Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (509)

Search Parameters:
Keywords = insecticide efficacy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 642 KiB  
Article
Comparative Toxicological Effects of Insecticides and Their Mixtures on Spodoptera littoralis (Lepidoptera: Noctuidae)
by Marwa A. El-Saleh, Ali A. Aioub, El-Sayed A. El-Sheikh, Wahied M. H. Desuky, Lamya Ahmed Alkeridis, Laila A. Al-Shuraym, Marwa M. A. Farag, Samy Sayed, Ahmed A. A. Aioub and Ibrahim A. Hamed
Insects 2025, 16(8), 821; https://doi.org/10.3390/insects16080821 (registering DOI) - 7 Aug 2025
Abstract
Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae) is a major insect pest that severely affects various crops. Our study provides new insights by combining field efficacy trials with enzymatic analysis to evaluate the effects of emamectin benzoate mixtures with other insecticides (lufenuron, cypermethrin, chlorpyrifos, and [...] Read more.
Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae) is a major insect pest that severely affects various crops. Our study provides new insights by combining field efficacy trials with enzymatic analysis to evaluate the effects of emamectin benzoate mixtures with other insecticides (lufenuron, cypermethrin, chlorpyrifos, and spinosad) against S. littoralis. The aim of our work was to investigate the effectiveness of five insecticides, i.e., emamectin benzoate, lufenuron, cypermethrin, chlorpyrifos, and spinosad, for controlling this pest under field conditions during two consecutive seasons (2023–2024). Each insecticide was applied individually at the recommended rate, while some were mixed with emamectin benzoate at half its recommended rate. The results indicated that emamectin benzoate was the most effective insecticide, followed by lufenuron. The joint action of emamectin benzoate (LC25) and its mixtures with other insecticides (chlorpyrifos, spinosad, cypermethrin, and lufenuron) at various concentrations (LC50) against second- and fourth-instar S. littoralis larvae was evaluated. Results showed additive effects with chlorpyrifos, lufenuron, and cypermethrin, while potentiation occurred with cypermethrin (LC50) and chlorpyrifos (LC50). Antagonistic effects were observed in the combination of emamectin benzoate with spinosad (LC25 and LC50). This study concluded that applying insecticides individually is more cost-effective for managing cotton leafworm infestations in cotton crops. Additionally, enzyme activity analysis showed significant changes in alpha-esterase, beta-esterase, carboxylesterase, acetylcholinesterase, and glutathione S-transferase levels in larvae treated with different insecticide combinations. Full article
(This article belongs to the Special Issue Pesticide Chemistry, Toxicology and Insect Pest Resistance)
Show Figures

Figure 1

15 pages, 2602 KiB  
Review
Resistance to Vip3Aa: A Growing Threat with Unclear Mechanisms and Management Implications
by Rajeev Roy, Dawson Kerns and Juan Luis Jurat-Fuentes
Insects 2025, 16(8), 820; https://doi.org/10.3390/insects16080820 - 7 Aug 2025
Abstract
The vegetative insecticidal protein Vip3Aa from Bacillus thuringiensis (Bt) has become a key plant-incorporated protectant (PIP) in transgenic crops targeting lepidopteran pests, particularly as resistance increasingly compromises the efficacy of Cry protein PIPs. More than a decade after its commercial deployment, Vip3Aa performance [...] Read more.
The vegetative insecticidal protein Vip3Aa from Bacillus thuringiensis (Bt) has become a key plant-incorporated protectant (PIP) in transgenic crops targeting lepidopteran pests, particularly as resistance increasingly compromises the efficacy of Cry protein PIPs. More than a decade after its commercial deployment, Vip3Aa performance remains efficacious but increasingly vulnerable. Field screens have detected unexpectedly high baseline frequencies of Vip3Aa-resistant alleles and have produced highly resistant strains in several major pests, including Helicoverpa spp., Spodoptera spp., and Mythimna separata. Although structure–function experiments and studies on resistance to Vip3Aa have identified altered midgut processing and impaired receptor binding as candidate resistance mechanisms, the underlying genetic determinants remain poorly understood. Moreover, resistance to Vip3Aa appears to diverge from canonical Cry protein resistance pathways, underscoring the need for dedicated mechanistic studies. This review critically examines the available experimental evidence on Vip3Aa resistance mechanisms, highlighting major knowledge gaps and proposing research priorities to inform resistance monitoring and extend the durability of Vip3Aa-based pest control. Full article
Show Figures

