Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (262)

Search Parameters:
Keywords = insect-pathogenic fungi

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 18526 KiB  
Article
Phylogenomic, Morphological, and Phylogenetic Evidence Reveals Five New Species and Two New Host Records of Nectriaceae (Hypocreales) from China
by Qi Fan, Pingping Su, Jiachen Xiao, Fangwei Lou, Xiaoyuan Huang, Zhuliang Yang, Baozheng Chen, Peihong Shen and Yuanbing Wang
Biology 2025, 14(7), 871; https://doi.org/10.3390/biology14070871 - 17 Jul 2025
Viewed by 351
Abstract
Fusarioid fungi, members of the Nectriaceae within the Hypocreales (Ascomycota), exhibit diverse ecological roles and possess complex phylogenetic relationships, including endophytic, saprophytic, and pathogenic lifestyles. Among them, the genera Fusarium and Neocosmospora are particularly significant in agriculture and medicine. However, the [...] Read more.
Fusarioid fungi, members of the Nectriaceae within the Hypocreales (Ascomycota), exhibit diverse ecological roles and possess complex phylogenetic relationships, including endophytic, saprophytic, and pathogenic lifestyles. Among them, the genera Fusarium and Neocosmospora are particularly significant in agriculture and medicine. However, the boundaries between their species remain taxonomically contentious. In this study, 22 representative isolates from plant, fungal, and insect hosts were subjected to a polyphasic taxonomic approach that integrated morphological characterization, multilocus phylogenetic analyses, and phylogenomic analysis based on 4,941 single-copy orthologous genes. Consequently, five new species (F. dracaenophilum, F. puerense, F. wenshanense, N. alboflava, and N. fungicola) were described, and F. qiannanense and N. solani were recorded from new host species. The resulting phylogenomic tree topology was highly congruent with the multilocus phylogeny, providing robust support for the taxonomic distinction between Fusarium and Neocosmospora. This study provides new insights into the taxonomy of fusarioid fungi and has important implications for plant disease management, biodiversity conservation, and the study of fungal evolution. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

23 pages, 5108 KiB  
Review
The Invasive Mechanism and Impact of Arundo donax, One of the World’s 100 Worst Invasive Alien Species
by Hisashi Kato-Noguchi and Midori Kato
Plants 2025, 14(14), 2175; https://doi.org/10.3390/plants14142175 - 14 Jul 2025
Viewed by 365
Abstract
Arundo donax L. has been introduced in markets worldwide due to its economic value. However, it is listed in the world’s 100 worst alien invasive species because it easily escapes from cultivation, and forms dense monospecific stands in riparian areas, agricultural areas, and [...] Read more.
Arundo donax L. has been introduced in markets worldwide due to its economic value. However, it is listed in the world’s 100 worst alien invasive species because it easily escapes from cultivation, and forms dense monospecific stands in riparian areas, agricultural areas, and grassland areas along roadsides, including in protected areas. This species grows rapidly and produces large amounts of biomass due to its high photosynthetic ability. It spreads asexually through ramets, in addition to stem and rhizome fragments. Wildfires, flooding, and human activity promote its distribution and domination. It can adapt to various habitats and tolerate various adverse environmental conditions, such as cold temperatures, drought, flooding, and high salinity. A. donax exhibits defense mechanisms against biotic stressors, including herbivores and pathogens. It produces indole alkaloids, such as bufotenidine and gramine, as well as other alkaloids that are toxic to herbivorous mammals, insects, parasitic nematodes, and pathogenic fungi and oomycetes. A. donax accumulates high concentrations of phytoliths, which also protect against pathogen infection and herbivory. Only a few herbivores and pathogens have been reported to significantly damage A. donax growth and populations. Additionally, A. donax exhibits allelopathic activity against competing plant species, though the allelochemicals involved have yet to be identified. These characteristics may contribute to its infestation, survival, and population expansion in new habitats as an invasive plant species. Dense monospecific stands of A. donax alter ecosystem structures and functions. These stands impact abiotic processes in ecosystems by reducing water availability, and increasing the risk of erosion, flooding, and intense fires. The stands also negatively affect biotic processes by reducing plant diversity and richness, as well as the fitness of habitats for invertebrates and vertebrates. Eradicating A. donax from a habitat requires an ongoing, long-term integrated management approach based on an understanding of its invasive mechanisms. Human activity has also contributed to the spread of A. donax populations. There is an urgent need to address its invasive traits. This is the first review focusing on the invasive mechanisms of this plant in terms of adaptation to abiotic and biotic stressors, particularly physiological adaptation. Full article
Show Figures

