In parallel, the PID controller is enhanced with online gain projection to mitigate nonlinear effects. The blending coefficient σ(t) is adaptively updated to balance predictive accuracy and real-time responsiveness, forming a robust single-loop controller. Rigorous theoretical analysis establishes global input-to-state stability and H performance under average dwell-time constraints. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

21 pages, 4336 KiB  
Article
A Hybrid Flying Robot Utilizing Water Thrust and Aerial Propellers: Modeling and Motion Control System Design
by Thien-Dinh Nguyen, Cao-Tri Dinh, Tan-Ngoc Nguyen, Jung-Suk Park, Thinh Huynh and Young-Bok Kim
Actuators 2025, 14(7), 350; https://doi.org/10.3390/act14070350 - 17 Jul 2025
Viewed by 287
Abstract
In this paper, a hybrid flying robot that utilizes water thrust and aerial propeller actuation is proposed and analyzed, with the aim of applications in hazardous tasks in the marine field, such as firefighting, ship inspections, and search and rescue missions. For such [...] Read more.
In this paper, a hybrid flying robot that utilizes water thrust and aerial propeller actuation is proposed and analyzed, with the aim of applications in hazardous tasks in the marine field, such as firefighting, ship inspections, and search and rescue missions. For such tasks, existing solutions like drones and water-powered robots inherited fundamental limitations, making their use ineffective. For instance, drones are constrained by limited flight endurance, while water-powered robots struggle with horizontal motion due to the couplings between translational motions. The proposed hydro-aerodynamic hybrid actuation in this study addresses these significant drawbacks by utilizing water thrust for sustainable vertical propulsion and propeller-based actuation for more controllable horizontal motion. The characteristics and mathematical models of the proposed flying robots are presented in detail. A state feedback controller and a proportional–integral–derivative (PID) controller are designed and implemented in order to govern the proposed robot’s motion. In particular, a linear matrix inequality approach is also proposed for the former design so that a robust performance is ensured. Simulation studies are conducted where a purely water-powered flying robot using a nozzle rotation mechanism is deployed for comparison, to evaluate and validate the feasibility of the flying robot. Results demonstrate that the proposed system exhibits superior performance in terms of stability and tracking, even in the presence of external disturbances. Full article
(This article belongs to the Special Issue Actuator-Based Control Strategies for Marine Vehicles)
Show Figures

Figure 1

23 pages, 10801 KiB  
Article
Secure Communication of Electric Drive System Using Chaotic Systems Base on Disturbance Observer and Fuzzy Brain Emotional Learning Neural Network
by Huyen Chau Phan Thi, Nhat Quang Dang and Van Nam Giap
Math. Comput. Appl. 2025, 30(4), 73; https://doi.org/10.3390/mca30040073 - 14 Jul 2025
Viewed by 193
Abstract
This paper presents a novel wireless control framework for electric drive systems by employing a fuzzy brain emotional learning neural network (FBELNN) controller in conjunction with a Disturbance Observer (DO). The communication scheme uses chaotic system dynamics to ensure data confidentiality and robustness [...] Read more.
This paper presents a novel wireless control framework for electric drive systems by employing a fuzzy brain emotional learning neural network (FBELNN) controller in conjunction with a Disturbance Observer (DO). The communication scheme uses chaotic system dynamics to ensure data confidentiality and robustness against disturbance in wireless environments. To be applied to embedded microprocessors, the continuous-time chaotic system is discretized using the Grunwald–Letnikov approximation. To avoid the loss of generality of chaotic behavior, Lyapunov exponents are computed to validate the preservation of chaos in the discrete-time domain. The FBELNN controller is then developed to synchronize two non-identical chaotic systems under different initial conditions, enabling secure data encryption and decryption. Additionally, the DOB is introduced to estimate and mitigate the effects of bounded uncertainties and external disturbances, enhancing the system’s resilience to stealthy attacks. The proposed control structure is experimentally implemented on a wireless communication system utilizing ESP32 microcontrollers (Espressif Systems, Shanghai, China) based on the ESP-NOW protocol. Both control and feedback signals of the electric drive system are encrypted using chaotic states, and real-time decryption at the receiver confirms system integrity. Experimental results verify the effectiveness of the proposed method in achieving robust synchronization, accurate signal recovery, and a reliable wireless control system. The combination of FBELNN and DOB demonstrates significant potential for real-time, low-cost, and secure applications in smart electric drive systems and industrial automation. Full article
(This article belongs to the Special Issue Applied Optimization in Automatic Control and Systems Engineering)
Show Figures