Graphical abstract

23 pages, 2655 KiB  
Article
Ribosomal RNA-Specific Antisense DNA and Double-Stranded DNA Trigger rRNA Biogenesis and Insecticidal Effects on the Insect Pest Coccus hesperidum
by Vol Oberemok, Nikita Gal’chinsky, Ilya Novikov, Alexander Sharmagiy, Ekaterina Yatskova, Ekaterina Laikova and Yuri Plugatar
Int. J. Mol. Sci. 2025, 26(15), 7530; https://doi.org/10.3390/ijms26157530 - 4 Aug 2025
Viewed by 200
Abstract
Contact unmodified antisense DNA biotechnology (CUADb), developed in 2008, employs short antisense DNA oligonucleotides (oligos) as a novel approach to insect pest control. These oligonucleotide-based insecticides target pest mature rRNAs and/or pre-rRNAs and have demonstrated high insecticidal efficacy, particularly against sap-feeding insect pests, [...] Read more.
Contact unmodified antisense DNA biotechnology (CUADb), developed in 2008, employs short antisense DNA oligonucleotides (oligos) as a novel approach to insect pest control. These oligonucleotide-based insecticides target pest mature rRNAs and/or pre-rRNAs and have demonstrated high insecticidal efficacy, particularly against sap-feeding insect pests, which are key vectors of plant DNA viruses and among the most economically damaging herbivorous insects. To further explore the potential of CUADb, this study evaluated the insecticidal efficacy of short 11-mer antisense DNA oligos against Coccus hesperidum, in comparison with long 56-mer single-stranded and double-stranded DNA sequences. The short oligos exhibited higher insecticidal activity. By day 9, the highest mortality rate (97.66 ± 4.04%) was recorded in the Coccus-11 group, while the most effective long sequence was the double-stranded DNA in the dsCoccus-56 group (77.09 ± 6.24%). This study also describes the architecture of the DNA containment (DNAc) mechanism, highlighting the intricate interactions between rRNAs and various types of DNA oligos. During DNAc, the Coccus-11 treatment induced enhanced ribosome biogenesis and ATP production through a metabolic shift from carbohydrates to lipid-based energy synthesis. However, this ultimately led to a ‘kinase disaster’ due to widespread kinase downregulation resulting from insufficient ATP levels. All DNA oligos with high or moderate complementarity to target rRNA initiated hypercompensation, but subsequent substantial rRNA degradation and insect mortality occurred only when the oligo sequence perfectly matched the rRNA. Both short and long oligonucleotide insecticide treatments led to a 3.75–4.25-fold decrease in rRNA levels following hypercompensation, which was likely mediated by a DNA-guided rRNase, such as RNase H1, while crucial enzymes of RNAi (DICER1, Argonaute 2, and DROSHA) were downregulated, indicating fundamental difference in molecular mechanisms of DNAc and RNAi. Consistently, significant upregulation of RNase H1 was detected in the Coccus-11 treatment group. In contrast, treatment with random DNA oligos resulted in only a 2–3-fold rRNA decrease, consistent with the normal rRNA half-life maintained by general ribonucleases. These findings reveal a fundamental new mechanism of rRNA regulation via complementary binding between exogenous unmodified antisense DNA and cellular rRNA. From a practical perspective, this minimalist approach, applying short antisense DNA dissolved in water, offers an effective, eco-friendly and innovative solution for managing sternorrhynchans and other insect pests. The results introduce a promising new concept in crop protection: DNA-programmable insect pest control. Full article
(This article belongs to the Special Issue New Insights into Plant and Insect Interactions (Second Edition))
Show Figures

