Defensive Compounds Involved in the Invasiveness of Tithonia diversifolia
Abstract
:1. Introduction
2. Protection Against Herbivorous Insects
3. Protection Against Herbivorous Snails
4. Protection Against Herbivorous Mammals
5. Protection Against Parasitic Nematodes
6. Protection Against Fungal, Bacterial and Viral Pathogens
7. Protection Against Competition from Neighboring Plant Species
8. Compounds Involved in the Invasive Properties of Tithonia diversifolia
9. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- CABI Compendium. Tithonia diversifolia (Mexican Sunflower). Available online: https://www.cabidigitallibrary.org/doi/full/10.1079/cabicompendium.54020 (accessed on 21 February 2025).
- Royal Botanical Gardens, Kew. Tithonia diversifolia (Hemsl.) A. Gray. Available online: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:255747-1 (accessed on 21 February 2025).
- Queensland Government, Weeds of Australia. Available online: https://keyserver.lucidcentral.org/weeds/data/media/Html/tithonia_diversifolia.htm (accessed on 21 February 2025).
- Pacific Island Ecosystems at Risk (PIER). Tithonia diversifolia. Available online: http://www.hear.org/pier/species/tithonia_diversifolia.htm (accessed on 21 February 2025).
- Jama, B.; Palm, C.A.; Buresh, R.J.; Niang, A.; Gachengo, C.; Nziguheba, G.; Amadalo, B. Tithonia diversifolia as a green manure for soil fertility improvement in western Kenya: A review. Agrofor. Syst. 2000, 49, 201–221. [Google Scholar] [CrossRef]
- Muoghalu, J.I. Growth, reproduction and resource allocation of Tithonia diversifolia and Tithonia rotundifolia. Weed Res. 2008, 48, 157–162. [Google Scholar] [CrossRef]
- Obiakara, M.C.; Fourcade, Y. Climatic niche and potential distribution of Tithonia diversifolia (Hemsl.) A. Gray in Africa. PLoS ONE 2018, 13, e0202421. [Google Scholar] [CrossRef] [PubMed]
- Witt, A.B.R.; Shackleton, R.T.; Beale, T.; Nunda, W.; Van Wilgen, B.W. Distribution of invasive alien Tithonia (Asteraceae) species in eastern and southern Africa and the socio-ecological impacts of T. diversifolia in Zambia. Bothalia-Afr. Biodivers. Conserv. 2019, 49, a2356. [Google Scholar] [CrossRef]
- Henderson, L. Invasive, naturalised and casual alien plants in southern Africa: A summary based on the South African plant invaders atlas (SAPIA). Bothalia 2007, 37, 215–248. [Google Scholar] [CrossRef]
- Henderson, L.; Wilson, J.R.U. Changes in the composition and distribution of alien plants in South Africa: An update from the Southern African plant invaders atlas (SAPIA). Bothalia-Afr. Biodivers. Conserv. 2017, 47, a2172. [Google Scholar] [CrossRef]
- Wang, S.H.; Sun, W.B.; Cheng, X. Attributes of plant proliferation, geographic spread and the natural communities invaded by the naturalized alien plant species Tithonia diversifolia in Yunnan, China. Acta Ecol. Sin. 2004, 24, 444–449. [Google Scholar]
- Sun, W.; Chen, G.; Wang, S. Characteristics of Tithonia diversifolia: An alien invasive plant in Yunnan south-west China. In Proceedings of the 3rd Global Botanic Gardens Conference, Wuhan, China, 16–20 April 2007; Tufts University: Medford, OR, USA, 2007; pp. 1–7. Available online: http://www.bgci.org/files/Wuhan/PapersConserving/SunTithonia.pdf (accessed on 21 February 2025).
- Dai, G.; Wang, S.; Geng, Y.; Dawazhaxi; Ou, X.; Zhang, Z. Potential risks of Tithonia diversifolia in Yunnan Province under climate change. Ecol. Res. 2021, 36, 129–144. [Google Scholar] [CrossRef]
- Kriticos, J.M.; Kriticos, D.J. Pretty (and) invasive: The potential global distribution of Tithonia diversifolia under current and future climates. Invas. Plant Sci. Manag. 2021, 14, 205–213. [Google Scholar] [CrossRef]
- Oludare, A.; Muoghalu, J.I. Impact of Tithonia diversifolia (Hemsl.) A. Gray on the soil, species diversity and composition of vegetation in Ile-Ife (southwestern Nigeria), Nigeria. Int. J. Biodivers. Conser. 2014, 6, 555–562. [Google Scholar]
- Zivanayi, M.; Ronald, M.; Nyamande, M. Effects of Tithonia diversifolia on species composition of other weeds. Afr. J. Agric. Res. 2024, 20, 641–649. [Google Scholar]
- Vanlalruati; Rai, P.K. The impact of Tithonia diversifolia (Hemsl.) A. Gray on phytosociology and native plants diversity of Aizawl, Mizoram, North East India. Eco. Environ. Cons. 2021, 27, S243–S248. [Google Scholar]
- Chukwuka, K.S.; Ogunyemi, S.; Fawole, I. Ecological distribution of Tithonia diversifolia (Hemsl). A. Gray-A new exotic weed in Nigeria. J. Biol. Sci. 2007, 7, 709–719. [Google Scholar] [CrossRef]
- Yang, J.; Tang, L.; Guan, Y.L.; Sun, W.B. Genetic diversity of an alien invasive plant Mexican sunflower (Tithonia diversifolia) in China. Weed Sci. 2012, 60, 552–557. [Google Scholar] [CrossRef]
- Rivera, J.E.; Chará, J.; Gómez-Leyva, J.F.; Ruíz, T.E.; Murgueitio, E.; Barahona, R. Genetic and phenotypic variability of Tithonia diversifolia (Hemsl.) A. Gray. in Colombia. Cuban J. Agric. Sci. 2023, 57, 1–11. [Google Scholar]
- Etejere, E.O.; Olayinka, B.U. Seed production, germination, emergence and growth of Tithonia diversifolia (Hemsl.) A. Gray as influenced by different sowing depths and soil types. Albanian J. Agric. Sci. 2015, 14, 294. [Google Scholar]