Figure 1

19 pages, 3024 KiB  
Article
Feedback-Driven Dynamical Model for Axonal Extension on Parallel Micropatterns
by Kyle Cheng, Udathari Kumarasinghe and Cristian Staii
Biomimetics 2025, 10(7), 456; https://doi.org/10.3390/biomimetics10070456 - 11 Jul 2025
Viewed by 352
Abstract
Despite significant advances in understanding neuronal development, a fully quantitative framework that integrates intracellular mechanisms with environmental cues during axonal growth remains incomplete. Here, we present a unified biophysical model that captures key mechanochemical processes governing axonal extension on micropatterned substrates. In these [...] Read more.
Despite significant advances in understanding neuronal development, a fully quantitative framework that integrates intracellular mechanisms with environmental cues during axonal growth remains incomplete. Here, we present a unified biophysical model that captures key mechanochemical processes governing axonal extension on micropatterned substrates. In these environments, axons preferentially align with the pattern direction, form bundles, and advance at constant speed. The model integrates four core components: (i) actin–adhesion traction coupling, (ii) lateral inhibition between neighboring axons, (iii) tubulin transport from soma to growth cone, and (iv) orientation dynamics guided by substrate anisotropy. Dynamical systems analysis reveals that a saddle–node bifurcation in the actin adhesion subsystem drives a transition to a high-traction motile state, while traction feedback shifts a pitchfork bifurcation in the signaling loop, promoting symmetry breaking and robust alignment. An exact linear solution in the tubulin transport subsystem functions as a built-in speed regulator, ensuring stable elongation rates. Simulations using experimentally inferred parameters accurately reproduce elongation speed, alignment variance, and bundle spacing. The model provides explicit design rules for enhancing axonal alignment through modulation of substrate stiffness and adhesion dynamics. By identifying key control parameters, this work enables rational design of biomaterials for neural repair and engineered tissue systems. Full article
Show Figures

Graphical abstract

18 pages, 3556 KiB  
Article
Multi-Sensor Fusion for Autonomous Mobile Robot Docking: Integrating LiDAR, YOLO-Based AprilTag Detection, and Depth-Aided Localization
by Yanyan Dai and Kidong Lee
Electronics 2025, 14(14), 2769; https://doi.org/10.3390/electronics14142769 - 10 Jul 2025
Viewed by 518
Abstract
Reliable and accurate docking remains a fundamental challenge for autonomous mobile robots (AMRs) operating in complex industrial environments with dynamic lighting, motion blur, and occlusion. This study proposes a novel multi-sensor fusion-based docking framework that significantly enhances robustness and precision by integrating YOLOv8-based [...] Read more.
Reliable and accurate docking remains a fundamental challenge for autonomous mobile robots (AMRs) operating in complex industrial environments with dynamic lighting, motion blur, and occlusion. This study proposes a novel multi-sensor fusion-based docking framework that significantly enhances robustness and precision by integrating YOLOv8-based AprilTag detection, depth-aided 3D localization, and LiDAR-based orientation correction. A key contribution of this work is the construction of a custom AprilTag dataset featuring real-world visual disturbances, enabling the YOLOv8 model to achieve high-accuracy detection and ID classification under challenging conditions. To ensure precise spatial localization, 2D visual tag coordinates are fused with depth data to compute 3D positions in the robot’s frame. A LiDAR group-symmetry mechanism estimates heading deviation, which is combined with visual feedback in a hybrid PID controller to correct angular errors. A finite-state machine governs the docking sequence, including detection, approach, yaw alignment, and final engagement. Simulation and experimental results demonstrate that the proposed system achieves higher docking success rates and improved pose accuracy under various challenging conditions compared to traditional vision- or LiDAR-only approaches. Full article
Show Figures