Graphical abstract

14 pages, 645 KiB  
Review
Overview and Recent Advances in Bioassays to Evaluate the Potential of Entomopathogenic Fungi Against Ambrosia Beetles
by Jesús Enrique Castrejón-Antonio and Patricia Tamez-Guerra
Insects 2025, 16(6), 615; https://doi.org/10.3390/insects16060615 - 10 Jun 2025
Viewed by 1072
Abstract
Ambrosia beetles, known for their symbiotic relationship with fungi cultivated within the tissues of host trees, have become significant pests, particularly when they serve as vectors for pathogenic fungi such as Raffaelea lauricola. Given the regulatory and environmental constraints for chemical application [...] Read more.
Ambrosia beetles, known for their symbiotic relationship with fungi cultivated within the tissues of host trees, have become significant pests, particularly when they serve as vectors for pathogenic fungi such as Raffaelea lauricola. Given the regulatory and environmental constraints for chemical application as a tool for their control, entomopathogenic fungi (EPF) represent a promising pest management alternative. This review presents an overview of bioassays assessing the pathogenicity and virulence of EPF against ambrosia beetles. Most studies have been performed in vivo (artificial diet) under laboratory conditions, focusing on exotic species and testing EPF genera such as Beauveria, Metarhizium, Isaria, and Purpureocillium. However, variations in inoculation methods, environmental conditions, and fungal formulations, have led to diverse results. In addition, the complex biology of these insects, particularly their dependence on symbiotic fungi, represents significant methodological challenges. Field trials (in situ bioassays) are still scarce, and there is a need to move toward standardized protocols and more objective experimental models that consider not only insects’ behavior but also ecological factors. Bridging this gap is essential for successfully implementing EPF-based strategies to assess ambrosia beetles’ biocontrol. Full article
Show Figures

Figure 1

21 pages, 11870 KiB  
Review
Evolution of the Defense Compounds Against Biotic Stressors in the Invasive Plant Species Leucaena leucocephala
by Hisashi Kato-Noguchi and Midori Kato
Molecules 2025, 30(11), 2453; https://doi.org/10.3390/molecules30112453 - 3 Jun 2025
Cited by 1 | Viewed by 959
Abstract
Leucaena leucocephala (Lam.) de Wit is listed in the world’s 100 worst alien invasive species because of the risks it poses to native plant communities. Life history traits, such as high growth and reproductive rates, and a high capacity to adapt to different [...] Read more.
Leucaena leucocephala (Lam.) de Wit is listed in the world’s 100 worst alien invasive species because of the risks it poses to native plant communities. Life history traits, such as high growth and reproductive rates, and a high capacity to adapt to different environmental conditions may contribute to its invasive properties. Biotic stressors, such as herbivores, pathogens, and competing plant species are known to exert significant selective pressure on the plant’s survival, distribution, and abundance. L. leucocephala has been reported to contain several compounds involved in the defense functions against these biotic stressors. A large amount of L-mimosine, a non-protein amino acid, was found in all plant parts of L. leucocephala, including its flowers. L-Mimosine is toxic to herbivorous mammals and insects, parasitic nematodes, pathogenic fungi, and neighboring competing plant species by inactivating various essential enzymes and blocking DNA replication, and/or inducing oxidative stress conditions. Several flavonoids, polyphenolic compounds, and/or derivatives of benzoic and cinnamic acids are toxic to parasitic nematodes, pathogenic fungi and bacteria, and competing plant species by disrupting plasma membrane structures and functions, and various metabolic processes. These compounds may represent the invasive traits of L. leucocephala that have undergone natural selection during the evolution of the species. They may contribute to the defense functions against the biotic stressors, and increase its survival, distribution, and abundance in the introduced ranges. This is the first review to focus on the compounds involved in the defense functions against biotic stressors. Full article
Show Figures