Figure 1

26 pages, 3619 KiB  
Review
Baculovirus-Based Biocontrol: Synergistic and Antagonistic Interactions of PxGV, PxNPV, SeMNPV, and SfMNPV in Integrative Pest Management
by Alberto Margarito García-Munguía, Carlos Alberto García-Munguía, Paloma Lucía Guerra-Ávila, Estefany Alejandra Sánchez-Mendoza, Fabián Alejandro Rubalcava-Castillo, Argelia García-Munguía, María Reyna Robles-López, Luis Fernando Cisneros-Guzmán, María Guadalupe Martínez-Alba, Ernesto Olvera-Gonzalez, Raúl René Robles-de la Torre and Otilio García-Munguía
Viruses 2025, 17(8), 1077; https://doi.org/10.3390/v17081077 - 2 Aug 2025
Viewed by 360
Abstract
The use of chemical pesticides in agriculture has led to the development of resistant pest populations, posing a challenge to long-term pest management. This review aims to evaluate the scientific literature on the individual and combined use of baculoviruses with conventional chemical and [...] Read more.
The use of chemical pesticides in agriculture has led to the development of resistant pest populations, posing a challenge to long-term pest management. This review aims to evaluate the scientific literature on the individual and combined use of baculoviruses with conventional chemical and biological insecticides to combat Plutella xylostella, Spodoptera exigua, and Spodoptera frugiperda in broccoli, tomato, and maize crops. Notable findings include that both individual Plutella xylostella nucleopolyhedrovirus (PxNPV) and the combination of Plutella xylostella granulovirus (PxGV) and azadirachtin at a low dose effectively control Plutella xylostella; both combinations of Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) with emamectin benzoate and chlorfenapyr reduced resistance in Spodoptera exigua and increased the efficacy of the insecticides; and the combination of Spodoptera frugiperda nucleopolyhedrovirus (SfMNPV) and spinetoram is effective against Spodoptera frugiperda. Integrating baculoviruses into pest management strategies offers a promising approach to mitigate the adverse effects of chemical pesticides, such as resistance development, health risks, and environmental damage. However, there remains a broad spectrum of research opportunities regarding the use of baculoviruses in agriculture. Full article
Show Figures

Figure 1

12 pages, 757 KiB  
Brief Report
DNA-Programmable Oligonucleotide Insecticide Eriola-11 Targets Mitochondrial 16S rRNA and Exhibits Strong Insecticidal Activity Against Woolly Apple Aphid (Eriosoma lanigerum) Hausmann
by Vol Oberemok, Kate Laikova, Oksana Andreeva, Anastasia Dmitrienko, Tatiana Rybareva, Jamin Ali and Nikita Gal’chinsky
Int. J. Mol. Sci. 2025, 26(15), 7486; https://doi.org/10.3390/ijms26157486 - 2 Aug 2025
Viewed by 205
Abstract
The potent and selective ‘genetic zipper’ method for insect pest control consists of three essential components: an antisense DNA (the finder), its complementary mature rRNA or pre-rRNA of the pest (the target), and the host’s endogenous DNA-guided rRNase (the degrader). Although this approach [...] Read more.
The potent and selective ‘genetic zipper’ method for insect pest control consists of three essential components: an antisense DNA (the finder), its complementary mature rRNA or pre-rRNA of the pest (the target), and the host’s endogenous DNA-guided rRNase (the degrader). Although this approach has been validated, the spectrum of effective rRNA targets remains insufficiently explored. In this study, we report for the first time the insecticidal efficacy of a novel oligonucleotide insecticide, Eriola-11, which targets the mitochondrial 16S rRNA of the woolly apple aphid Eriosoma lanigerum Hausmann. We hypothesized that the antisense-mediated silencing of mitochondrial rRNA would impair aphid viability and lead to physiological disruptions associated with mitochondrial energy metabolism. Eriola-11 was applied either once or twice (with a 24 h interval) to aphid-infested plants, and aphid mortality was recorded over 14 days. Mitochondrial 16S rRNA expression levels were quantified using molecular assays, and the degradation kinetics of Eriola-11 were assessed in aphid tissue homogenates. Results showed significant insecticidal activity, with 67.55% mortality after a single treatment and 83.35% after two treatments. Treated aphids exhibited the loss of their characteristic white woolly wax covering, and mitochondrial 16S rRNA expression was reduced 0.66-fold relative to the control. Additionally, Eriola-11 was fully degraded by aphid DNases from tissue homogenates within 3 h, highlighting its rapid biodegradability. These findings establish mitochondrial 16S rRNA as a viable target for antisense insecticides and expand the catalogue of potential rRNA-based targets, offering a promising avenue for environmentally sustainable pest control strategies. Full article
(This article belongs to the Special Issue Antisense Oligonucleotides: Versatile Tools with Broad Applications)
Show Figures