- Muoghalu, J.I.; Chuba, D.K. Seed germination and reproductive strategies of Tithonia diversifolia (Hemsl.) Gray and Tithonia rotundifolia (P.M) Blake. Appl. Ecol. Environ. Res. 2005, 3, 39–46. [Google Scholar] [CrossRef]
- Holdsworth, M.J.; Bentsink, L.; Soppe, W.J. Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol. 2008, 179, 33–54. [Google Scholar] [CrossRef]
- Keane, R.M.; Crawley, M.L. Exotic plant invasions and the enemy release hypothesis. Trends Ecol. Evol. 2002, 17, 164–170. [Google Scholar] [CrossRef]
- Callaway, R.M.; Aschehoug, E.T. Invasive plants versus their new and old neighbors: A mechanism for exotic invasion. Science 2000, 290, 521–523. [Google Scholar] [CrossRef]
- Muller-Scharer, H.; Schaffner, U.; Steinger, T. Evolution in invasive plants: Implications for biological control. Trends Ecol. Evol. 2004, 19, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Chengxu, W.; Mingxing, Z.; Xuhui, C.; Bo, Q. Review on allelopathy of exotic invasive plants. Procedia. Engin. 2011, 18, 240–246. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Kato, M. Evolution of the secondary metabolites in invasive plant species Chromolaena odorata for the defense and allelopathic functions. Plants 2023, 12, 521. [Google Scholar] [CrossRef] [PubMed]
- Kato-Noguchi, H.; Kato, M. Defense molecules of the invasive plant species Ageratum conyzoides. Molecules 2024, 29, 4673. [Google Scholar] [CrossRef]
- Kato-Noguchi, H. Defensive molecules momilactones A and B: Function, biosynthesis, induction and occurrence. Toxins 2023, 15, 241. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Kato, M. Compounds involved in the invasive characteristics of Lantana camara. Molecules 2025, 30, 411. [Google Scholar] [CrossRef]
- Marquis, R.J. Leaf herbivores decrease fitness of a tropical plant. Science 1984, 226, 537–539. [Google Scholar] [CrossRef]
- Marquis, R.J. A bite is a bite is a bite? Constraints on response to folivory in Piper arieianum (Piperaceae). Ecology 1992, 73, 143–152. [Google Scholar] [CrossRef]
- Clark, D.B.; Clark, D.A. Seedling dynamics of a tropical tree: Impacts of herbivory and meristem damage. Ecology 1985, 66, 1884–1892. [Google Scholar] [CrossRef]
- Karban, R.; Myers, J.H. Induced plant responses to herbivory. Annu. Rev. Ecol. Syst. 1989, 20, 331–348. [Google Scholar] [CrossRef]
- Maron, J.L.; Crone, E. Herbivory: Effects on plant abundance, distribution and population growth. Proc. R. Soc. B. Biol. Sci. 2006, 273, 2575–2584. [Google Scholar] [CrossRef]
- Gong, B.; Zhang, G. Interactions between plants and herbivores: A review of plant defense. Acta Ecol. Sin. 2014, 34, 325–336. [Google Scholar] [CrossRef]
- Coley, P.D.; Barone, J.A. Herbivory and plant defenses in tropical forests. Annu. Rev. Ecol. Systemat. 1996, 27, 305–335. [Google Scholar] [CrossRef]
- Mithöfer, A.; Boland, W. Plant defense against herbivores: Chemical aspects. Annu. Rev. Plant Biol. 2012, 63, 431–450. [Google Scholar] [CrossRef] [PubMed]
- Clements, D.R.; Kato-Noguchi, H. Defensive mechanisms of Mikania micrantha likely enhance its invasiveness as one of the world’s worst alien species. Plants 2025, 14, 269. [Google Scholar] [CrossRef] [PubMed]
- Kato-Noguchi, H. Invasive mechanisms of one of the world’s worst alien plant species Mimosa pigra and its management. Plants 2023, 12, 1960. [Google Scholar] [CrossRef] [PubMed]
- Kato-Noguchi, H.; Kato, M. Allelopathy and allelochemicals of Solidago canadensis L. and S. altissima L. for their naturalization. Plants 2022, 11, 3235. [Google Scholar] [CrossRef]
- Kato-Noguchi, H. Allelopathy of knotweeds as invasive plants. Plants 2022, 11, 3. [Google Scholar] [CrossRef]
- Thompson, J.N. Coevolution and alternative hypotheses on insect/plant interactions. Ecology 1988, 69, 893–895. [Google Scholar] [CrossRef]
- Wheat, C.W.; Vogel, H.; Wittstock, U.; Braby, M.F.; Underwood, D.; Mitchell-Olds, T. The genetic basis of a plant-insect coevolutionary key innovation. Proc. Nat. Acad. Sci. USA 2007, 104, 20427–20431. [Google Scholar] [CrossRef]
- Castaño-Quintana, K.; Montoya-Lerma, J.; Giraldo-Echeverri, C. Toxicity of foliage extracts of Tithonia diversifolia (Asteraceae) on Atta cephalotes (Hymenoptera: Myrmicinae) workers. Ind. Crop. Prod. 2013, 44, 391–395. [Google Scholar] [CrossRef]
- Pantoja-Pulido, K.D.; Rodríguez, J.; Isaza-Martínez, J.H.; Gutiérrez-Cabrera, M.; Colmenares-Dulcey, A.J.; Montoya-Lerma, J. Insecticidal and cholinesterase activity of dichloromethane extracts of Tithonia diversifolia on Atta cephalotes worker ants (Formicidae: Myrmicinae). Insects 2020, 11, 180. [Google Scholar] [CrossRef]
- Yu, Q.-Y.; Lu, C.; Li, W.-L.; Xiang, Z.-H.; Zhang, Z. Annotation and expression of carboxylesterases in the silkworm. BMC Genom. 2009, 10, 553. [Google Scholar] [CrossRef]
- Colovic, M.B.; Krstic, D.Z.; Lazarevic-Pasti, T.D.; Bondzic, A.M.; Vasic, V.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol. 2013, 11, 315–335. [Google Scholar] [CrossRef]
- Labbé, P.; Alout, H.; Djogbénou, L.; Pasteur, N.; Weill, M.G. Evolution of resistance to insecticide in disease vectors. In Genetics and Evolution of Infectious Diseases; Tibayrenc, M., Ed.; Elsevier: London, UK, 2011; pp. 363–409. [Google Scholar]