Figure 1

16 pages, 5155 KiB  
Article
Histopathological Study of Host–Pathogen Interactions Between Cordyceps javanica PSUC002 and Hypothenemus hampei
by Sinlapachai Senarat, Peerasak Bunsap, Pisit Poolprasert, Anjaree Inchan, Natthawut Charoenphon, Peerapon Sornying and Narit Thaochan
J. Fungi 2025, 11(6), 423; https://doi.org/10.3390/jof11060423 - 30 May 2025
Viewed by 1040
Abstract
The use of entomopathogenic fungi (EPF), such as Cordyceps javanica, to reduce insect pest populations is gaining traction since it is an environmentally safe approach that can control many pests at different life stages. Here, we focus on the histopathology of the [...] Read more.
The use of entomopathogenic fungi (EPF), such as Cordyceps javanica, to reduce insect pest populations is gaining traction since it is an environmentally safe approach that can control many pests at different life stages. Here, we focus on the histopathology of the coffee berry borer, Hypothenemus hampei, infected by C. javanica. Morphological observation revealed that C. javanica conidia germinated within 12 h following inoculation according to light microscopic and ultrastructural levels. The fungus thoroughly penetrated the fat body and muscular tissue between 84 and 120 h post-inoculation. Transmission electron microscopy (TEM) confirmed the hyphal invasion of the cuticle at 12 h post-inoculation, with progressive tissue disruption and organelle degeneration, especially mitochondria and rough endoplasmic reticulum in adipocytes. All organelles were completely degenerated at 96 h post-inoculation. There was evidence of a connection between C. javanica activity and the coffee berry borer that might cause histopathological changes in the host defense against the pathogen, pointing to increased mortality and potential control of coffee berry borer in natural populations. Additionally, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) confirmed that apoptotic cells were slightly increased in the adipose tissue and integument of the coffee berry borer. The ability of C. javanica to fatally infect the coffee berry borer suggests that it could be deployed as a biological control agent in the field. Full article
(This article belongs to the Special Issue Current Trends in Mycological Research in Southeast Asia)
Show Figures

Figure 1

16 pages, 1161 KiB  
Review
Acute Oak Decline-Associated Bacteria: An Emerging Worldwide Threat to Forests
by Alessandro Bene, Marzia Vergine, Giambattista Carluccio, Letizia Portaccio, Angelo Giovanni Delle Donne, Luigi De Bellis and Andrea Luvisi
Microorganisms 2025, 13(5), 1127; https://doi.org/10.3390/microorganisms13051127 - 14 May 2025
Viewed by 467
Abstract
Acute oak decline (AOD) is a multifactorial disease that affects European oaks and represents a growing threat to forests. The disease results from a complex interaction between biotic and abiotic factors: the various environmental stresses, which vary depending on the area in question, [...] Read more.
Acute oak decline (AOD) is a multifactorial disease that affects European oaks and represents a growing threat to forests. The disease results from a complex interaction between biotic and abiotic factors: the various environmental stresses, which vary depending on the area in question, and generally increased by climate change, predispose trees to attack by opportunistic pathogens. Among them, we focused on a bacterial consortium associated with AOD, consisting mainly of Brenneria goodwinii, Gibbsiella quercinecans, Rahnella victoriana, and Lonsdalea britannica, which produce degrading enzymes that contribute to phloem necrosis and the development of stem bleeds and bark cracks. However, the role of other pathogens, such as fungi, cannot be ruled out, but instead could be contributory. The potential involvement of xylophagous insects is also being studied, particularly Agrilus biguttatus, which, although, frequently associated with the disease, has not been conclusively demonstrated to act as an active vector of the bacteria. Currently, disease management requires integrated approaches, including monitoring and other forestry strategies to increase forest resilience. Given the phenomenon’s complexity and the risk of the future expansion of that bacterial consortium, further research is necessary to understand the dynamics and to develop effective containment strategies of AOD-associated bacteria. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

