Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = insulin-like growth factor 1 receptor inhibitor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 8911 KB  
Article
Unidirectional Crosstalk Between NTRK1 and IGF2 Drives ER Stress in Chronic Pain
by Caixia Zhang, Kaiwen Zhang, Wencui Zhang, Bo Jiao, Xueqin Cao, Shangchen Yu, Mi Zhang and Xianwei Zhang
Biomedicines 2025, 13(7), 1632; https://doi.org/10.3390/biomedicines13071632 - 3 Jul 2025
Cited by 1 | Viewed by 3609
Abstract
Background: Chronic postsurgical pain (CPSP) poses a major clinical challenge due to unresolved links between neurotrophic pathways and endoplasmic reticulum (ER) stress. While Neurotrophic Tyrosine Kinase Receptor Type 1 (NTRK1) modulates ER stress in neuropathic pain, its interaction with Insulin-Like Growth Factor [...] Read more.
Background: Chronic postsurgical pain (CPSP) poses a major clinical challenge due to unresolved links between neurotrophic pathways and endoplasmic reticulum (ER) stress. While Neurotrophic Tyrosine Kinase Receptor Type 1 (NTRK1) modulates ER stress in neuropathic pain, its interaction with Insulin-Like Growth Factor II (IGF2) in CPSP remains uncharacterized, impeding targeted therapy. This study defined the spinal NTRK1-IGF2-ER stress axis in CPSP. Methods: Using a skin/muscle incision–retraction (SMIR) rat model, we integrated molecular analyses and intrathecal targeting of NTRK1 (GW441756) or IGF2 (siRNA). Results: SMIR surgery upregulated spinal NTRK1, IGF2, and ER stress mediators. NTRK1 inhibition reduced both NTRK1/IGF2 expression and ER stress, reversing mechanical allodynia. IGF2 silencing attenuated ER stress and pain but did not affect NTRK1, revealing a unidirectional signaling cascade where NTRK1 drives IGF2-dependent ER stress amplification. These findings expand understanding of stress-response networks in chronic pain. Conclusions: We show that spinal NTRK1 drives IGF2-mediated ER stress to sustain CPSP. The NTRK1-IGF2-ER stress axis represents a novel therapeutic target; NTRK1 inhibitors and IGF2 biologics offer non-opioid strategies for precision analgesia. This work advances CPSP management and demonstrates how decoding unidirectional signaling hierarchies can transform neurological disorder interventions. Full article
Show Figures

Figure 1

17 pages, 6609 KB  
Article
Rational Method for Structural Simplification as Key Step in Hit Discovery: The Case of FGFR2 and IGF1R Dual Inhibitors
by Endika Torres-Urtizberea, José I. Borrell, Raimon Puig de la Bellacasa and Roger Estrada-Tejedor
Int. J. Mol. Sci. 2025, 26(9), 4457; https://doi.org/10.3390/ijms26094457 - 7 May 2025
Viewed by 835
Abstract
In the classic medicinal chemistry hit discovery procedure, large virtual libraries undergo different filtering and prediction steps until a small group of molecules is selected for their subsequent synthesis and biological testing. The starting molecular libraries can easily be composed of millions of [...] Read more.
In the classic medicinal chemistry hit discovery procedure, large virtual libraries undergo different filtering and prediction steps until a small group of molecules is selected for their subsequent synthesis and biological testing. The starting molecular libraries can easily be composed of millions of molecules, hindering the selection of the most representative and promising compounds. Moreover, the resulting molecular systems tend to be overcomplex structures, hardly attainable, and often involve extrapolations of the prediction models used. We present a rational-based method to reduce the structural complexity of molecular candidates without compromising their biological activity, improving the attainability and efficiency of hit discovery. This approach has been successfully applied to identify potential tyrosine kinase dual inhibitors against Fibroblast Growth Factor Receptor 2 (FGFR2) and Insulin-Like Growth Factor 1 Receptor (IGF1R), a set of overexpressed proteins in different cancers, such as pancreatic ductal adenocarcinoma (PDAC). Full article
(This article belongs to the Special Issue Cheminformatics in Drug Discovery and Green Synthesis)
Show Figures