Figure 1

20 pages, 2198 KiB  
Article
Ellipsoidal-Set Design of Robust and Secure Control Against Denial-of-Service Cyber Attacks in Electric-Vehicle Induction Motor Drives
by Ehab H. E. Bayoumi, Hisham M. Soliman and Sangkeum Lee
Technologies 2025, 13(7), 289; https://doi.org/10.3390/technologies13070289 - 7 Jul 2025
Viewed by 249
Abstract
Electric vehicles face increasing cybersecurity threats that can compromise the integrity of their electric drive systems, especially under Denial-of-Service (DoS) attacks. To precisely regulate torque and speed in electric vehicles, vector-controlled induction motor drives rely on continuous communication between controllers and sensors. This [...] Read more.
Electric vehicles face increasing cybersecurity threats that can compromise the integrity of their electric drive systems, especially under Denial-of-Service (DoS) attacks. To precisely regulate torque and speed in electric vehicles, vector-controlled induction motor drives rely on continuous communication between controllers and sensors. This flow could be broken by a DoS attack, which could result in unstable motor operation or complete drive system failure. To address this, we propose a novel ellipsoidal-set-based state feedback controller with integral action, formulated via linear matrix inequalities (LMIs). This controller improves disturbance rejection, maintains system stability under DoS-induced input disruptions, and enhances security by constraining the system response within a bounded invariant set. The proposed tracker has a faster dynamic reaction and better disturbance attenuation capabilities than the traditional H control method. The effectiveness of the proposed controller is validated through a series of diverse testing scenarios. Full article
(This article belongs to the Special Issue Smart Transportation and Driving)
Show Figures

Figure 1

27 pages, 3197 KiB  
Article
A Hybrid Energy-Saving Scheduling Method Integrating Machine Tool Intermittent State Control for Workshops
by Hong Cheng, Haixiao Liu, Shuo Zhu, Zhigang Jiang and Hua Zhang
Sustainability 2025, 17(13), 6207; https://doi.org/10.3390/su17136207 - 7 Jul 2025
Viewed by 262
Abstract
Production scheduling and machine tool intermittent state control separately influence a workshop’s machining and intermittent energy consumption. Effective scheduling decisions and intermittent state control are crucial for optimizing the overall energy consumption in the workshop. However, the scheduling scheme determines the machine tool [...] Read more.
Production scheduling and machine tool intermittent state control separately influence a workshop’s machining and intermittent energy consumption. Effective scheduling decisions and intermittent state control are crucial for optimizing the overall energy consumption in the workshop. However, the scheduling scheme determines the machine tool intermittent durations, which imposes strong constraints on the decision-making process for intermittent state control. This makes it difficult for intermittent state control to be used in providing feedback and optimizing scheduling decisions, significantly limiting the overall energy-saving potential of the workshop. To this end, a workshop energy-saving scheduling method is proposed integrating machine tool intermittent state control. Firstly, the variation characteristics of workshop machining energy consumption, machine tool intermittent durations, and intermittent energy consumption are analyzed, and an energy-saving optimization strategy is designed. Secondly, by incorporating variables such as intermittent durations, intermittent energy consumption, and variable operation start time, a multi-objective integrated optimization model is established. Thirdly, the energy-saving optimization strategy is integrated into chromosome encoding, and multiple crossover and mutation genetic operator strategies, along with a low-level selection strategy, are introduced to improve the NSGA-II algorithm. Finally, the effectiveness of the proposed method is verified through a machining case. Results show that the generated Gantt chart reflects both production scheduling and intermittent state control decision outcomes, resulting in a 1.51% reduction in makespan, and 3.90% reduction in total energy consumption. Full article
Show Figures

Figure 1

16 pages, 1123 KiB  
Article
Decentralized-Output Feedback Sampled-Data Disturbance Rejection Control for Dual-Drive H-Gantry System
by Jingjing Mu, Qixun Lan, Yajie Li and Huawei Niu
Symmetry 2025, 17(7), 1068; https://doi.org/10.3390/sym17071068 - 5 Jul 2025
Viewed by 290
Abstract
In this paper, we tackle the decentralized-output feedback sampled-data disturbance rejection control for a dual-drive H-Gantry (DDHG) system with a symmetrical structure. For the DDHG system with disturbances, only the position information of the system at the sampling points can be utilized, such [...] Read more.
In this paper, we tackle the decentralized-output feedback sampled-data disturbance rejection control for a dual-drive H-Gantry (DDHG) system with a symmetrical structure. For the DDHG system with disturbances, only the position information of the system at the sampling points can be utilized, such that the traditional control methods based on full state information of the DDHG system could not be used. To this end, a linear discrete-time generalized-proportional-integral observer (GPIO) based on the position information and reference trajectory of DDHG at the sampling points is constructed first, such that unmeasured states and disturbance can be estimated simultaneously. Then, a GPIO-based decentralized-output feedback sampled-data control (GPIO-DOFC) method is proposed by utilizing the estimations of the unmeasured states and disturbance. A strict theoretical analysis of the closed-loop system is carried out, which demonstrates that the desired trajectory could be tracked under the proposed GPIO-DOFC method. Finally, comparative studies are carried out between the proposed GPIO-DOFC method and the extended-state observer-based decentralized-output feedback sampled-data control (ESO-DOFC) method. These confirm the efficacy and feasibility of the proposed control scheme. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