- Sidhu, G.K.; Singh, S.; Kumar, V.; Dhanjal, D.S.; Datta, S.; Singh, J. Toxicity, monitoring and biodegradation of organophosphate pesticides: A review. Crit. Rev. Environ. Sci. Technol. 2019, 49, 1135–1187. [Google Scholar] [CrossRef]
- De Siqueira, C.G.; Bacci, M., Jr.; Pagnocca, F.C.; Bueno, O.C.; Hebling, M.J. Metabolism of plant polysaccharides by Leucoagaricus gongylophorus, the symbiotic fungus of the leaf-cutting ant Atta sexdens L. Appl. Environ. Microbiol. 1998, 64, 4820–4822. [Google Scholar] [CrossRef]
- Silva, A.; Bacci, M.; Siqueira, C.G.; Bueno, O.C.; Correa, A.; Pagnocca, F.C.; Aparecida, M.J. Survival of Atta sexdens workers on different food sources. J. Insect Physiol. 2003, 49, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Valderrama-Eslava, E.I.; Montoya-Lerma, J.; Giraldo, C. Enforced herbivory on Canavalia ensiformis and Tithonia diversifolia and its effects on leaf-cutting ants, Atta cephalotes. J. Appl. Entomol. 2009, 133, 689–694. [Google Scholar] [CrossRef]
- Rodríguez, J.; Montoya-Lerma, J.; Calle, Z. Effect of Tithonia diversifolia mulch on Atta cephalotes (Hymenoptera: Formicidae) nests. J. Insect Sci. 2015, 15, 32. [Google Scholar] [CrossRef]
- Alfarisi, M.H.; Sarjan, M.; Fauzi, M.T.; Thei, R.S.P.; Haryanto, H. The use of botanical insecticide of paitan leave (Tithonia diversifolia) to control the aphids (Aphis gossypii) on potato plant (Solanum tuberosum L.). Int. J. AgroEduTech-Tourism 2024, 1, 1. [Google Scholar]
- Widyastuti, R.; Susanti, D.; Wijayanti, R. Toxicity and repellency of Tithonia (Tithonia diversifolia) leaf extract to whitefly (Aleurodicus dugesii) on Plectranthus scutellarioides. Bull. Res. Spice Med. Crop. 2018, 1, 1–8. [Google Scholar]
- Wuryantini, S.; Yudistira, R.A. The toxicity of the extract of tobacco leaf Nicotiana tabacum L, marigold leaf Tithonia diversifolia (HAMSLEY) and citrus japansche citroen peel Citrus limonia against citrus psyllid (Diaphorina citri Kuwayama), the vector of citrus HLB disease. IOP Conf. Ser. Earth Environ. Sci. 2020, 457, 012039. [Google Scholar] [CrossRef]
- Baideng, E.; Memah, V.; Pontororing, H.; Lengkey, H. The effect of Pangium sp. and Tithonia diversifolia leaves extract as vegetable pesticides to Crocidolomia Pavonana (Lepidoptera; Pyralidae) larva mortality. Cercet. Agron. Mold. 2021, 4, 462–472. [Google Scholar] [CrossRef]
- Martin, S.Y.; Annick, T.; Séraphin, D.Y.K.; Joachim, A.E. Evaluation insecticidal potential of methanolic extracts of Senna occidentalis Link (1829) and Tithonia diversifolia (Hemsl) A Gray (1883) on the termite Ancistrotermes. Eur. J. Biotechnol. Biosci. 2018, 6, 50–54. [Google Scholar]
- Njuguna, M.J.; Muriuki, M.; Karenga, S. Contact toxicity of essential oils from Tithonia diversifolia against Aphis gosypii, Thrips tabaci and Bemisia tabaci. Int. J. Adv. Res. 2022, 5, 10–20. [Google Scholar] [CrossRef]
- Ambrósio, S.R.; Oki, Y.; Heleno, V.C.G.; Chaves, J.S.; Nascimento, P.G.B.D.; Lichston, J.E.; Constantino, M.; Varanda, E.M.; Da Costa, F.B. Constituents of glandular trichomes of Tithonia diversifolia: Relationships to herbivory and antifeedant activity. Phytochemistry 2008, 69, 2052–2060. [Google Scholar] [CrossRef]
- Gallon, M.E.; Smilanich, A.M. Effects of host plants on development and immunity of a generalist insect herbivore. J. Chem. Ecol. 2023, 49, 142–154. [Google Scholar] [CrossRef]
- da Costa Inácio, G.; Alves, J.V.B.; Santos, M.F.C.; Vacari, A.M.; Figueiredo, G.P.; Bernardes, W.A.; Veneziani, R.C.S.; Ambrosio, S.R. Feeding deterrence towards Helicoverpa armigera by Tithonia diversifolia tagitinin C-enriched extract. Arab. J. Chem. 2020, 13, 5292–5298. [Google Scholar] [CrossRef]
- Dutta, P.; Bhattacharyya, P.R.; Rabha, L.C.; Bordoloi, D.N.; Barua, N.C.; Chowdhury, P.K.; Sharma, R.P.; Barua, J.N. Feeding deterrents for Philosamia ricini (Samia cynthia subsp. ricini) from Tithonia diversifolia. Phytoparasitica 1986, 14, 77–80. [Google Scholar] [CrossRef]
- Miranda, M.A.F.; Matos, A.P.; Volante, A.C.; Cunha, G.O.S.; Gualtieri, S.C.J. Insecticidal activity from leaves and sesquiterpene lactones of Tithonia diversifolia (Helms.) A. Gray (Asteraceae) on Spodoptera frugiperda (Lepidoptera: Noctuidae). S. Afr. J. Bot. 2022, 144, 377–379. [Google Scholar] [CrossRef]
- Gallo, M.B.C.; Rocha, W.C.; Da Cunha, U.S.; Diogo, F.A.; Da Silva, F.C.; Vieira, P.C.; Vendramim, J.D.; Fernandes, J.B.; Da Silva, M.F.G.F.; Batista-Pereira, L.G. Bioactivity of extracts and isolated compounds from Vitex polygama (Verbenaceae) and Siphoneugena densiflora (Myrtaceae) against Spodoptera frugiperda (Lepidoptera: Noctuidae). Pest Manag. Sci. Former. Pestic. Sci. 2006, 62, 1072–1081. [Google Scholar] [CrossRef]
- Raworth, D.A. Control of two-spotted spider mite by Phytoseiulus persimilis. J. Asia Pac. Entomol. 2001, 7, 157–163. [Google Scholar] [CrossRef]
- Parolin, P.; Schreiner, M.; Baldeermann, S. Metabolite profiling reveals a specific response in tomato to predaceous Chrysoperla carnea larvae and herbivore(s)- predator interactions with the generalist pests Tetranychus urticae and Myzus persicae. Front. Plant Sci. 2016, 7, 1256. [Google Scholar]