Figure 1

16 pages, 2671 KB  
Article
Matrix Metalloproteinases, Tissue Inhibitors of Metalloproteinases, and Their Ratios in Women with Polycystic Ovary Syndrome and Healthy Controls
by Alexandra E. Butler, Manjula Nandakumar, Thozhukat Sathyapalan, Edwina Brennan and Stephen L. Atkin
Int. J. Mol. Sci. 2025, 26(1), 321; https://doi.org/10.3390/ijms26010321 - 1 Jan 2025
Cited by 8 | Viewed by 2517
Abstract
Matrix metalloproteinases (MMPs) are M2 macrophage markers that are modulated by inflammation. A disintegrin and metalloproteinases (ADAMS) and those with thrombospondin motifs (ADAMTS) regulate the shedding of membrane-bound proteins, growth factors, cytokines, ligands, and receptors; MMPs, ADAMS, and ADAMTS may be regulated by [...] Read more.
Matrix metalloproteinases (MMPs) are M2 macrophage markers that are modulated by inflammation. A disintegrin and metalloproteinases (ADAMS) and those with thrombospondin motifs (ADAMTS) regulate the shedding of membrane-bound proteins, growth factors, cytokines, ligands, and receptors; MMPs, ADAMS, and ADAMTS may be regulated by tissue inhibitors of metalloproteinases (TIMPs). This study aimed to determine whether these interacting proteins were dysregulated in PCOS. A Somascan proteomic analysis of 12 MMPs, three of their inhibitors (TIMP-1, 2, 3), two ADAMS (9, 12), five ADAMTS (1, 4, 5, 13, 15), insulin-like growth factor binding protein-1 (IGFBP-1), and insulin-like growth factor-1 (IGF-1) was undertaken in a well-validated PCOS database of 143 women with PCOS and 97 controls. Women with PCOS had significantly higher levels of MMP-9 and lower levels of MMP-2, MMP-14, TIMP-2, IGFBP-1, and IGF-1 compared to the controls (p < 0.0001, p < 0.005, p < 0.04, p < 0.05, p < 0.0001, and p < 0.0001, respectively). No differences were observed for any other MMPs. The ADAMS or ADAMTS levels did not differ between groups. Body mass index (BMI) was correlated with MMP-9 (p < 0.01), MMP-1 (p < 0.05), MMP-2 (p < 0.05), MMP-10 (p < 0.005), MMP-12 (p < 0.005), ADAM-9 (p < 0.05), and IGFBP-1 (p < 0.0001), but only MMP-9 still differed after accounting for BMI. MMP-9/TIMP-1, MMP-9/TIMP-2, and MMP-9/TIMP-3 ratios were higher in the PCOS group (p < 0.01), whilst MMP-17/TIMP-1 and MMP-17/TIMP-2 were lower (p = 0.01). MMP-2/TIMP ratios showed no difference between groups. TIMP-2 was positively correlated with CRP (p < 0.01). MMP changes in PCOS are largely driven by BMI, though increased MMP-9 is BMI-independent, suggesting that any deleterious effects of MMP-9 would be potentially exacerbated by a concomitantly increased BMI. The significant increases in the MMP-9/TIMP ratios suggests MMP-9 overactivity in PCOS. Full article
(This article belongs to the Special Issue The Extracellular Matrix in Physiopathology)
Show Figures

Figure 1

19 pages, 3653 KB  
Article
Metformin Impairs Linsitinib Anti-Tumor Effect on Ovarian Cancer Cell Lines
by Diana Luísa Almeida-Nunes, João P. N. Silva, Mariana Nunes, Patrícia M. A. Silva, Ricardo Silvestre, Ricardo Jorge Dinis-Oliveira, Hassan Bousbaa and Sara Ricardo
Int. J. Mol. Sci. 2024, 25(22), 11935; https://doi.org/10.3390/ijms252211935 - 6 Nov 2024
Cited by 1 | Viewed by 2555
Abstract
Ovarian cancer (OC) remains one of the leading causes of cancer-related mortality among women. Targeting the insulin-like growth factor 1 (IGF-1) signaling pathway has emerged as a promising therapeutic strategy. Linsitinib, an IGF-1 receptor (IGF-1R) inhibitor, has shown potential in disrupting this pathway. [...] Read more.
Ovarian cancer (OC) remains one of the leading causes of cancer-related mortality among women. Targeting the insulin-like growth factor 1 (IGF-1) signaling pathway has emerged as a promising therapeutic strategy. Linsitinib, an IGF-1 receptor (IGF-1R) inhibitor, has shown potential in disrupting this pathway. Additionally, metformin, commonly used in the treatment of type 2 diabetes, has been studied for its anti-cancer properties due to its ability to inhibit metabolic pathways that intersect with IGF-1 signaling, making it a candidate for combination therapy in cancer treatments. This study explores the anti-cancer effects of linsitinib and metformin on OVCAR3 cells by the suppression of the IGF-1 signaling pathway by siRNA-mediated IGF-1 gene silencing. The goal is to evaluate their efficacy as therapeutic agents and to emphasize the critical role of this pathway in OC cell proliferation. Cellular viability was evaluated by resazurin-based assay, and apoptosis was assessed by flux cytometry. The results of this study indicate that the combination of linsitinib and metformin exhibits an antagonistic effect (obtained by SynergyFinder 2.0 Software), reducing their anti-neoplastic efficacy in OC cell lines. Statistical analyses were performed using ordinary one-way or two-way ANOVA, followed by Tukey’s or Šídák’s multiple comparison tests. While linsitinib shows promise as a therapeutic option for OC, further research is needed to identify agents that could synergize with it to enhance its therapeutic efficacy, like the combination with standard chemotherapy in OC (carboplatin and paclitaxel). Full article
Show Figures