19 pages, 910 KiB  
Article
Non-Fragile Observer-Based Dissipative Control of Active Suspensions for In-Wheel Drive EVs with Input Delays and Faults
by A. Srinidhi, R. Raja, J. Alzabut, S. Vimal Kumar and M. Niezabitowski
Automation 2025, 6(3), 28; https://doi.org/10.3390/automation6030028 - 30 Jun 2025
Viewed by 347
Abstract
This paper presents a non-fragile observer-based dissipative control strategy for the suspension systems of electric vehicles equipped with in-wheel motors, accounting for input delays, actuator faults, and observer gain uncertainty. Traditional control approaches—such as H, passive control, and robust feedback schemes, [...] Read more.
This paper presents a non-fragile observer-based dissipative control strategy for the suspension systems of electric vehicles equipped with in-wheel motors, accounting for input delays, actuator faults, and observer gain uncertainty. Traditional control approaches—such as H, passive control, and robust feedback schemes, often address these challenges in isolation and with increased conservatism. In contrast, this work introduces a unified framework that integrates fault-tolerant control, delay compensation, and robust state estimation within a dissipativity-based setting. A novel dissipativity analysis tailored to Electric Vehicle Active Suspension Systems (EV-ASSs) is developed, with nonzero delay bounds explicitly incorporated into the stability conditions. The observer is designed to ensure accurate state estimation under gain perturbations, enabling robust full-state feedback control. Stability and performance criteria are formulated via Linear Matrix Inequalities (LMIs) using advanced integral inequalities to reduce conservatism. Numerical simulations validate the proposed method, demonstrating effective fault-tolerant performance, disturbance rejection, and precise state reconstruction, thereby extending beyond the capabilities of traditional control frameworks. Full article
(This article belongs to the Section Industrial Automation and Process Control)
Show Figures

Figure 1

21 pages, 1675 KiB  
Article
H Preview Tracking Control of Time-Delay Discrete Systems and Its Application in Nuclear Reactor Problems
by Fucheng Liao, Hao Xie, Xianchun Meng, Jiang Wu, Yucheng Wei and Jiamei Deng
Axioms 2025, 14(7), 505; https://doi.org/10.3390/axioms14070505 - 27 Jun 2025
Viewed by 221
Abstract
Improving the tracking accuracy and effectiveness of the pressurizer control system with respect to the reference signal is an effective method to enhance the safe and stable operation of nuclear reactors. This paper applies preview tracking control to the pressurizer control system. For [...] Read more.
Improving the tracking accuracy and effectiveness of the pressurizer control system with respect to the reference signal is an effective method to enhance the safe and stable operation of nuclear reactors. This paper applies preview tracking control to the pressurizer control system. For the simplified control system model of the pressurizer, we first study its general structure, which can be characterized as a discrete-time system with state delay. Unlike conventional control systems, the system considered in this study features control inputs that are represented as cumulative sums of historical inputs. In order to design a preview tracking controller for such systems, we adopt the difference method and state augmentation technique and introduce an equality containing the reference signal and a discrete integrator to construct an augmented error system. Simultaneously, a performance signal is defined to evaluate the impact of external disturbances on system performance. Thus, the preview tracking control problem of the original system is reformulated as an H control problem for the augmented error system. Subsequently, a memory-based state feedback controller is designed for the augmented error system. Then, by employing the Lyapunov function and linear matrix inequality (LMI), the H preview tracking controller for the original system is derived. Finally, the proposed control strategy is applied to a pressurizer control system model, and numerical simulations are conducted to validate the effectiveness of the proposed controller by using MATLAB (R2023a, MathWorks, Natick, MA, USA). Full article
Show Figures

Figure 1

Back to TopTop