Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (62)

Search Parameters:
Keywords = insect–fungus interactions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4791 KiB  
Article
Diversity and Metabolic Potential of Gut Bacteria in Dorcus hopei (Coleoptera: Lucanidae): Influence of Fungus and Rotten Wood Diets
by Pan Wang, Xiaoyan Bin, Xingjia Xiang and Xia Wan
Microorganisms 2025, 13(7), 1692; https://doi.org/10.3390/microorganisms13071692 - 18 Jul 2025
Viewed by 364
Abstract
Stag beetles are saproxylic insects, essential for decomposing rotten wood and maintaining the carbon cycle. Their gut bacteria contribute significantly to nutrient digestion and energy acquisition, making them crucial for understanding host-microbe interactions. Despite the fungivorous behavior of stag beetle larvae, research on [...] Read more.
Stag beetles are saproxylic insects, essential for decomposing rotten wood and maintaining the carbon cycle. Their gut bacteria contribute significantly to nutrient digestion and energy acquisition, making them crucial for understanding host-microbe interactions. Despite the fungivorous behavior of stag beetle larvae, research on how diet influences gut bacterial diversity remains scarce. Therefore, this study was conducted to compare the diversity and metabolic functions of gut bacteria in Dorcus hopei larvae fed on fungus (Pleurotus geesteranus) and rotten wood diets using high-throughput sequencing technology. Significant differences (p < 0.05) were observed in gut bacterial community composition between two diets, highlighting diet as a key factor shaping bacterial diversity. Additionally, gut bacterial communities varied across larval developmental stages (p < 0.05), indicating the influence of host age. Dominant bacterial phyla included Firmicutes, Bacteroidetes, and Proteobacteria. Bacteroidetes were more abundant in rotten-wood-fed larvae (7.61%) than fungus-fed larvae (0.15%), while Proteobacteria were more abundant in fungus-fed larvae. Functional analysis revealed that rotten-wood-fed larvae were primarily related to carbohydrate and amino acid metabolism, whereas fungus-fed larvae exhibited enhanced membrane transport function. This study enhances the understanding of gut bacterial diversity and functions in stag beetles, providing a theoretical foundation for their conservation and sustainable utilization. Full article
(This article belongs to the Section Gut Microbiota)
Show Figures

Figure 1

16 pages, 2103 KiB  
Article
Morinda citrifolia Essential Oil in the Control of Banana Anthracnose: Impacts on Phytotoxicity, Preventive and Curative Effects and Fruit Quality
by Maysa C. Santos, Luis O. Viteri, Paulo R. Fernandes, Rosilene C. Carvalho, Manuel A. Gonzalez, Osmany M. Herrera, Pedro R. Osório, Dalmarcia S. C. Mourão, Sabrina H. Araujo, Cristiano B. Moraes, Marcos V. Giongo, Wellington S. Moura, Marcos P. Camara, Alex Sander R. Cangussu, Raimundo W. S. Aguiar, Eugênio E. Oliveira and Gil R. Santos
Microbiol. Res. 2025, 16(7), 149; https://doi.org/10.3390/microbiolres16070149 - 3 Jul 2025
Viewed by 404
Abstract
Bananas, one of the most widely consumed tropical fruits in the world, are susceptible to attack by the anthracnose fungus Colletotrichum musae during the post-harvest period. Currently, fungus control is generally based on the use of chemical products, often applied a few days [...] Read more.
Bananas, one of the most widely consumed tropical fruits in the world, are susceptible to attack by the anthracnose fungus Colletotrichum musae during the post-harvest period. Currently, fungus control is generally based on the use of chemical products, often applied a few days before harvest, which could lead to a risk of residues in the fruit, thus creating a high demand for fresh and organic fruits. Therefore, essential oils present an emerging alternative for the treatment of anthracnose. Here, we evaluated the chemical composition and potential of Morinda citrifolia essential oil as a preventive and curative measure to control C. musae in bananas, also considering the quality of the fruit. In addition, computational docking analysis was conducted to predict potential molecular interactions between octanoic and butanoic acids and the enzyme Tyrosine tRNA, as a potential target for the M. citrifolia essential oil fungicide actions. We also evaluated the essential oil’s safety for beneficial organisms such as the fungus Trichoderma asperellum and the ladybugs Eriopis connexa Germar and Coleomegilla maculata DeGeer. Initially, in vitro growth inhibition tests were performed with doses of 10.0, 30.0, and 50.0 µL/mL of M. citrifolia essential oil, as well as an assessment of the phytotoxic effects on the fruit. Subsequently, using non-phytotoxic doses, we evaluated the effect of the essential oil as a preventive and curative measure against anthracnose and its impact on fruit quality. Our results showed that octanoic, butanoic, and hexanoic acids were the major compounds in M. citrifolia essential oil, inhibiting the growth of C. musae by interacting with the Tyrosine tRNA enzyme of C. musae. The non-phytotoxic dose on the fruit was 10 µL/mL of noni essential oil, which reduced C. musae growth by 30% when applied preventively and by approximately 25% when applied as a curative measure. This significantly reduced the Area Under the Disease Progress Curve without affecting the fruit weight, although there was a slight reduction in °Brix. The growth of non-target organisms, such as T. asperellum and the insect predators Co. maculata and E. connexa, was not affected. Collectively, our findings suggest that M. citrifolia essential oil is a promising alternative for the prevention and control of anthracnose in banana fruit caused by C. musae, without adversely affecting its organoleptic characteristics or non-target organisms. Full article
Show Figures