- Pavela, R.; Dall’Acqua, S.; Sut, S.; Baldan, V.; Kamte, S.L.N.; Nya, P.C.B.; Cappellacci, L.; Riccardo Petrelli, R.; Nicoletti, M.; Canale, A. Oviposition inhibitory activity of the Mexican sunflower Tithonia diversifolia (Asteraceae) polar extracts against the two-spotted spider mite Tetranychus urticae (Tetranychidae). Physiol. Mol. Plant Pathol. 2018, 101, 85–92. [Google Scholar] [CrossRef]
- Devi, T.B.; Raina, V.; Sahoo, D.; Rajashekar, Y. Chemical composition and fumigant toxicity of the essential oil from Tithonia diversifolia (Hemsl.) A. Grey against two major stored grain insect pests. J. Plant Dis. Prot. 2021, 128, 607–615. [Google Scholar] [CrossRef]
- Devi, T.B.; Raina, V.; Rajashekar, Y. A novel biofumigant from Tithonia diversifolia (Hemsl.) A. Gray for control of stored grain insect pests. Pest. Biochem. Physiol. 2022, 184, 105116. [Google Scholar] [CrossRef]
- Gitahi, S.M.; Ngugi, M.P.; Mburu, D.N.; Machocho, A.K. Contact toxicity effects of selected organic leaf extracts of Tithonia diversifolia (Hemsl.) A. Gray and Vernonia lasiopus (O. Hoffman) against Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). Int. J. Zool. 2021, 2021, 8814504. [Google Scholar] [CrossRef]
- Green, P.W.; Belmain, S.R.; Ndakidemi, P.A.; Farrell, I.W.; Stevenson, P.C. Insecticidal activity of Tithonia diversifolia and Vernonia amygdalina. Ind. Crop. Prod. 2017, 110, 15–21. [Google Scholar] [CrossRef]
- Akula, R.; Ravishankar, G.A. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal. Behav. 2011, 6, 1720–1731. [Google Scholar] [CrossRef]
- Suzuki, N.; Rivero, R.M.; Shulaev, V.; Blumwald, E.; Mittler, R. Abiotic and biotic stress combinations. New Phytol. 2014, 203, 32–43. [Google Scholar] [CrossRef]
- Pandey, P.; Irulappan, V.; Bagavathiannan, M.V.; Senthil-Kumar, M. Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front. Plant Sci. 2017, 8, 537. [Google Scholar] [CrossRef] [PubMed]
- Kato-Noguchi, H. The impact and invasive mechanisms of Pueraria montana var. lobata, one of the world’s worst alien species. Plants 2023, 12, 3066. [Google Scholar] [PubMed]
- Kato-Noguchi, H.; Kato, M. Invasive Characteristics and Impacts of Ambrosia trifida. Agronomy 2024, 14, 2868. [Google Scholar] [CrossRef]
- Ballada, K.A.; Baoanan, Z.G. Molluscicidal properties of wild sunflower (Tithonia diversifolia) leaf extract fractions against invasive golden apple snail (Pomacea canaliculata). Environ. Dev. Sustain. 2025, 27, 2361–2378. [Google Scholar] [CrossRef]
- IUCN, 100 of the World’s Worst Invasive Alien Species. Available online: https://portals.iucn.org/library/sites/library/files/documents/2000-126.pdf (accessed on 21 February 2025).
- Estebenet, A.L.; Martín, P.R. Pomacea canaliculata (Gastropoda: Ampullariidae): Life-history traits and their plasticity. Biocell 2002, 26, 83–89. [Google Scholar]
- Passoni, F.D.; Oliveira, R.B.; Chagas-Paula, D.A.; Gobbo-Neto, L.; Da Costa, F.B. Repeated-dose toxicological studies of Tithonia diversifolia (Hemsl.) A. gray and identification of the toxic compounds. J. Ethnopharmacol. 2013, 147, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Elufioye, T.O.; Alatise, O.I.; Fakoya, F.A.; Agbedahunsi, J.M.; Houghton, P.J. Toxicity studies of Tithonia diversifolia A. Gray (Asteraceae) in rats. J. Ethnopharmacol. 2009, 122, 410–415. [Google Scholar] [CrossRef]
- Onuoha, C.H.; Ala, A.A. Effects of aqueous leaf extracts of Tithonia diversifolia and Moringa oleifera on haematological, biochemical and histopathological parameters in albino rats. J. Med. Plants Res. 2020, 14, 331–342. [Google Scholar]
- Alagbe, J.O. Performance and blood profile of grass cutters (Thryonomys swinderianus) fed wild sunflower (Tithonia diversifolia Hamsl. A Gray) leaf meal. Sch. J. Agric. Sci. 2016, 6, 57–61. [Google Scholar]
- Ribeiro, R.S.; Terry, S.A.; Sacramento, J.P.; Silveira, S.R.; Bento, C.B.P.; da Silva, E.F.; Mantovani, K.C.; da Gama, M.A.S.; Pereira, L.G.R.; Tomich, T.T.; et al. Tithonia diversifolia as a spplementary fed for dairy cows. PLoS ONE 2016, 11, e0165751. [Google Scholar] [CrossRef]
- Ramírez-Rivera, U.; Sanginés-García, J.R.; Escobedo-Mex, J.G.; Cen-Chuc, F.; Rivera-Lorca, J.A.; Lara-Lara, P.E. Effect of diet inclusion of Tithonia diversifolia on feed intake, digestibility and nitrogen balance in tropical sheep. Agrofor. Syst. 2010, 80, 295–302. [Google Scholar] [CrossRef]
- Kruger, A.M.; Lima, P.D.M.T.; Ovani, V.; Pérez-Marquéz, S.; Louvandini, H.; Abdalla, A.L. Ruminant grazing lands in the tropics: Silvopastoral systems and Tithonia diversifolia as tools with potential to promote sustainability. Agronomy 2024, 14, 1386. [Google Scholar] [CrossRef]
- Buragohain, R. Growth performance, nutrient utilization, and feed efficiency in broilers fed Tithonia diversifolia leaf meal as substitute of conventional feed ingredients in Mizoram. Vet. World 2016, 9, 444–449. [Google Scholar] [CrossRef]
- Perry, R.N. Chemoreception in plant parasitic nematodes. Annu. Rev. Pytopathol. 1996, 34, 181–199. [Google Scholar] [CrossRef] [PubMed]
- Lambert, K.; Bekal, S. Introduction to Plant-Parasitic Nematodes. The Plant Health Instructor. Available online: https://www.apsnet.org/edcenter/disandpath/nematode/intro/Pages/IntroNematodes.aspx (accessed on 21 February 2025).