15 pages, 4728 KiB  
Article
The Virulence of Metarhizium rileyi to Locusta migratoria Is Determined by the Ability of the Fungus to Respond to Carbon and Nitrogen Sources
by Yunhao Yao, Mei Li, Qingqing Liu, Qiuyue Huang, Shuo Yang, Bin Chen and Yuejin Peng
Int. J. Mol. Sci. 2025, 26(9), 4156; https://doi.org/10.3390/ijms26094156 - 27 Apr 2025
Viewed by 433
Abstract
Insects are among the most diverse and abundant organisms on Earth, and their population dynamics are strongly influenced by entomopathogenic fungi. This study examines the role of carbon and nitrogen metabolism in the virulence of the entomopathogenic fungus Metarhizium rileyi against the migratory [...] Read more.
Insects are among the most diverse and abundant organisms on Earth, and their population dynamics are strongly influenced by entomopathogenic fungi. This study examines the role of carbon and nitrogen metabolism in the virulence of the entomopathogenic fungus Metarhizium rileyi against the migratory locust, Locusta migratoria. The findings demonstrate that the capacity of M. rileyi to utilize different carbon and nitrogen sources is a key factor in its virulence. Specifically, two strains of M. rileyi (PPDB201006 and SZCY201010) exhibited distinct metabolic abilities, with PPDB201006 displaying superior growth and enzyme activities on various carbon and nitrogen sources compared to SZCY201010. These metabolic differences were associated with significant variations in virulence, as PPDB201006 induced higher mortality rates in L. migratoria than SZCY201010. Metabolomics analysis revealed that infection by M. rileyi led to substantial alterations in the hemolymph metabolites of L. migratoria, particularly in organic acids, amino acids, sugars, and lipids. These results emphasize the significance of carbon and nitrogen metabolism in the pathogenicity of entomopathogenic fungi and offer new perspectives for optimizing their application as biological control agents. This study not only improves our understanding of fungal virulence mechanisms but also contributes to the development of more effective and sustainable pest management strategies. Full article
Show Figures

Graphical abstract

19 pages, 3180 KiB  
Review
Defensive Compounds Involved in the Invasiveness of Tithonia diversifolia
by Hisashi Kato-Noguchi and Midori Kato
Molecules 2025, 30(9), 1946; https://doi.org/10.3390/molecules30091946 - 27 Apr 2025
Cited by 2 | Viewed by 894
Abstract
Tithonia diversifolia (Hemsl.) A. Gray forms high-density impenetrable monospecific stands as an invasive plant species. Its life history traits, such as high adaptability with high genetic variation under different environmental conditions, and high growth and reproductive capacity, may contribute to its success in [...] Read more.
Tithonia diversifolia (Hemsl.) A. Gray forms high-density impenetrable monospecific stands as an invasive plant species. Its life history traits, such as high adaptability with high genetic variation under different environmental conditions, and high growth and reproductive capacity, may contribute to its success in invading and increasing its population in the introduced ranges. Evidence has accumulated in the literature for the activity of compounds involved in the invasive characteristics of Tithonia diversifolia against natural enemies such as herbivorous insects and mammals, pathogenic nematodes, fungi, and viruses, and of allelochemicals against neighboring competitive plant species. Tagitinin A, tagitinin C, 1β-methoxydiversifolin, phytol, phytol acetate, α-pinene, bicyclo[3.1.0]hexane,4-methylene-1-(1-methylethyl), hispidulin, dihydro-p-coumaric acid, and methyl linoleate are toxic to herbivorous insects, and tagitinin C and 5-O-(E)-caffeoylquinic acid are harmful to herbivorous mammals. Tirotundin has nematocidal activity. α-Pinene, camphor, eucalyptol, and α-terpineol have fungicidal activity. Tagitinin A, tagitinin C, and 1β-methoxydiversifolin-3-O-methyl ether have antiviral activity. Tagitinin A, tagitinin C, 1β-methoxydiversifolin, and hispidulin act as allelochemicals that inhibit the growth of neighboring competing plant species. The ability to outcompete natural enemies and competing plant species is one of the essential factors for infestation and increase in the population and distribution of Tithonia diversifolia in new habitats. Therefore, these compounds may be involved in the invasive characteristics of Tithonia diversifolia. This is the first review article focusing on the compounds involved in the invasive characteristics of Tithonia diversifolia. Full article
Show Figures