Figure 1

21 pages, 4714 KiB  
Article
Morphotype-Specific Antifungal Defense in Cacopsylla chinensis Arises from Metabolic and Immune Network Restructuring
by Jiayue Ji, Xin Gao, Zengli Hu, Ruiyan Ma and Longlong Zhao
Insects 2025, 16(5), 541; https://doi.org/10.3390/insects16050541 - 20 May 2025
Viewed by 810
Abstract
Pear psylla (Cacopsylla chinensis), a major pear tree pest widely distributed in China, is increasingly affecting the productivity of orchards. This species exhibits seasonal polyphenism with two distinct forms, namely, a summer form and a winter form. Through topically applying Beauveria [...] Read more.
Pear psylla (Cacopsylla chinensis), a major pear tree pest widely distributed in China, is increasingly affecting the productivity of orchards. This species exhibits seasonal polyphenism with two distinct forms, namely, a summer form and a winter form. Through topically applying Beauveria bassiana conidial suspensions to the abdominal cuticle of C. chinensis, we demonstrated that the entomopathogenic fungus B. bassiana exhibits significant yet phenotypically divergent virulence against these two forms. Using PacBio SMRT sequencing and Illumina RNA-seq, we analyzed transcriptomic changes post-infection, revealing form-specific immune responses, with 18,232 and 5027 differentially expressed genes identified in summer- and winter-form pear psylla, respectively, and a total of 3715 DEGs shared between the two seasonal phenotypes. In summer-form individuals, B. bassiana infection disrupted oxidative phosphorylation and downregulated immune recognition genes, cellular immune-related genes, and signaling genes, along with the upregulation of the immune inhibitor serpin, indicating immunosuppression. Conversely, in winter-form individuals, immune-related genes and glycolytic rate-limiting enzymes were upregulated after infection, suggesting that the winter-form immune system normally responds to B. bassiana infection and supports efficient defense through metabolic reprogramming to fuel energy-demanding defenses. These findings advance our understanding of C. chinensis/B. bassiana interactions, providing a basis for elucidating immune regulation in seasonally polymorphic insects. The results also inform strategies to optimize B. bassiana-based biocontrol, contributing to sustainable pear psylla management. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Graphical abstract

20 pages, 7153 KiB  
Article
Integrative Transcriptome and Metabolome Analysis Reveals Candidate Genes Related to Terpenoid Synthesis in Amylostereum areolatum (Russulales: Amylostereaceae)
by Lixia Wang, Ningning Fu, Ming Wang, Zhongyi Zhan, Youqing Luo, Jianrong Wu and Lili Ren
J. Fungi 2025, 11(5), 383; https://doi.org/10.3390/jof11050383 - 16 May 2025
Viewed by 452
Abstract
Amylostereum areolatum (Chaillet ex Fr.) Boidin (Russulales: Amylostereaceae) is a symbiotic fungus of Sirex noctilio Fabricius that has ecological significance. Terpenoids are key mediators in fungal–insect interactions, yet the biosynthetic mechanisms of terpenoids in this species remain unclear. Under nutritional conditions [...] Read more.
Amylostereum areolatum (Chaillet ex Fr.) Boidin (Russulales: Amylostereaceae) is a symbiotic fungus of Sirex noctilio Fabricius that has ecological significance. Terpenoids are key mediators in fungal–insect interactions, yet the biosynthetic mechanisms of terpenoids in this species remain unclear. Under nutritional conditions that mimic natural growth, A. areolatum was sampled during the lag phase (day 7), exponential phase (day 14), and stationary phase (day 21). Metabolome (solid-phase microextraction (SPME) combined with gas chromatography–mass spectrometry (GC-MS) and liquid chromatography–mass spectrometry (LC-MS)) and transcriptome (Illumina NovaSeq) profiles were integrated to investigate terpenoid–gene correlations. This analysis identified 103 terpenoids in A. areolatum, substantially expanding the known repertoire of terpenoid compounds in this species. Total terpenoid abundance progressively increased across three developmental stages, with triterpenoids and sesquiterpenoids demonstrating the highest diversity and abundance levels. Transcriptomic profiling (61.66 Gb clean data) revealed 26 terpenoid biosynthesis-associated genes, establishing a comprehensive transcriptional framework for fungal terpenoid metabolism. Among 11 differentially expressed genes (DEGs) (|log2Fold Change| ≥ 1, adjusted p < 0.05), HMGS1, HMGR2, and AaTPS1-3 emerged as key regulators potentially governing terpenoid biosynthesis. These findings provide foundational insights into the molecular mechanisms underlying terpenoid production in A. areolatum and related basidiomycetes. Full article
(This article belongs to the Special Issue Fungal Metabolomics and Genomics)
Show Figures