- den Akker, S.E. Plant–nematode interactions. Curr. Opin. Plant Biol. 2021, 62, 102035. [Google Scholar]
- Seid, A.; Fininsa, C.; Mekete, T.; Decraemer, W.; Wesemael, W.M. Tomato (Solanum lycopersicum) and root-knot nematodes (Meloidogyne spp.)-a century-old battle. Nematology 2015, 17, 995–1009. [Google Scholar] [CrossRef]
- Sikandar, A.; Zhang, M.Y.; Wang, Y.Y.; Zhu, X.F.; Liu, X.Y.; Fan, H.Y.; Xuan, Y.H.; Chen, L.J.; Duan, Y.X. Meloidogyne incognita (root-knot nematode) a risk to agriculture. Appl. Ecol. Environ. Res. 2020, 18, 1. [Google Scholar] [CrossRef]
- Jones, J.T.; Haegeman, A.; Danchin, E.G.; Gaur, H.S.; Helder, J.; Jones, M.G.; Kikuchi, T.; Mabzanilla-López, R.; Palomares-Rius, J.E.P.; Wesemael, W.M.L.; et al. Top 10 plant-parasitic nematodes in molecular plant pathology. Mol. Plant Pathol. 2013, 14, 946–961. [Google Scholar] [CrossRef]
- Pires, D.; Vicente, C.S.L.; Menéndez, E.; Faria, J.M.S.; Rusinque, L.; Camacho, M.J.; Inácio, M.L. The fight against plant-parasitic nematodes: Current status of bacterial and fungal biocontrol agents. Pathogens 2022, 11, 1178. [Google Scholar] [CrossRef]
- Macharia, R.M.; Murungi, L.K.; Nyambura, G.W.; Haukeland, S. Efficacy of Tagetes minuta and Tithonia diversifolia formulations against Meloidogyne incognita using a novel release application technique in tomato. Afr. J. Hort. Sci. 2022, 20, 73–88. [Google Scholar]
- Odeyemi, I.S.; Afolami, S.O.; Daramola, F.Y. Evaluation of Tithonia diversifolia and Chromolaena odorata residues as potential organic compost materials for the management of Meloidogyne incognita on cowpea (Vigna unguiculata L. WALP). J. Agric. Sci. Environ. 2014, 14, 73–81. [Google Scholar]
- Olabiyi, T.I.; Ogunniran, T.A.; Ojo, O.J.; Atungwu, J.J.; Abolusoro, S.A. Efficacy of wild sunflower compost on root lesion nematode, pest of maize. Indian J. Nemat. 2013, 43, 29–33. [Google Scholar]
- Nguyen, D.M.C.; Luong, T.H.; Nguyen, X.H.; Jung, W.J. Nematicidal and antioxidant activities of the methanolic extract from Tithonia diversifolia grown in Vietnam. Nematology 2023, 25, 617–628. [Google Scholar] [CrossRef]
- Odeyemi, I.S.; Adewale, K.A. Phythonematoxic properties and nematicidal potential of Tithonia diversifolia extract and residue on Meloidogyne incognita infecting yam (Dioscorea rotundata). Arch. Phytopathol. Plant Prot. 2011, 44, 1745–1753. [Google Scholar] [CrossRef]
- Amulu, L.U.; Oyedele, D.J.; Adekunle, K.O. Effects of Sunn hemp (Crotalaria juncea) and Mexican sunflower (Tithonia diversifolia) leaf extracts on the development of Meloidogyne incognita on African indigenous vegetables. Arch. Phytopathol. Plant Prot. 2021, 54, 1247–1260. [Google Scholar] [CrossRef]
- Amulu, L.U.; Oyedele, D.J.; Adekunle, K.O. Management of reniform nematode (Rotylenchulus spp.) on fluted pumpkin (Telfairia occidentalis) using leaf extract of Mexican sunflower (Tithonia diversifolia) under screenhouse conditions. Indian Phytopathol. 2023, 76, 165–170. [Google Scholar] [CrossRef]
- Elufisan, T.S.; Olaifa, J.T.; Atungwu, J.J.; Tijjani, I. Potency of Azadirachta indica and Tithonia diversifolia based bio-pesticide root dips in the management of root-knot nematode management infection in tomato (Solanum lycopersicum L.). Niger. J. Plant Prot. 2020, 34, 103–124. [Google Scholar]
- Kimenju, J.W.; Kagundu, A.M.; Nderitu, J.H.; Mambala, F.; Mutua, G.K.; Kariuki, G.M. Incorporation of green manure plants into bean cropping systems contribute to root-knot nematode suppression. Asian J. Plant Sci. 2008, 7, 404–408. [Google Scholar] [CrossRef]
- Gnonhouri, P.G.; Zézé, A.; Adiko, A.; Kobenan, K. Tithonia diversifolia crop rotation: An efficient cultural practice for control of burrowing (Radopholus similis) and root-lesion (Pratylenchus coffea) nematodes in banana orchards in Côte d’Ivoire. Int. J. Phytopathol. 2020, 8, 101–109. [Google Scholar] [CrossRef]
- Lan, M.; Gao, X.; Duan, X.; Li, H.; Yu, H.; Li, J.; Zhao, Y.; Hao, X.; Zhao, Y.; Ding, X.; et al. Nematicidal activity of tirotundin and parthenolide isolated from Tithonia diversifolia and Chrysanthemum parthenium. J. Environ. Sci. Health Part B 2022, 57, 54–61. [Google Scholar] [CrossRef]
- Sakthivel, S.; Mohideen, H.S.; Raman, C.; Mohamad, S.B. Potential acetylcholinesterase inhibitor acting on the pesticide resistant and susceptible cotton pests. ACS Omega 2022, 7, 20515–20527. [Google Scholar] [CrossRef] [PubMed]
- Abramovitch, R.B.; Martin, G.B. Strategies used by bacterial pathogens to suppress plant Defenses. Curr. Opi. Plant Biol. 2004, 7, 356–364. [Google Scholar] [CrossRef]