Figure 1

6 pages, 207 KB  
Opinion
Teprotumumab for the Treatment of Thyroid Eye Disease: Why Should We Keep Our Eyes “Wide Open”?—A Clinical and Pharmacovigilance Point of View
by Arnaud Martel, Fanny Rocher and Alexandre Gerard
J. Pers. Med. 2024, 14(10), 1027; https://doi.org/10.3390/jpm14101027 - 26 Sep 2024
Cited by 2 | Viewed by 3967
Abstract
Objectives: Thyroid eye disease (TED) treatment has been recently revolutionized with the approval of teprotumumab, a targeted insulin growth factor 1 receptor (IGF1R) inhibitor. To date, teprotumumab is the only FDA-approved drug for treating TED. In this article, we would like to temper [...] Read more.
Objectives: Thyroid eye disease (TED) treatment has been recently revolutionized with the approval of teprotumumab, a targeted insulin growth factor 1 receptor (IGF1R) inhibitor. To date, teprotumumab is the only FDA-approved drug for treating TED. In this article, we would like to temper the current enthusiasm around IGF1R inhibitors. Methods: critical review of the literature by independent academic practitioners. Results: several questions should be raised. First, “how an orphan drug has become a blockbuster with annual sales exceeding $1 billion?” Teprotumumab infusions are expensive, costing about USD 45,000 for one infusion and USD 360,000 for eight infusions in a 75 kg patient. Teprotumumab approval was based on two randomized clinical trials investigating active (clinical activity score ≥ 4) TED patients. Despite this, teprotumumab was approved by the FDA for “the treatment of TED” without distinguishing between active and inactive forms. The second question is as follows: “how can a new drug, compared only to a placebo, become the new standard without being compared to historically established gold standard medical or surgical treatments?” Teprotumumab has never been compared to other medical treatments in active TED nor to surgery in chronic TED. Up to 75% of patients may experience proptosis regression after treatment discontinuation. Finally, ototoxicity has emerged as a potentially devastating side effect requiring frequent monitoring. Investigation into the long-term side effects, especially in women of childbearing age, is also warranted. Conclusions: Teprotumumab is undoubtedly a major treatment option in TED. However, before prescribing a drug, practitioners should assess its benefit/risk ratio based on the following: (i) evidence-based medicine; (ii) their empirical experience; (iii) the cost/benefit analysis; (iv) the long-term outcomes and safety profile. Full article
(This article belongs to the Section Evidence Based Medicine)
18 pages, 3373 KB  
Article
Inhibition of Insulin-like Growth Factor 1 Receptor/Insulin Receptor Signaling by Small-Molecule Inhibitor BMS-754807 Leads to Improved Survival in Experimental Esophageal Adenocarcinoma
by Md Sazzad Hassan, Chloe Johnson, Saisantosh Ponna, Dimitri Scofield, Niranjan Awasthi and Urs von Holzen
Cancers 2024, 16(18), 3175; https://doi.org/10.3390/cancers16183175 - 17 Sep 2024
Cited by 6 | Viewed by 2152
Abstract
The insulin-like growth factor-1 (IGF-1) and insulin axes are upregulated in obesity and obesity-associated esophageal adenocarcinoma (EAC). Nanoparticle albumin-bound paclitaxel (nab-paclitaxel) is a contemporary nanotechnology-based paclitaxel (PT) bound to human albumin, ensuring its solubility in water rather than a toxic solvent. Here, we [...] Read more.
The insulin-like growth factor-1 (IGF-1) and insulin axes are upregulated in obesity and obesity-associated esophageal adenocarcinoma (EAC). Nanoparticle albumin-bound paclitaxel (nab-paclitaxel) is a contemporary nanotechnology-based paclitaxel (PT) bound to human albumin, ensuring its solubility in water rather than a toxic solvent. Here, we examined the benefits of inhibiting insulin-like growth factor-1 receptor/insulin receptor (IGF-1/IR) signaling and the enhancement of nab-paclitaxel effects by inclusion of the small-molecule inhibitor BMS-754807 using both in vitro and in vivo models of EAC. Using multiple EAC cell lines, BMS-754807 and nab-paclitaxel were evaluated as mono and combination therapies for in vitro effects on cell proliferation, cell death, and cell movement. We then analyzed the in vivo anticancer potency with survival improvement with BMS-754807 and nab-paclitaxel mono and combination therapies. BMS-754807 monotherapy suppressed in vitro cell proliferation and wound healing while increasing apoptosis. BMS-754807, when combined with nab-paclitaxel, enhanced those effects on the inhibition of cell proliferation, increment in cell apoptosis, and inhibition of wound healing. BMS-754807 with nab-paclitaxel produced substantially greater antitumor effects by increasing in vivo apoptosis, leading to increased mice survival compared to those of BMS-754807 or nab-paclitaxel monotherapy. Our outcomes support the use of BMS-754807, alone and in combination with nab-paclitaxel, as an efficient and innovative treatment choice for EAC. Full article
(This article belongs to the Special Issue Oesogastric Cancer: Treatment and Management)
Show Figures