Figure 1

13 pages, 2421 KiB  
Article
Evaluating the Metrics of Insecticide Resistance and Efficacy: Comparison of the CDC Bottle Bioassay with Formulated and Technical-Grade Insecticide and a Sentinel Cage Field Trial
by Deborah A. Dritz, Mario Novelo and Sarah S. Wheeler
Trop. Med. Infect. Dis. 2025, 10(8), 219; https://doi.org/10.3390/tropicalmed10080219 - 1 Aug 2025
Viewed by 189
Abstract
Insecticide resistance monitoring is essential for effective mosquito control. This study compared CDC Bottle Bioassays (BBAs) using technical and formulated insecticides (deltamethrin/Deltagard and malathion/Fyfanon EW) against the Culex pipiens complex (Fogg Rd) and Culex tarsalis Coquillett (Vic Fazio). BBAs indicated resistance to deltamethrin [...] Read more.
Insecticide resistance monitoring is essential for effective mosquito control. This study compared CDC Bottle Bioassays (BBAs) using technical and formulated insecticides (deltamethrin/Deltagard and malathion/Fyfanon EW) against the Culex pipiens complex (Fogg Rd) and Culex tarsalis Coquillett (Vic Fazio). BBAs indicated resistance to deltamethrin and emerging resistance to malathion in Fogg Rd, as well as resistance to both in Vic Fazio. Field trials, however, showed high efficacy: Deltagard caused 97.7% mortality in Fogg Rd and 99.4% in Vic Fazio. Fyfanon EW produced 100% mortality in Fogg Rd but only 47% in Vic Fazio. Extended BBA endpoints at 120 and 180 min aligned better with field outcomes. Deltagard achieved 100% mortality at 120 min in both populations; technical deltamethrin reached 85.7% (Fogg Rd) and 83.5% (Vic Fazio) at 180 min. Fyfanon EW and malathion showed similar performance: 100% mortality was achieved in Fogg Rd by 120 min but was lower in Vic Fazio; malathion reached 55%; and Fyfanon EW reached 58.6% by 180 min. Statistical analysis confirmed that BBAs using formulated products better reflected field performance, particularly when proprietary ingredients were involved. These findings support the use of formulated products and extended observation times in BBAs to improve operational relevance and resistance interpretation in addition to detecting levels of insecticide resistance. Full article
Show Figures

Figure 1

20 pages, 1889 KiB  
Article
Suppression of Spotted Wing Drosophila, Drosophila suzukii (Matsumura), in Raspberry Using the Sterile Insect Technique
by Sebastian Hemer, Zeus Mateos-Fierro, Benjamin Brough, Greg Deakin, Robert Moar, Jessica P. Carvalho, Sophie Randall, Adrian Harris, Jimmy Klick, Michael P. Seagraves, Glen Slade, Michelle T. Fountain and Rafael A. Homem
Insects 2025, 16(8), 791; https://doi.org/10.3390/insects16080791 - 31 Jul 2025
Viewed by 326
Abstract
Drosophila suzukii is an invasive pest of many fruit crops worldwide. Employing the Sterile Insect Technique (SIT) could mitigate D. suzukii population growth and crop damage. This study evaluated the efficacy of SIT on commercial fruit, by (1) validating the quality of irradiated [...] Read more.
Drosophila suzukii is an invasive pest of many fruit crops worldwide. Employing the Sterile Insect Technique (SIT) could mitigate D. suzukii population growth and crop damage. This study evaluated the efficacy of SIT on commercial fruit, by (1) validating the quality of irradiated sterile males (male mating competitiveness, courtship, and flight performance) in the laboratory, and (2) assessing population suppression and fruit damage reduction in commercial raspberry fields. Treatment with SIT was compared to the grower’s standard chemical insecticide program throughout the season. The principal metrics of efficacy were trap counts of wild adult female D. suzukii in crops and larvae per fruit during harvesting. These metrics together with monitoring of border areas allowed targeting of high-pressure areas with higher releases of sterile males, to maximise efficacy for a given release number. The sterile male D. suzukii were as competitive as their fertile non-irradiated counterparts in laboratory mating competitiveness and flight performance studies while fertility egg-to-pupae recovery was reduced by 99%. In commercial raspberry crops, season-long releases of sterile males significantly suppressed the wild D. suzukii population, compared to the grower standard control strategy; with up to 89% reduction in wild female D. suzukii and 80% decrease in numbers of larvae per harvested fruit. Additionally, relative fruit waste (i.e., percentage of harvested fruits rejected for sale) at harvest was reduced for early, mid and late harvest crops, by up to 58% compared to the grower standard control. SIT has the potential to provide an effective and sustainable strategy for managing D. suzukii in raspberries, increasing marketable yield by reducing adult populations, fruit damage and waste fruit. SIT could therefore serve as a valuable tool for integrated pest management practices in berry production systems. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