- Rojas, C.M.; Senthil-Kumar, M.; Tzin, V.; Mysore, K.S. Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. Front. Plant Sci. 2014, 5, 17. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Kurniadie, D. The invasive mechanisms of the noxious alien plant species Bidens pilosa. Plants 2024, 13, 356. [Google Scholar] [CrossRef] [PubMed]
- Kato-Noguchi, H.; Kato, M. Invasive characteristics of Robinia pseudoacacia and its impacts on the species diversity. Diversity 2024, 16, 773. [Google Scholar] [CrossRef]
- Chege, E.W.; Kimaru, S.K. Effects of Tithonia diversifolia and Allium sativum extracts on Colletotrichum gloeosporioides, the causal agent of anthracnose in avocado. All Life 2021, 14, 209–214. [Google Scholar] [CrossRef]
- Enikuomehin, O.A. Cercospora leaf spot disease management in sesame (Sesamum indicum L.) with plant extracts. J. Trop. Agric. 2005, 43, 19–23. [Google Scholar]
- Jimoh, M.; Enikuomehin, O.A.; Afolabi, C.G.; Olowe, V.I.O. Improving the efficacy of Tithonia diversifolia extract in management of foliar diseases of sesame intercropped with maize under tropical conditions. Agric. Trop. Subtrop. 2021, 54, 165–173. [Google Scholar] [CrossRef]
- Ewané, C.A.; Tatsegouock, R.N.; Meshuneke, A.; Niemenak, N. Field efficacy of a biopesticide based on Tithonia diversifolia against Black Sigatoka disease of plantain (Musa spp., AAB). Agric. Sci. 2020, 11, 730. [Google Scholar]
- Chuzho, K.; Bhem, W.L. Potency of Ethanolic Leaf Extracts of Tithonia diversifolia (Hemsl.) A. Gray Against the Plant Pathogen Alternaria brassicicola (Schwein) Wiltshire. 2024. Available online: https://assets-eu.researchsquare.com/files/rs-4885388/v1/e525909b-5dde-4f50-b628-169a49c20a76.pdf?c=1733121564 (accessed on 21 February 2025).
- Dongmo, A.N.; Nguefack, J.; Dongmo, J.B.L.; Fouelefack, F.R.; Azah, R.U.; Nkengfack, E.A.; Stefani, E. Chemical characterization of an aqueous extract and the essential oil of Tithonia diversifolia and their biocontrol activity against seed-borne pathogens of rice. J. Plant Dis. Prot. 2021, 128, 703–713. [Google Scholar] [CrossRef]
- Awere, C.A.; Githae, E.W.; Gichumbi, J.M. Antimicrobial activity of Tithonia diversifolia and Kigelia africana against Fusarium oxysporum in tomato. J. Environ. Sustain. Adv. Res. 2021, 7, 89–98. [Google Scholar]
- Ma, L.J.; Geiser, D.M.; Proctor, R.H.; Rooney, A.P.; O’Donnell, K.; Trail, F.; Gardiner, D.M.; Manners, J.M.; Kazan, K. Fusarium pathogenomics. Annu. Rev. Microbiol. 2013, 67, 399–416. [Google Scholar] [CrossRef]
- Knogge, W. Fungal infection of plants. Plant Cell 1996, 8, 1711. [Google Scholar] [CrossRef]
- Ghabrial, S.A.; Suzuki, N. Viruses of plant pathogenic fungi. Annu. Rev. Phytopath. 2009, 47, 353–384. [Google Scholar] [CrossRef] [PubMed]
- Opondo, F.A.; K’Owino, I.O.; Chepkwony, S.C.; Kosgei, V.J.; Pili, N.N. In vivo antibacterial activity of extracts of Tithonia diversifolia against Ralstonia solanacearum in tomato. Sci. Afr. 2023, 22, e01962. [Google Scholar] [CrossRef]
- Zhao, L.H.; Dong, J.; Hu, Z.; Li, S.; Su, X.; Zhang, J.; Yin, Y.; Xu, T.; Zhan, Z.; Chen, H. Anti-TMV activity and functional mechanisms of two sesquiterpenoids isolated from Tithonia diversifolia. Pestic. Biochem. Physiol. 2017, 140, 24–29. [Google Scholar] [CrossRef]
- Rybicki, E.P. A top ten list for economically important plant viruses. Arch. Virol. 2015, 160, 17–20. [Google Scholar] [CrossRef]
- Zhang, Z.; Zheng, K.; Zhao, L.; Su, X.; Zheng, X.; Wang, T. Occurrence, distribution, evolutionary relationships, epidemiology, and management of orthotospoviruses in China. Front. Microbiol. 2021, 12, 686025. [Google Scholar] [CrossRef]
- Li, J.; Ai, X.; Zhang, S.; Zheng, X.; Zhang, L.; Zhang, J.; Zhao, L. Tagitinin A regulates an F-box gene, CPR30, to resist tomato spotted wilt orthotospovirus (TSWV) infection in Nicotiana benthamiana. PLoS ONE 2024, 19, e0315294. [Google Scholar] [CrossRef]
- Shoji, T.; Ogawa, T.; Hashimoto, T. Jasmonate-induced nicotine formation in tobacco is mediated by tobacco COI1 and JAZ genes. Plant Cell Physiol. 2008, 49, 1003–1012. [Google Scholar] [CrossRef]
- Ruan, J.; Zhou, Y.; Zhou, M.; Yan, J.; Khurshid, M.; Weng, W.; Cheng, J.; Zhang, K. Jasmonic acid signaling pathway in plants. Int. J. Mol. Sci. 2019, 20, 2479. [Google Scholar] [CrossRef] [PubMed]
- Callaway, R.M.; Ridenour, W.M. Novel weapons: Invasive success and the evolution of increased competitive ability. Front. Ecol. Environ. 2004, 2, 419–426. [Google Scholar] [CrossRef]
- Cappuccino, N.; Arnason, J.T. Novel chemistry of invasive exotic plants. Biol. Lett. 2006, 2, 189–193. [Google Scholar] [CrossRef]