Figure 1

9 pages, 563 KB  
Communication
The GLP-1 Receptor Agonist Liraglutide Decreases Primary Bile Acids and Serotonin in the Colon Independently of Feeding in Mice
by Katsunori Nonogaki and Takao Kaji
Int. J. Mol. Sci. 2024, 25(14), 7784; https://doi.org/10.3390/ijms25147784 - 16 Jul 2024
Cited by 3 | Viewed by 3679
Abstract
Liraglutide, a glucagon-like peptide 1 analog used to treat type 2 diabetes and obesity, is a potential new treatment modality for bile acid (BA) diarrhea. Here, we show that administration of liraglutide significantly decreased total BAs, especially the primary BAs, including cholic acid, [...] Read more.
Liraglutide, a glucagon-like peptide 1 analog used to treat type 2 diabetes and obesity, is a potential new treatment modality for bile acid (BA) diarrhea. Here, we show that administration of liraglutide significantly decreased total BAs, especially the primary BAs, including cholic acid, chenodeoxycholic acid, taurocholic acid, taurochenodeoxycholic acid, glycocholic acid, and β-muricholic acid, in the liver and feces. In addition, liraglutide significantly decreased tryptophan metabolites, including L-tryptophan, serotonin, 5-hydroxy indole-3-acetic acid, L-kynurenine, and xanthurenic acid, in the colon, whereas it significantly increased indole-3-propionic acid. Moreover, the administration of liraglutide remarkably decreased the expression of apical sodium-dependent bile acid transporter, which mediates BA uptake across the apical brush border member in the ileum, ileal BA binding protein, and fibroblast growth factor 15 in association with decreased expression of the BA-activated nuclear receptor farnesoid X receptor and the heteromeric organic solute transporter Ostα/β, which induces BA excretion, in the ileum. Liraglutide acutely decreased body weight and blood glucose levels in association with decreases in plasma insulin and serotonin levels in food-deprived mice. These findings suggest the potential of liraglutide as a novel inhibitor of primary BAs and serotonin in the colon. Full article
(This article belongs to the Special Issue Unveiling Metabolic Regulation Networks and Mechanisms)
Show Figures