14 pages, 1546 KiB  
Article
Using Leaf-Derived Materials to Stop Common Bed Bugs (Cimex lectularius L.) in Their Tracks
by Patrick Liu, Jorge Bustamante, Kathleen Campbell, Andrew M. Sutherland, Dong-Hwan Choe and Catherine Loudon
Insects 2025, 16(8), 786; https://doi.org/10.3390/insects16080786 - 31 Jul 2025
Viewed by 247
Abstract
The common bed bug, Cimex lectularius L., is a pervasive pest of humans throughout the world. Insecticide resistance, cryptic habits, and proclivity for harborage on human belongings have contributed to its global status as a difficult pest to control. Leaves from common bean [...] Read more.
The common bed bug, Cimex lectularius L., is a pervasive pest of humans throughout the world. Insecticide resistance, cryptic habits, and proclivity for harborage on human belongings have contributed to its global status as a difficult pest to control. Leaves from common bean plants, Phaseolus vulgaris L., which include numerous trichomes, have traditionally been used to capture wandering bed bugs in southeastern Europe. However, fresh leaves rapidly desiccate once removed from plants, losing their trapping ability. A leaf-derived trapping material was developed that does not desiccate as rapidly as fresh leaves and retains the potential to trap bed bugs. In this study, we tested the efficacy of the leaf-derived material in capturing bed bugs. We tested the leaf-derived material in both horizontal and vertical orientations, using fresh bean leaves as positive controls. When deployed horizontally, the leaf-derived material captured bed bugs of all life stages and both sexes (adults). Leaf-derived material was also found to capture bed bugs in a vertical orientation (only evaluated for adult male bed bugs). Because this experimental leaf-derived material was effective in both horizontal and vertical orientations and against all life stages, it may have great potential for development into bed bug monitoring or exclusion devices. Full article
Show Figures