- Kato-Noguchi, H. Allelopathy and allelochemicals of Imperata cylindrica as an invasive plant species. Plants 2022, 11, 2551. [Google Scholar] [CrossRef]
- Macías, F.A.; Molinillo, J.M.; Varela, R.M.; Galindo, J.C. Allelopathy-a natural alternative for weed control. Pest Manag. Sci. Former. Pestic. Sci. 2007, 63, 327–348. [Google Scholar] [CrossRef]
- Kato-Noguchi, H. Phytotoxic substances involved in teak allelopathy and agroforestry. Appl. Sci. 2021, 11, 3314. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Saito, Y.; Suenaga, K. Involvement of allelopathy in the establishment of pure colony of Dicranopteris linearis. Plant Ecol. 2012, 213, 1937–1944. [Google Scholar] [CrossRef]
- Kato-Noguchi, H. Bioactive compounds involved in the formation of the sparse understory vegetation in pine forests. Curr. Org. Chem. 2021, 25, 1731–1738. [Google Scholar] [CrossRef]
- Rice, E.L. Allelopathy, 2nd ed.; Academic Press: Orlando, FL, USA, 1984; pp. 1–422. [Google Scholar]
- Belz, R.G. Allelopathy in crop/weed interactions-an update. Pest Manag. Sci. Former. Pestic. Sci. 2007, 63, 308–326. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Saito, Y.; Ohno, O.; Suenaga, K. A phytotoxic active substance in the decomposing litter of the fern Gleichenia japonica. J. Plant Physiol. 2015, 176, 55–60. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Kimura, F.; Ohno, O.; Suenaga, K. Involvement of allelopathy in inhibition of understory growth in red pine forests. J. Plant Physiol. 2017, 218, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Kato-Noguchi, H.; Nakamura, K.; Ohno, O.; Suenaga, K.; Okuda, N. Asparagus decline: Autotoxicity and autotoxic compounds in asparagus rhizomes. Plant Physiol. 2017, 213, 23–29. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Kurniadie, D. Allelopathy and allelochemicals of Leucaena leucocephala as an invasive plant species. Plants 2022, 11, 1672. [Google Scholar] [CrossRef] [PubMed]
- Kato-Noguchi, H.; Kurniadie, D. Allelopathy of Lantana camara as an invasive plant. Plants 2021, 10, 1028. [Google Scholar] [CrossRef]
- Ajayi, O.A.; Akinola, M.O.; Rasheed, O.A. Allelopathic potentials of aqueous extracts of Tithonia Diversifolia (Hemsley) A. Gray in biological control of weeds in cowpea cropping system. Int. J. Agric. Econ. Dev. 2017, 5, 11–28. [Google Scholar]
- Alves, L.L.; Oliveira, P.V.A.; França, S.C.; Alves, P.L.C.; Pereira, P.S. Allelopathic activity of aqueous extracts of medicinal plants on the germination of Lactuca sativa L. and Bidens pilosa L. Rev. Bras. Plantas Med. 2011, 13, 328–336. [Google Scholar] [CrossRef]
- Ademiluyi, B.O. Investigation on the allelopathic effect of Tithonia diversifolia (Hemsl) (Mexican Sunflower) on Tridax procumbens (L). Caribb. J. Sci. Technol. 2013, 1, 224–227. [Google Scholar]
- Oke, S.O.; Awowoyin, A.V.; Osein, S.R.; Adediwura, E.L. Effects of aqueous shoot extract of Tithonia diversifolia on the growth of seedlings of Monodora tenuifolia (Benth.), Dialium guineense (Willd.) and Hildegardia barteri (Mast.) Kosterm. Not. Sci. Biol. 2011, 3, 64–70. [Google Scholar] [CrossRef]
- Otusanya, O.O.; Ilori, O.J.; Adelusi, A.A. Allelopathic effects of Tithonia diversifolia (Hemsl) A. Gray on germination and growth of Amaranthus cruentus. Res. J. Environ. Sci. 2007, 1, 285–293. [Google Scholar]
- Suzuki, M.; Iwasaki, A.; Suenaga, K.; Kato-Noguchi, H. Phytotoxic property of the invasive plant Tithonia diversifolia and a phytotoxic substance. Acta Biol. Hung. 2017, 68, 187–195. [Google Scholar] [CrossRef]
- Otusanya, O.O.; Ilori, O.J. Phytochemical screening and the phytotoxic effects of aqueous extracts of Tithonia diversifolia (Hemsl) A. Gray. Int. J. Biol. 2012, 4, 97–101. [Google Scholar] [CrossRef]
- Otusanya, O.O.; Sokan-Adeaga, A.A.; Ilori, O.J. Allelopathic effect of the root exudates of Tithonia diversifolia on the germination, growth and chlorophyll accumulation of Amaranthus dubius L. and Solanum melongena L. Res. J. Bot. 2014, 9, 13–23. [Google Scholar] [CrossRef]
- Adesina, A.O. Does soil under natural Tithonia diversifolia vegetation inhibit seed germination of weed species? Am. J. Plant Sci. 2013, 4, 2165–2173. [Google Scholar] [CrossRef]
- Tongma, S.; Kobayashi, K.; Usui, K. Allelopathic activity of Mexican sunflower (Tithonia diversifolia (Hemsl.) A. Gray) in soil under natural field conditions and different moisture conditions. Weed Biol. Manag. 2001, 1, 115–119. [Google Scholar] [CrossRef]
- Tongma, S.; Kobayashi, K.; Usui, K. Allelopathic activity of Mexican sunflower (Tithonia diversifolia) in soil. Weed Sci. 1998, 46, 432–437. [Google Scholar] [CrossRef]