Figure 1

16 pages, 4380 KB  
Article
Structural Models for a Series of Allosteric Inhibitors of IGF1R Kinase
by Jyoti Verma and Harish Vashisth
Int. J. Mol. Sci. 2024, 25(10), 5368; https://doi.org/10.3390/ijms25105368 - 14 May 2024
Cited by 2 | Viewed by 1806
Abstract
The allosteric inhibition of insulin-like growth factor receptor 1 kinase (IGF1RK) is a potential strategy to overcome selectivity barriers for targeting receptor tyrosine kinases. We constructed structural models of a series of 12 indole-butyl-amine derivatives that have been reported as allosteric inhibitors of [...] Read more.
The allosteric inhibition of insulin-like growth factor receptor 1 kinase (IGF1RK) is a potential strategy to overcome selectivity barriers for targeting receptor tyrosine kinases. We constructed structural models of a series of 12 indole-butyl-amine derivatives that have been reported as allosteric inhibitors of IGF1RK. We further studied the dynamics and interactions of each inhibitor in the allosteric pocket via all-atom explicit-solvent molecular dynamics (MD) simulations. We discovered that a bulky carbonyl substitution at the R1 indole ring is structurally unfavorable for inhibitor binding in the IGF1RK allosteric pocket. Moreover, we found that the most potent derivative (termed C11) acquires a distinct conformation: forming an allosteric pocket channel with better shape complementarity and interactions with the receptor. In addition to a hydrogen-bonding interaction with V1063, the cyano derivative C11 forms a stable hydrogen bond with M1156, which is responsible for its unique binding conformation in the allosteric pocket. Our findings show that the positioning of chemical substituents with different pharmacophore features at the R1 indole ring influences molecular interactions and binding conformations of indole-butyl-amine derivatives and, hence, dramatically affects their potencies. Our results provide a structural framework for the design of allosteric inhibitors with improved affinities and specificities against IGF1RK. Full article
(This article belongs to the Special Issue Protein Kinase in Disease)
Show Figures

Figure 1

21 pages, 2128 KB  
Review
Role of Insulin-like Growth Factor-1 Receptor in Tobacco Smoking-Associated Lung Cancer Development
by Ayaz Shahid, Shaira Gail Santos, Carol Lin and Ying Huang
Biomedicines 2024, 12(3), 563; https://doi.org/10.3390/biomedicines12030563 - 2 Mar 2024
Cited by 5 | Viewed by 3441
Abstract
Cancer remains a significant global health concern, with lung cancer consistently leading as one of the most common malignancies. Genetic aberrations involving receptor tyrosine kinases (RTKs) are known to be associated with cancer initiation and development, but RTK involvement in smoking-associated lung cancer [...] Read more.
Cancer remains a significant global health concern, with lung cancer consistently leading as one of the most common malignancies. Genetic aberrations involving receptor tyrosine kinases (RTKs) are known to be associated with cancer initiation and development, but RTK involvement in smoking-associated lung cancer cases is not well understood. The Insulin-like Growth Factor 1 Receptor (IGF-1R) is a receptor that plays a critical role in lung cancer development. Its signaling pathway affects the growth and survival of cancer cells, and high expression is linked to poor prognosis and resistance to treatment. Several reports have shown that by activating IGF-1R, tobacco smoke-related carcinogens promote lung cancer and chemotherapy resistance. However, the relationship between IGF-1R and cancer is complex and can vary depending on the type of cancer. Ongoing investigations are focused on developing therapeutic strategies to target IGF-1R and overcome chemotherapy resistance. Overall, this review explores the intricate connections between tobacco smoke-specific carcinogens and the IGF-1R pathway in lung carcinogenesis. This review further highlights the challenges in using IGF-1R inhibitors as targeted therapy for lung cancer due to structural similarities with insulin receptors. Overcoming these obstacles may require a comprehensive approach combining IGF-1R inhibition with other selective agents for successful cancer treatment. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