Figure 1

10 pages, 220 KiB  
Article
Surface Application of Different Insecticides Against Two Coleopteran Pests of Stored Products
by Paraskevi Agrafioti, Marina Gourgouta, Dimitrios Kateris and Christos G. Athanassiou
Appl. Sci. 2025, 15(15), 8306; https://doi.org/10.3390/app15158306 - 25 Jul 2025
Viewed by 171
Abstract
The present study highlights the critical role of surface type, insect species, and exposure duration in determining the efficacy of surface-applied insecticides in stored-product pest management. Four insecticides were sprayed and evaluated on different surfaces (concrete, metallic, plastic, and ceramic) against two beetles: [...] Read more.
The present study highlights the critical role of surface type, insect species, and exposure duration in determining the efficacy of surface-applied insecticides in stored-product pest management. Four insecticides were sprayed and evaluated on different surfaces (concrete, metallic, plastic, and ceramic) against two beetles: the red flour beetle and the tobacco beetle. Alpha-cypermethrin and spinosad exhibited rapid and high efficacy, particularly on non-porous surfaces such as metal and ceramic, whereas pirimiphos-methyl was less effective initially and required extended exposure to achieve complete mortality, especially against Tribolium castaneum. In contrast, Lasioderma serricorne showed greater susceptibility across all insecticides and surfaces. Spinosad maintained high efficacy across all surface types, suggesting broader applicability under variable conditions. The reduced performance of insecticides on concrete surfaces underscores the influence of substrate porosity on insecticide bioavailability. Additionally, the observed delayed mortality effect in all treatments indicates that even brief exposure can result in lethal outcomes, emphasizing the long-term potential of these applications. These findings underscore the need for surface-specific application strategies and support the integration of surface treatments into comprehensive pest management programs. Further research is warranted under simulated field conditions to assess residual efficacy over time and in the presence of food, thereby enhancing the relevance of laboratory findings to real-world storage environments. Full article
(This article belongs to the Special Issue Advanced Computational Techniques for Plant Disease Detection)
11 pages, 315 KiB  
Article
Potential Benefits and Side Effects of Sophora flavescens to Control Rachiplusia nu
by Geraldo Matheus de Lara Alves, Adeney de Freitas Bueno, Gabriel Siqueira Carneiro, Guilherme Julião Zocolo, Taynara Cruz dos Santos, Rafael Stempniak Iasczczaki, Letícia Carolina Chiampi Munhoz, Nicole de Oliveira Vilas Boas and Isabel Roggia
Agronomy 2025, 15(8), 1787; https://doi.org/10.3390/agronomy15081787 - 24 Jul 2025
Viewed by 368
Abstract
There is a global demand for reducing the adoption of traditional chemical insecticides in agriculture. Among the most promising alternatives, botanical insecticides have been increasingly gaining attention due to their efficacy combined with a more environmentally safe impact. Among the different botanical insecticides [...] Read more.
There is a global demand for reducing the adoption of traditional chemical insecticides in agriculture. Among the most promising alternatives, botanical insecticides have been increasingly gaining attention due to their efficacy combined with a more environmentally safe impact. Among the different botanical insecticides commercially available, oxymatrine is an alkaloid found in the roots of Sophora flavescens which exhibits wide insecticide activity. However, their side-effects on non-target organisms have not been extensively evaluated. Therefore, this study aimed to investigate in laboratory conditions the insecticidal potential of a commercial botanical insecticide (Matrine®) based on ethanolic extract of S. flavescens roots at 0.2; 0.6; 1.0; 1.4; 1.8; and 2.2 L of commercial product per hectare to control third-instar larvae of Rachiplusia nu and its selectivity in the egg parasitoid Trichogramma pretiosum. Overall, our results showed that the ethanolic extract of S. flavescens is an efficient tool to control R. nu from 0.6 to 2.2 L/ha, with similar R. nu mortality at 48 and 72 h after spraying (close to 100% mortality) associated with no impact to pupae and minimum impact to adults (slightly harmful) of the egg parasitoid. The botanical insecticide was classified as harmless to the pupae and slightly harmful to the adults of T. pretiosum according to the International Organization for Biological Control (IOBC) protocols. Thus, the use of the ethanolic extract of S. flavescens emerges as a relevant alternative to control R. nu, which needs to be confirmed in future field trials. Full article
(This article belongs to the Section Pest and Disease Management)
16 pages, 1111 KiB  
Article
Improvement of Bacillus thuringiensis Protein Contents with Increased Nitrogen Fertilizer Application in Gossypium hirsutum
by Yuting Liu, Fuqin Zhou, Mao Hong, Shaoyang Wang, Yuan Li, Shu Dong, Yuan Chen, Dehua Chen and Xiang Zhang
Agronomy 2025, 15(7), 1730; https://doi.org/10.3390/agronomy15071730 - 18 Jul 2025
Viewed by 282
Abstract
The insect resistance expression of Bacillus thuringiensis (Bt) cotton (Gossypium hirsutum L.) is unstable due to temporal and spatial variations in the Bt protein content in different organs and growth stages. The aim of this study was to improve the Bt protein [...] Read more.
The insect resistance expression of Bacillus thuringiensis (Bt) cotton (Gossypium hirsutum L.) is unstable due to temporal and spatial variations in the Bt protein content in different organs and growth stages. The aim of this study was to improve the Bt protein content in cotton flowers and investigate the underlying physiological mechanism using biochemical analytical methods. In this study, a split-plot design with three replications was used. The main plots included two Bt cotton cultivars (a conventional cultivar, Sikang1 (S1), and a hybrid cultivar, Sikang3 (S3)), while five soil nitrogen application levels (CK (control check): normal level; N1: 125% of the CK; N2: 150% of the CK; N3: 175% of the CK; N4: 200% of the CK) constituted the subplots. The Bt protein content and related nitrogen metabolism parameters were measured. We found that the Bt protein content increased and then decreased with increasing nitrogen rates. It reached its maximum at N3, with significant increases of 71.86% in 2021 and 39.36% in 2022 compared to the CK. Correlation analysis indicated that the Bt protein content was significantly positively related to the soluble protein and free amino acid contents, as well as the GPT (glutamic pyruvic transaminase), GOT (glutamic oxaloacetic transaminase), GS (glutamine synthetase) and GOGAT (glutamate synthetase) activities. On the other hand, negative correlations were found between the Bt protein content and protease and peptidase activities. In addition, stepwise regression and path analysis indicated that the increased Bt protein content was mainly due to the enhanced GS and GOGAT activities. In summary, appropriately increasing nitrogen fertilizer application is a practical way to increase flower Bt protein content and insecticidal efficacy of Bt cotton. These findings provide an actionable agronomic strategy for sustaining Bt expression during the critical flowering period. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