- Baruah, N.C.; Sarma, J.C.; Barua, N.C.; Sarma, S.; Sharma, R.P. Germination and growth inhibitory sesquiterpene lactones and a flavone from Tithonia diversifolia. Phytochemistry 1994, 36, 29–36. [Google Scholar] [CrossRef]
- Miranda, M.A.F.M.; Varela, R.M.; Torres, A.; Molinillo, J.M.G.; Gualtieri, S.C.J.; Macías, F.A. Phytotoxins from Tithonia diversifolia. J. Nat. Prod. 2015, 78, 1083–1092. [Google Scholar] [CrossRef]
- Kuo, Y.H.; Lin, B.Y. A new dinorxanthane and chromone from the root of Tithonia diversifolia. Chem. Pharm. Bull. 1999, 47, 428–429. [Google Scholar] [CrossRef]
- Moronkola, D.O.; Ogunwande, I.A.; Walker, T.M.; Setzer, W.N.; Oyewole, I.O. Identification of the main volatile compounds in the leaf and flower of Tithonia diversifolia (Hemsl) Gray. J. Nat. Med. 2007, 61, 63–66. [Google Scholar] [CrossRef]
- Chagas-Paula, D.A.; Oliveira, R.B.; Rocha, B.A.; Da Costa, F.B. Ethnobotany, chemistry, and biological activities of the genus Tithonia (Asteraceae). Chem. Biodivers. 2012, 9, 210–235. [Google Scholar] [CrossRef]
- Ajao, A.A.; Moteetee, A.N. Tithonia diversifolia (Hemsl) A. Gray. (Asteraceae: Heliantheae), an invasive plant of significant ethnopharmacological importance: A review. S. Afr. J. Bot. 2017, 113, 396–403. [Google Scholar] [CrossRef]
- Tagne, A.M.; Marino, F.; Cosentino, M. Tithonia diversifolia (Hemsl.) A. Gray as a medicinal plant: A comprehensive review of its ethnopharmacology, phytochemistry, pharmacotoxicology and clinical relevance. J. Ethnopharmacol. 2018, 220, 94–116. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.Y.; Liao, M.H.; Tsai, Y.N.; Chiu, K.H.; Wen, H.C. Identification and anti-human glioblastoma activity of tagitinin C from Tithonia diversifolia methanolic extract. J. Agric. Food Chem. 2011, 59, 2347–2355. [Google Scholar] [CrossRef] [PubMed]
- de Toledo, J.S.; Ambrósio, S.R.; Borges, C.H.; Manfrim, V.; Cerri, D.G.; Cruz, A.K.; Da Costa, F.B. In vitro leishmanicidal activities of sesquiterpene lactones from Tithonia diversifolia against Leishmania braziliensis promastigotes and amastigotes. Molecules 2014, 19, 6070–6079. [Google Scholar] [CrossRef]
- Omokhua, A.G.; Abdalla, M.A.; Van Staden, J.; McGaw, L.J. A comprehensive study of the potential phytomedicinal use and toxicity of invasive Tithonia species in South Africa. BMC Complement. Altern. Med. 2018, 18, 272. [Google Scholar] [CrossRef]
- Sampaio, B.L.; Edrada-Ebel, R.; Da Costa, F.B. Effect of the environment on the secondary metabolic profile of Tithonia diversifolia: A model for environmental metabolomics of plants. Sci. Rep. 2016, 6, 29265. [Google Scholar] [CrossRef]
- Sampaio, B.L.; Costa, F.B.D. Influence of abiotic environmental factors on the main constituents of the volatile oils of Tithonia diversifolia. Rev. Bras. Farmacogn. 2018, 28, 135–144. [Google Scholar] [CrossRef]
Phytochemical Class | Defense Function Against | Reference | |||||
---|---|---|---|---|---|---|---|
Compound | Insect | Mammal | Nematode | Fungus, Virus | Competing Plant | ||
Fatty acid | Methyl linoleate | ✓ | [73] | ||||
Hydroxycinnamic acid | Dihydro-p-coumaric acid | ✓ | [72] | ||||
Monoterpene | α-Pinene | ✓ | ✓ | [71,119] | |||
Bicyclo[3.1.0]hexane,4-methylene-1-(1-methylethyl) | ✓ | [71] | |||||
Camphor | ✓ | [119] | |||||
Eucalyptol | ✓ | [119] | |||||
α-Terpineol | ✓ | ✓ | [119] | ||||
Sesquiterpene | Tagitinin A | ✓ | ✓ | ✓ | [65,66,70,74,128,150,156,157] | ||
Tagitinin C | ✓ | ✓ | ✓ | ✓ | [62,63,64,65,66,70,83,125,150,157] | ||
Tirotundin | ✓ | [108] | |||||
1β-Methoxydiversifolin | ✓ | [66,157] | |||||
1β-Methoxydiversifolin-3-O-methyl ether | ✓ | [125] | |||||
Diterpene | Phytol | ✓ | [73] | ||||
Phytol acetate | ✓ | [73] | |||||
Flavonoid | Hispidulin | ✓ | ✓ | [65,156] | |||
Polyphenol | 5-O-(E)-Caffeoylquinic acid | ✓ | [83] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kato-Noguchi, H.; Kato, M. Defensive Compounds Involved in the Invasiveness of Tithonia diversifolia. Molecules 2025, 30, 1946. https://doi.org/10.3390/molecules30091946
Kato-Noguchi H, Kato M. Defensive Compounds Involved in the Invasiveness of Tithonia diversifolia. Molecules. 2025; 30(9):1946. https://doi.org/10.3390/molecules30091946
Chicago/Turabian StyleKato-Noguchi, Hisashi, and Midori Kato. 2025. "Defensive Compounds Involved in the Invasiveness of Tithonia diversifolia" Molecules 30, no. 9: 1946. https://doi.org/10.3390/molecules30091946
APA StyleKato-Noguchi, H., & Kato, M. (2025). Defensive Compounds Involved in the Invasiveness of Tithonia diversifolia. Molecules, 30(9), 1946. https://doi.org/10.3390/molecules30091946