24 pages, 2579 KB  
Review
Exploring the mTOR Signalling Pathway and Its Inhibitory Scope in Cancer
by Suhail Ahmad Mir, Ashraf Dar, Saad Ali Alshehri, Shadma Wahab, Laraibah Hamid, Mohammad Ali Abdullah Almoyad, Tabasum Ali and Ghulam Nabi Bader
Pharmaceuticals 2023, 16(7), 1004; https://doi.org/10.3390/ph16071004 - 14 Jul 2023
Cited by 29 | Viewed by 5653
Abstract
Mechanistic target of rapamycin (mTOR) is a protein kinase that regulates cellular growth, development, survival, and metabolism through integration of diverse extracellular and intracellular stimuli. Additionally, mTOR is involved in interplay of signalling pathways that regulate apoptosis and autophagy. In cells, mTOR is [...] Read more.
Mechanistic target of rapamycin (mTOR) is a protein kinase that regulates cellular growth, development, survival, and metabolism through integration of diverse extracellular and intracellular stimuli. Additionally, mTOR is involved in interplay of signalling pathways that regulate apoptosis and autophagy. In cells, mTOR is assembled into two complexes, mTORC1 and mTORC2. While mTORC1 is regulated by energy consumption, protein intake, mechanical stimuli, and growth factors, mTORC2 is regulated by insulin-like growth factor-1 receptor (IGF-1R), and epidermal growth factor receptor (EGFR). mTOR signalling pathways are considered the hallmark in cancer due to their dysregulation in approximately 70% of cancers. Through downstream regulators, ribosomal protein S6 kinase β-1 (S6K1) and eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1), mTORC1 influences various anabolic and catabolic processes in the cell. In recent years, several mTOR inhibitors have been developed with the aim of treating different cancers. In this review, we will explore the current developments in the mTOR signalling pathway and its importance for being targeted by various inhibitors in anti-cancer therapeutics. Full article
(This article belongs to the Special Issue Adjuvant Therapies for Cancer Treatment)
Show Figures

Figure 1

14 pages, 1707 KB  
Article
Potential Ototoxicity of Insulin-like Growth Factor 1 Receptor Signaling Inhibitors: An In Silico Drug Repurposing Study of the Regenerating Cochlear Neuron Transcriptome
by Lino E. Bertagnoli, Richard Seist, Shelley Batts and Konstantina M. Stankovic
J. Clin. Med. 2023, 12(10), 3485; https://doi.org/10.3390/jcm12103485 - 16 May 2023
Viewed by 3886
Abstract
Spiral ganglion neurons (SGNs) connect cochlear hair cells with higher auditory pathways and their degeneration due to drug toxicity (ototoxicity) contributes to hearing loss. This study aimed to identify drug classes that are negatively correlated with the transcriptome of regenerating SGNs. Human orthologs [...] Read more.
Spiral ganglion neurons (SGNs) connect cochlear hair cells with higher auditory pathways and their degeneration due to drug toxicity (ototoxicity) contributes to hearing loss. This study aimed to identify drug classes that are negatively correlated with the transcriptome of regenerating SGNs. Human orthologs of differentially expressed genes within the regenerating neonatal mouse SGN transcriptome were entered into CMap and the LINCS unified environment and perturbation-driven gene expression was analyzed. The CMap connectivity scores ranged from 100 (positive correlation) to −100 (negative correlation). Insulin-like growth factor 1/receptor (IGF-1/R) inhibitors were highly negatively correlated with the regenerating SGN transcriptome (connectivity score: −98.87). A systematic literature review of clinical trials and observational studies reporting otologic adverse events (AEs) with IGF-1/R inhibitors identified 108 reports (6141 treated patients). Overall, 16.9% of the treated patients experienced any otologic AE; the rate was highest for teprotumumab (42.9%). In a meta-analysis of two randomized placebo-controlled trials of teprotumumab, there was a significantly higher risk of hearing-related (pooled Peto OR [95% CI]: 7.95 [1.57, 40.17]) and of any otologic AEs (3.56 [1.35, 9.43]) with teprotumumab vs. a placebo, whether or not dizziness/vertigo AEs were included. These results call for close audiological monitoring during IGF-1-targeted treatment, with prompt referral to an otolaryngologist should otologic AEs develop. Full article
Show Figures