16 pages, 2821 KiB  
Article
Metabolomic Analysis Uncovers the Presence of Pimarenyl Cation-Derived Diterpenes as Insecticidal Constituents of Sphagneticola trilobata
by Lilia Chérigo, Juan Fernández, Ramy Martínez and Sergio Martínez-Luis
Plants 2025, 14(14), 2219; https://doi.org/10.3390/plants14142219 - 17 Jul 2025
Viewed by 404
Abstract
Aphis gossypii is a significant global pest that impacts numerous agricultural crops and vegetables, causing direct damage to food plants and indirect damage through the transmission of phytopathogenic viruses, primarily begomoviruses. In Panama, particularly in the Azuero region, viral infections transmitted by this [...] Read more.
Aphis gossypii is a significant global pest that impacts numerous agricultural crops and vegetables, causing direct damage to food plants and indirect damage through the transmission of phytopathogenic viruses, primarily begomoviruses. In Panama, particularly in the Azuero region, viral infections transmitted by this aphid can affect a substantial share of tomato crops cultivated for industrial use. A traditional alternative to synthetic pesticides involves exploring plant extracts with insecticidal properties derived from wild plants found in our tropical forests, which can be easily prepared and applied by farmers. In this context, the present research aimed to evaluate the insecticidal activity of ethanolic extracts from the stems and leaves of Sphagneticola trilobata on both nymphs and adults of A. gossypii. Mortality was assessed at 24, 48, and 72 h after applying three doses of each extract (25, 50, and 100 µg/L). A standard phytochemical analysis to determine insecticidal activity revealed that both extracts exhibited significant efficacy at the highest concentration tested; however, the leaf extract demonstrated greater effectiveness at lower concentrations. A comprehensive metabolomic study indicated that the active compounds are diterpenes derived from the pimarenyl cation. These compounds have been extensively documented for their insecticidal potential against various insect species, suggesting that ethanolic extracts from this plant could serve as viable candidates for agricultural insecticides to combat aphid infestations. Full article
(This article belongs to the Special Issue Sustainable Strategies for Managing Plant Diseases)
Show Figures

Figure 1

14 pages, 1826 KiB  
Article
Combination of the Parasitoid Spalangia endius Walker and Chemical Pesticides for the Control of Zeugodacus cucurbitae (Coquillett)
by Lei Li, Dongyin Han, Jing Zhao, Haiyan Qiu, Fangping Zhang, Zhengpei Ye and Yueguan Fu
Insects 2025, 16(7), 716; https://doi.org/10.3390/insects16070716 - 12 Jul 2025
Viewed by 384
Abstract
Spalangia endius Walker, a pupal parasitoid of the alien invasive pest Zeugodacus cucurbitae (Coquillett), causes 33% host mortality. This study assessed whether combining S. endius with insecticides (abamectin, thiamethoxam, nitenpyram, emamectin benzoate, or beta-cypermethrin)—all effective against Z. cucurbitae—could enhance control efficacy. Among [...] Read more.
Spalangia endius Walker, a pupal parasitoid of the alien invasive pest Zeugodacus cucurbitae (Coquillett), causes 33% host mortality. This study assessed whether combining S. endius with insecticides (abamectin, thiamethoxam, nitenpyram, emamectin benzoate, or beta-cypermethrin)—all effective against Z. cucurbitae—could enhance control efficacy. Among these, abamectin was the least toxic to adult S. endius. Surface contact treatments with 12 and 15 mg a.i./kg of abamectin did not significantly increase S. endius mortality. However, mixing 12 mg a.i./kg of abamectin into a honey solution to encourage ingestion decreased the survival, parasitism, and fecundity of S. endius. In olfactometer assays, S. endius adults avoided abamectin-treated host pupae, though prior exposure to abamectin mitigated this avoidance. The timing of abamectin soil application relative to host pupation and S. endius release affects host mortality. The most effective timing is spraying abamectin before host pupation (to expose Z. cucurbitae larvae) and then releasing S. endius. Field trials confirmed that combining abamectin (12 mg a.i./kg) with S. endius increased host mortality more than either treatment alone. In conclusion, abamectin (12 mg a.i./kg) is a suitable insecticide for combination with S. endius to control Z. cucurbitae. The application sequence should be spraying abamectin before hosts pupate and, only after that, releasing the parasitoid. Full article
Show Figures