Graphical abstract

21 pages, 2189 KiB  
Review
Medical Potential of Insect Symbionts
by Fanglei Fan, Zhengyan Wang, Qiong Luo, Zhiyuan Liu, Yu Xiao and Yonglin Ren
Insects 2025, 16(5), 457; https://doi.org/10.3390/insects16050457 - 26 Apr 2025
Viewed by 624
Abstract
Insect symbionts and their metabolites are complex and diverse and are gradually becoming an important source of new medical materials. Some culturable symbionts from insects produce a variety of active compounds with medical potential. Among them, fatty acids, antibacterial peptides, polyene macrolides, alkaloids, [...] Read more.
Insect symbionts and their metabolites are complex and diverse and are gradually becoming an important source of new medical materials. Some culturable symbionts from insects produce a variety of active compounds with medical potential. Among them, fatty acids, antibacterial peptides, polyene macrolides, alkaloids, and roseoflavin can inhibit the growth of human pathogenic bacteria and fungi; lipases, yeast killer toxins, reactive oxygen species, pyridines, polyethers, macrotetrolide nactins, and macrolides can kill human parasites; and peptides and polyketides can inhibit human tumors. However, due to difficulty in the culture of symbionts in vitro, difficulty in targeting bacteria to specific sites in the human body, the limited capability of symbionts to produce active metabolites in vitro, inconsistent clinical research results, adverse reactions on humans, and the development of antibiotic resistance, the application of insect symbionts and their metabolites in the medical field remains in its infancy. This paper summarizes the medical potential of insect symbionts and their metabolites and analyzes the status quo and existing problems with their medical application. Possible solutions to these problems are also proposed, with the aim of hastening the utilization of insect symbionts and their metabolites in the medical field. Full article
(This article belongs to the Section Role of Insects in Human Society)
Show Figures

Figure 1

14 pages, 1546 KiB  
Article
Quillaja lancifolia Immunoadjuvant Saponins Show Toxicity to Herbivores and Pathogenic Fungi
by Anna C. A. Yendo, Luana C. Colling, Hélio N. Matsuura, Lúcia R. B. Vargas, José A. Martinelli, Gabriela Z. Chitolina, Marilene H. Vainstein and Arthur G. Fett-Neto
Plants 2025, 14(8), 1252; https://doi.org/10.3390/plants14081252 - 20 Apr 2025
Cited by 1 | Viewed by 430
Abstract
Saponins from leaves of Quillaja lancifolia, a native species from southern Brazil, show potent immunoadjuvant activity in experimental vaccine formulations. The accumulation of the immunoadjuvant saponin fraction QB-90 is induced in cultured leaf disks and seedlings by several stresses and stress signaling [...] Read more.
Saponins from leaves of Quillaja lancifolia, a native species from southern Brazil, show potent immunoadjuvant activity in experimental vaccine formulations. The accumulation of the immunoadjuvant saponin fraction QB-90 is induced in cultured leaf disks and seedlings by several stresses and stress signaling molecules, such as osmotic agents, salicylic acid, jasmonic acid, mechanical damage, ultrasound, UV-C radiation, and high light irradiance. These observations suggest a role in plant defense. To further examine this possibility, an investigation of the potential inhibitory role of Q. lancifolia saponins on plant and human pathogenic fungi and two herbivore models was carried out. The screening tests showed that saponin-rich fractions, particularly QB-90, were able to significantly inhibit the growth of Bipolaris micropus, Curvularia inaequalis, Fusarium incarnatum, and Cryptococcus gattii R265. The same metabolites acted as deterrents against the generalist mollusk and insect herbivores Helix aspersa and Spodoptera frugiperda, respectively. Significant reductions in consumption of leaf area and larvae body weight were recorded. Taken together, these data indicate a role for Q. lancifolia saponins in plant defense against diverse herbivores and fungi, having potential as a natural pest control agent and/or as a molecular platform for the development of new environmentally friendly biocide molecules. Full article
(This article belongs to the Special Issue Biochemical Defenses of Plants)
Show Figures