Figure 1

13 pages, 3562 KB  
Article
Glucolipotoxic Stress-Induced Mig6 Desensitizes EGFR Signaling and Promotes Pancreatic Beta Cell Death
by Yi-Chun Chen, Andrew J. Lutkewitte, Halesha D. Basavarajappa and Patrick T. Fueger
Metabolites 2023, 13(5), 627; https://doi.org/10.3390/metabo13050627 - 4 May 2023
Cited by 3 | Viewed by 1900
Abstract
A loss of functional beta cell mass is a final etiological event in the development of frank type 2 diabetes (T2D). To preserve or expand beta cells and therefore treat/prevent T2D, growth factors have been considered therapeutically but have largely failed to achieve [...] Read more.
A loss of functional beta cell mass is a final etiological event in the development of frank type 2 diabetes (T2D). To preserve or expand beta cells and therefore treat/prevent T2D, growth factors have been considered therapeutically but have largely failed to achieve robust clinical success. The molecular mechanisms preventing the activation of mitogenic signaling pathways from maintaining functional beta cell mass during the development of T2D remain unknown. We speculated that endogenous negative effectors of mitogenic signaling cascades impede beta cell survival/expansion. Thus, we tested the hypothesis that a stress-inducible epidermal growth factor receptor (EGFR) inhibitor, mitogen-inducible gene 6 (Mig6), regulates beta cell fate in a T2D milieu. To this end, we determined that: (1) glucolipotoxicity (GLT) induces Mig6, thereby blunting EGFR signaling cascades, and (2) Mig6 mediates molecular events regulating beta cell survival/death. We discovered that GLT impairs EGFR activation, and Mig6 is elevated in human islets from T2D donors as well as GLT-treated rodent islets and 832/13 INS-1 beta cells. Mig6 is essential for GLT-induced EGFR desensitization, as Mig6 suppression rescued the GLT-impaired EGFR and ERK1/2 activation. Further, Mig6 mediated EGFR but not insulin-like growth factor-1 receptor nor hepatocyte growth factor receptor activity in beta cells. Finally, we identified that elevated Mig6 augmented beta cell apoptosis, as Mig6 suppression reduced apoptosis during GLT. In conclusion, we established that T2D and GLT induce Mig6 in beta cells; the elevated Mig6 desensitizes EGFR signaling and induces beta cell death, suggesting Mig6 could be a novel therapeutic target for T2D. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Figure 1

18 pages, 10673 KB  
Article
Dual Inhibition of EGFR and IGF-1R Signaling Leads to Enhanced Antitumor Efficacy against Esophageal Squamous Cancer
by Jia Kang, Zanzan Guo, Haoqi Zhang, Rongqi Guo, Xiaofei Zhu and Xiaofang Guo
Int. J. Mol. Sci. 2022, 23(18), 10382; https://doi.org/10.3390/ijms231810382 - 8 Sep 2022
Cited by 18 | Viewed by 4025
Abstract
Both the epidermal growth factor receptor (EGFR) and insulin-like growth factor 1 receptor (IGF-1R) have been implicated in the development of cancers, and the increased expression of both receptors has been observed in esophageal cancer. However, the tyrosine kinase inhibitors of both receptors [...] Read more.
Both the epidermal growth factor receptor (EGFR) and insulin-like growth factor 1 receptor (IGF-1R) have been implicated in the development of cancers, and the increased expression of both receptors has been observed in esophageal cancer. However, the tyrosine kinase inhibitors of both receptors have thus far failed to provide clinical benefits for esophageal cancer patients. Studies have confirmed the complicated crosstalks that exist between the EGFR and IGF-1R pathways. The EGFR and IGF-1R signals act as mutual compensation pathways, thereby conveying resistance to EGFR or IGF-1R inhibitors when used alone. This study evaluated the antitumor efficacy of the EGFR/HER2 inhibitors, gefitinib and lapatinib, in combination with the IGF-1R inhibitor, linsitinib, on the esophageal squamous cell carcinoma (ESCC). Gefitinib or lapatinib, in combination with linsitinib, synergistically inhibited the proliferation, migration, and invasion of ESCC cells, caused significant cell cycle arrest, and induced marked cell apoptosis. Their combination demonstrated stronger inhibition on the activation of EGFR, HER2, and IGF-1R as well as the downstream signaling molecules. In vivo, the addition of linsitinib to gefitinib or lapatinib also potentiated the inhibition effects on the growth of xenografts. Our results suggest the next clinical exploration of the combination of gefitinib or lapatinib with linsitinib in the treatment of ESCC patients. Full article
Show Figures