Figure 1

17 pages, 3641 KiB  
Article
Enhancing Biological Control of Drosophila suzukii: Efficacy of Trichopria drosophilae Releases and Interactions with a Native Parasitoid, Pachycrepoideus vindemiae
by Nuray Baser, Charbel Matar, Luca Rossini, Abir Ibn Amor, Dragana Šunjka, Dragana Bošković, Stefania Gualano and Franco Santoro
Insects 2025, 16(7), 715; https://doi.org/10.3390/insects16070715 - 11 Jul 2025
Viewed by 526
Abstract
The spotted wing drosophila, Drosophila suzukii is an injurious polyphagous pest threatening worldwide soft fruit production. Its high adaptability to new colonized environments, short life cycle, and wide host range are supporting its rapid spread. The most common techniques to reduce its significant [...] Read more.
The spotted wing drosophila, Drosophila suzukii is an injurious polyphagous pest threatening worldwide soft fruit production. Its high adaptability to new colonized environments, short life cycle, and wide host range are supporting its rapid spread. The most common techniques to reduce its significant economic damage are based on multiple insecticides applications per season, even prior to the harvest, which reduces agroecosystem biodiversity and affects human and animal health. Environmental concerns and regulatory restrictions on insecticide use are driving the need for studies on alternative biological control strategies. This study aimed to assess the effect of T. drosphilae in controlling D. suzukii infestations and its interaction with P. vindemiae, a secondary parasitoid naturally present in Apulia (South Italy). Field experiments were carried out in organic cherry orchards in Gioia del Colle (Bari, Italy) to test the efficacy and adaptability of T. drosphilae following weekly releases of artificially reared individuals. Additionally, the interaction between P. vindemiae and T. drosphilae was studied under laboratory conditions. Results from field experiments showed that D. suzukii populations were significantly lower when both parasitoids were present. However, T. drosophilae was less prone to adaptation, so its presence and parasitism were limited to the post-release period. Laboratory experiments, instead, confirmed the high reduction of D. suzukii populations when both parasitoids are present. However, the co-existence of the two parasitoids resulted in a reduced parasitism rate and offspring production, notably for T. drosophilae. This competitive disadvantage may explain its poor establishment in field conditions. These findings suggest that the field release of the two natural enemies should be carried out with reference to their natural population abundance to not generate competition effects. Full article
Show Figures

Figure 1

15 pages, 2036 KiB  
Article
What Is the Relationship Between Efficacy of Seed Treatment with Insecticides Against Dalbulus maidis (Delong and Wolcott) (Hemiptera: Cicadellidae) Healthy and Infected with Spiroplasm in the Corn Stunt Control?
by Ana Carolina M. Redoan, Vinicius M. Marques, Poliana S. Pereira, Ivênio R. de Oliveira, Dagma D. Silva-Araújo, Luciano V. Cota, Marcos Antonio M. Fadini, Charles M. Oliveira, Diego D. Rafael and Simone Mendes
Insects 2025, 16(7), 713; https://doi.org/10.3390/insects16070713 - 11 Jul 2025
Viewed by 581
Abstract
Seed treatments with insecticides are important tools for managing corn stunting disease complex (CSDC) transmitted by Dalbulus maidis (Hemiptera: Cicadellidae) by reducing the initial leafhoppers’ population and, consequently, the risk of pathogen transmission. We evaluated the effect of insecticides used in seed treatment [...] Read more.
Seed treatments with insecticides are important tools for managing corn stunting disease complex (CSDC) transmitted by Dalbulus maidis (Hemiptera: Cicadellidae) by reducing the initial leafhoppers’ population and, consequently, the risk of pathogen transmission. We evaluated the effect of insecticides used in seed treatment on both healthy and spiroplasma-infected leafhoppers, the persistence of the seed treatment effect on disease symptom severity, and its impact on corn productivity. At the V2 stage, imidacloprid/thiodicarb was the most effective, resulting in 100% mortality of healthy leafhoppers and 85.7% mortality of infective ones, thus preventing spiroplasma transmission. Thiamethoxam and methomyl + fipronil/thiamethoxam showed a high total mortality after 72 h, but only for the infective leafhoppers, with a total mortality of healthy leafhoppers around 40%, reducing the number of plants with symptoms by 80% and 90%, respectively. Our results prove that there is a difference between the chemical molecules and that the infected leafhoppers are more susceptible. Insecticide seed treatment was effective until the V2 growth stage, and imidacloprid/thiodicarb was the most effective product tested. Infective leafhoppers were more susceptible to insecticide seed treatments, and the infestation by the corn leafhopper carrying spiroplasma in the early stages of plant development heavily reduced corn yield. Full article
(This article belongs to the Special Issue Corn Insect Pests: From Biology to Control Technology)
Show Figures

Figure 1

Back to TopTop