Figure 1

36 pages, 13548 KiB  
Article
Morpho-Molecular Characterization of Hypocrealean Fungi Isolated from Rice in Northern Thailand
by Sahar Absalan, Alireza Armand, Ruvishika S. Jayawardena, Nakarin Suwannarach, Jutamart Monkai, Nootjarin Jungkhun Gomes de Farias, Saisamorn Lumyong and Kevin D. Hyde
J. Fungi 2025, 11(4), 321; https://doi.org/10.3390/jof11040321 - 18 Apr 2025
Viewed by 859
Abstract
Hypocreales is one of the largest orders within the class Sordariomycetes and is renowned for its diversity of lifestyles, encompassing plant, insect, and human pathogens, as well as endophytes, parasites, and saprobes. In this study, we focused on saprobic hypocrealean fungi isolated from [...] Read more.
Hypocreales is one of the largest orders within the class Sordariomycetes and is renowned for its diversity of lifestyles, encompassing plant, insect, and human pathogens, as well as endophytes, parasites, and saprobes. In this study, we focused on saprobic hypocrealean fungi isolated from rice in northern Thailand. Species identification was conducted using morphological characteristics and multilocus phylogenetic analyses, including the internal transcribed spacer region (ITS), 28S large subunit nuclear ribosomal DNA (LSU), translation elongation factor 1–alpha (tef1-α), RNA polymerase II second-largest subunit (rpb2), and calmodulin (cmdA). This research confirmed the presence of 14 species of hypocrealean taxa, viz. Fusarium (9), Ochronectria (1), Sarocladium (2), Trichothecium (1), and Waltergamsia (1). Among these were two new species (Fusarium chiangraiense and F. oryzigenum), four new host records (Fusarium kotabaruense, Ochronectria thailandica, Sarocladium bactrocephalum, and Waltergamsia fusidioides), and three new geographical records (Fusarium commune, F. guilinense, and F. hainanese). Full article
(This article belongs to the Collection Fungal Biodiversity and Ecology)
Show Figures

Figure 1

17 pages, 3351 KiB  
Article
Fungal Warriors: Effects of Beauveria bassiana and Purpureocillium lilacinum on CCYV-Carrying Whiteflies
by Dan Zhai, Hang Lu, Suyao Liu, Jialei Liu, Wanyu Zhang, Jingjing Wu, Jingjing Li, Rune Bai, Fengming Yan and Chenchen Zhao
Biomolecules 2025, 15(4), 593; https://doi.org/10.3390/biom15040593 - 16 Apr 2025
Cited by 1 | Viewed by 679
Abstract
Bemisia tabaci is a major agricultural pest that affects both greenhouse and field crops by feeding on plant sap, which impairs plant growth, and by secreting honeydew, promotes sooty mold growth that further reduces photosynthesis. Additionally, these insects are vectors for viruses such [...] Read more.
Bemisia tabaci is a major agricultural pest that affects both greenhouse and field crops by feeding on plant sap, which impairs plant growth, and by secreting honeydew, promotes sooty mold growth that further reduces photosynthesis. Additionally, these insects are vectors for viruses such as the cucurbit chlorotic yellows virus (CCYV), which causes significant damage to cucurbit crops. Traditional chemical pesticide treatments have limitations, including the development of resistance, harm to non-target organisms, and environmental contamination. Traditional chemical pesticides have limitations when it comes to controlling plants infested by CCYV and whitefly. However, the underlying reasons for these limitations remain unclear, as does the impact of entomopathogenic fungi on whitefly responses. This study explores the potential of using biological control agents, specifically Beauveria bassiana and Purpureocillium lilacinum, to manage whitefly populations and control CCYV transmission. Laboratory experiments were conducted to evaluate the pathogenicity of these fungi on non/viruliferous whitefly. The results indicated that both fungi effectively reduced whitefly populations, with B. bassiana showing particularly strong adverse effects. Whiteflies infected with CCYV exhibited a higher LC50 to B. bassiana and P. lilacinum. Furthermore, bio-pesticides significantly altered the bacterial microbiome dynamics of the whitefly. Interestingly, CCYV increased the susceptibility of whiteflies to entomopathogenic fungus. The findings suggest that these biocontrol agents offer a sustainable alternative to chemical pesticides. Our study unraveled a new horizon for the multiple interaction theories among bio-pesticides–insects–symbionts–viruses. Full article
(This article belongs to the Special Issue Microbial Biocontrol and Plant-Microbe Interactions)
Show Figures