Figure 1

23 pages, 2933 KB  
Article
Upregulated miR-18a-5p in Colony Forming Unit-Hill’s in Subclinical Cardiovascular Disease and Metformin Therapy; MERIT Study
by Jason Phowira, Fahad W. Ahmed, Sherin Bakhashab and Jolanta U. Weaver
Biomedicines 2022, 10(9), 2136; https://doi.org/10.3390/biomedicines10092136 - 31 Aug 2022
Cited by 6 | Viewed by 2572
Abstract
Colony forming unit-Hill’s (CFU-Hill’s) colonies are hematopoietic-derived cells that participate in neovasculogenesis and serve as a biomarker for vascular health. In animals, overexpression of miR-18a-5p was shown to be pro-atherogenic. We had shown that well-controlled type 1 diabetes mellitus (T1DM) is characterized by [...] Read more.
Colony forming unit-Hill’s (CFU-Hill’s) colonies are hematopoietic-derived cells that participate in neovasculogenesis and serve as a biomarker for vascular health. In animals, overexpression of miR-18a-5p was shown to be pro-atherogenic. We had shown that well-controlled type 1 diabetes mellitus (T1DM) is characterized by an inflammatory state, endothelial dysfunction, and reduced number of CFU-Hill’s, a model of subclinical cardiovascular disease (CVD). MERIT study explored the role of miR-18a-5p expression in CFU-Hill’s colonies in T1DM, and the cardioprotective effect of metformin in subclinical CVD. In T1DM, miR-18a-5p was significantly upregulated whereas metformin reduced it to HC levels. MiR-18a-5p was inversely correlated with CFU-Hill’s colonies, CD34+, CD34+CD133+ cells, and positively with IL-10, C-reactive protein, vascular endothelial growth factor-D (VEGF-D), and thrombomodulin. The receiver operating characteristic curve demonstrated, miR-18a-5p as a biomarker of T1DM, and upregulated miR-18a-5p defining subclinical CVD at HbA1c of 44.5 mmol/mol (pre-diabetes). Ingenuity pathway analysis documented miR-18a-5p inhibiting mRNA expression of insulin-like growth factor-1, estrogen receptor-1, hypoxia-inducible factor-1α cellular communication network factor-2, and protein inhibitor of activated STAT 3, whilst metformin upregulated these mRNAs via transforming growth factor beta-1 and VEGF. We confirmed the pro-atherogenic effect of miR-18a-5p in subclinical CVD and identified several target genes for future CVD therapies. Full article
(This article belongs to the Section Endocrinology and Metabolism Research)
Show Figures

Figure 1

23 pages, 3340 KB  
Article
Monoamine Oxidase-Dependent Pro-Survival Signaling in Diabetic Hearts Is Mediated by miRNAs
by Stefano Cagnin, Marco Brugnaro, Caterina Millino, Beniamina Pacchioni, Carmen Troiano, Moises Di Sante and Nina Kaludercic
Cells 2022, 11(17), 2697; https://doi.org/10.3390/cells11172697 - 30 Aug 2022
Cited by 17 | Viewed by 3702
Abstract
Diabetes leads to cardiomyopathy and heart failure, the leading cause of death for diabetic patients. Monoamine oxidase (MAO) inhibition in diabetic cardiomyopathy prevents oxidative stress, mitochondrial and endoplasmic reticulum stress and the development of diastolic dysfunction. However, it is unclear whether, in addition [...] Read more.
Diabetes leads to cardiomyopathy and heart failure, the leading cause of death for diabetic patients. Monoamine oxidase (MAO) inhibition in diabetic cardiomyopathy prevents oxidative stress, mitochondrial and endoplasmic reticulum stress and the development of diastolic dysfunction. However, it is unclear whether, in addition to the direct effects exerted on the mitochondria, MAO activity is able to post-transcriptionally regulate cardiomyocyte function and survival in diabetes. To this aim, we performed gene and miRNA expression profiling in cardiac tissue from streptozotocin-treated mice (model of type 1 diabetes (T1D)), administered with either vehicle or MAOs inhibitor pargyline for 12 weeks. We found that inhibition of MAO activity in T1D hearts leads to profound transcriptomic changes, affecting autophagy and pro-survival pathways activation. MAO activity in T1D hearts increased miR-133a-3p, -193a-3p and -27a-3p expression. These miRNAs target insulin-like growth factor receptor 1 (Igf1r), growth factor receptor bound protein 10 and inositol polyphosphate 4 phosphatase type 1A, respectively, all components of the IGF1R/PI3K/AKT signaling pathway. Indeed, AKT activation was significantly downregulated in T1D hearts, whereas MAO inhibition restored the activation of this pro-survival pathway. The present study provides an important link between MAO activity, transcriptomic changes and activation of pro-survival signaling and autophagy in diabetic cardiomyopathy. Full article
(This article belongs to the Special Issue Cellular Signaling Leading to Heart Failure)
Show Figures

Figure 1

Back to TopTop