Figure 1

3 pages, 163 KiB  
Editorial
Plant Diseases and Sustainable Agriculture
by Patrick Materatski, Cláudia S. L. Vicente, Carla Varanda and Margarida Espada
Plants 2025, 14(8), 1175; https://doi.org/10.3390/plants14081175 - 10 Apr 2025
Viewed by 465
Abstract
Plant pathogens including viruses, bacteria, fungi, nematodes, and insects, can cause huge economic losses on a wide range of crops and forest species worldwide [...] Full article
(This article belongs to the Special Issue Plant Diseases and Sustainable Agriculture)
3 pages, 152 KiB  
Editorial
Fungi and Insect Interactions: Pathogenicity, Immune Defenses and Biocontrol
by Jiaqin Xie and Nicolás Pedrini
J. Fungi 2025, 11(4), 289; https://doi.org/10.3390/jof11040289 - 7 Apr 2025
Viewed by 467
Abstract
Insects are the largest animal group in nature, with significant effects on ecology, human health, and indigenous flora and fauna [...] Full article
23 pages, 5827 KiB  
Article
Isolation and Characterization of Beauveria caledonica (Ascomycota: Hypocreales) Strains for Biological Control of Odoiporus longicollis Oliver (Coleoptera: Curculionidae)
by Mingbi Ding, Li Wu, Hongwei Yu, Huacai Fan, Zhixiang Guo, Shengtao Xu, Jianhui Chun, Yongfen Wang and Si-Jun Zheng
Microorganisms 2025, 13(4), 782; https://doi.org/10.3390/microorganisms13040782 - 28 Mar 2025
Viewed by 512
Abstract
The banana pseudostem weevil (BPW), Odoiporus longicollis (Oliver), is one of the most destructive pests of bananas that is seriously affecting the yield and quality of bananas. We isolated pathogens from banana pseudostem weevils in Xishuangbanna and Dongchuan, Yunnan, China, and explored their [...] Read more.
The banana pseudostem weevil (BPW), Odoiporus longicollis (Oliver), is one of the most destructive pests of bananas that is seriously affecting the yield and quality of bananas. We isolated pathogens from banana pseudostem weevils in Xishuangbanna and Dongchuan, Yunnan, China, and explored their biological characteristics. The pathogenicity of the strains was verified through laboratory and greenhouse inoculation experiments. The results showed that four strains of fungi were identified and confirmed as Beauveria caledonica (Bc) via ITS-rDNA sequencing. Optimal in vitro culture conditions were found to be a photoperiod of 24 h light, 25 °C temperature, and 18 days on potato dextrose agar (PDA) medium with insect meal. Under these conditions, the Cs-1 strain achieved a colony diameter of 65.17 ± 0.74 mm and spore production of 1.24 × 108 cfu/cm2. The Cs-1 strain had the shortest lethal time (LT50) of 9.36 days at an inoculum of 1.00 × 109 cfu/mL, with a lethality of 86.67% after 20 days. The Cs-3 strain showed 77.78% lethality at 1.00 × 108 cfu/mL after 20 days. Despite variations in virulence, lethality did not correlate with major cuticle-degrading enzymes. The Cs-3 strain demonstrated effective biocontrol in greenhouse tests. Banana plants suffered significant damage without Bc-treated BPW, while the treated plantlets thrived. The mortality rate reached 82.78% after 35 days. This study marks the first identification of these entomopathogenic fungi (EPF) in Yunnan, China, highlighting B. caledonica’s potential for biocontrol application. Full article
(This article belongs to the Special Issue Beneficial Microbes: Food, Mood and Beyond, 2nd Edition)
Show Figures

Figure 1

Back to TopTop