Figure 1

17 pages, 3351 KiB  
Article
Fungal Warriors: Effects of Beauveria bassiana and Purpureocillium lilacinum on CCYV-Carrying Whiteflies
by Dan Zhai, Hang Lu, Suyao Liu, Jialei Liu, Wanyu Zhang, Jingjing Wu, Jingjing Li, Rune Bai, Fengming Yan and Chenchen Zhao
Biomolecules 2025, 15(4), 593; https://doi.org/10.3390/biom15040593 - 16 Apr 2025
Cited by 1 | Viewed by 680
Abstract
Bemisia tabaci is a major agricultural pest that affects both greenhouse and field crops by feeding on plant sap, which impairs plant growth, and by secreting honeydew, promotes sooty mold growth that further reduces photosynthesis. Additionally, these insects are vectors for viruses such [...] Read more.
Bemisia tabaci is a major agricultural pest that affects both greenhouse and field crops by feeding on plant sap, which impairs plant growth, and by secreting honeydew, promotes sooty mold growth that further reduces photosynthesis. Additionally, these insects are vectors for viruses such as the cucurbit chlorotic yellows virus (CCYV), which causes significant damage to cucurbit crops. Traditional chemical pesticide treatments have limitations, including the development of resistance, harm to non-target organisms, and environmental contamination. Traditional chemical pesticides have limitations when it comes to controlling plants infested by CCYV and whitefly. However, the underlying reasons for these limitations remain unclear, as does the impact of entomopathogenic fungi on whitefly responses. This study explores the potential of using biological control agents, specifically Beauveria bassiana and Purpureocillium lilacinum, to manage whitefly populations and control CCYV transmission. Laboratory experiments were conducted to evaluate the pathogenicity of these fungi on non/viruliferous whitefly. The results indicated that both fungi effectively reduced whitefly populations, with B. bassiana showing particularly strong adverse effects. Whiteflies infected with CCYV exhibited a higher LC50 to B. bassiana and P. lilacinum. Furthermore, bio-pesticides significantly altered the bacterial microbiome dynamics of the whitefly. Interestingly, CCYV increased the susceptibility of whiteflies to entomopathogenic fungus. The findings suggest that these biocontrol agents offer a sustainable alternative to chemical pesticides. Our study unraveled a new horizon for the multiple interaction theories among bio-pesticides–insects–symbionts–viruses. Full article
(This article belongs to the Special Issue Microbial Biocontrol and Plant-Microbe Interactions)
Show Figures

Figure 1

17 pages, 2365 KiB  
Article
The Association Between Basidiomycete Fungi and Mealybugs Pseudococcidae Affects Coffee Plants
by Luz Andrea Carmona-Valencia, Lucio Navarro-Escalante, Pablo Benavides and Zulma Nancy Gil Palacio
Agronomy 2025, 15(3), 551; https://doi.org/10.3390/agronomy15030551 - 24 Feb 2025
Viewed by 611
Abstract
Some Pseudococcidae species interact with Coffea arabica’s roots and are associated with basidiomycete fungi. The fungal mycelium envelops the roots, which hinders their water and nutrient absorption. Combined with the feeding activity of the insects, this results in chlorosis, defoliation, and even [...] Read more.
Some Pseudococcidae species interact with Coffea arabica’s roots and are associated with basidiomycete fungi. The fungal mycelium envelops the roots, which hinders their water and nutrient absorption. Combined with the feeding activity of the insects, this results in chlorosis, defoliation, and even plant death. Despite the significance of these interactions, they remain under-studied. To investigate the relationship between sporocarps found at the base of coffee trees, the cysts covering their roots, and the mealybug insects within them, samples of these three organisms—sporocarps, cysts, and mealybugs—were collected from 27 coffee plants across three farms in the departments of Norte de Santander and Quindío, Colombia. Fungi and cysts were identified by sequencing a nuclear gene region of the 28S large ribosomal subunit (28S rDNA) using the primers LSU200-F and LSU481-R. Fungal identification was further confirmed through classical taxonomy. Mealybugs were identified by sequencing a region of the mitochondrial gene Cytochrome C oxidase subunit I (COI) with CIF-CIR primers, corroborated through classical taxonomy. This study identified four fungal species associated with four species of Pseudococcidae. The fungus Phlebopus beniensis was associated with the mealybugs Pseudococcus elisae, Dysmicoccus neobrevipes, D. brevipes, and Pseudococcus nr. sociabilis. Phlebopus portentosus was linked to D. neobrevipes, while Xerophorus olivascens and Boletinellus rompelii were associated with other Pseudococcidae species. Additionally, the fungus Pseudolaccaria pachyphylla was found in coffee plants harboring mealybugs. These findings confirm the existence of specific associations between fungal species and mealybug insects that affect coffee plants. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

13 pages, 3950 KiB  
Article
MaAzaR Influences Virulence of Metarhizium acridum against Locusta migratoria manilensis by Affecting Cuticle Penetration
by Geng Hong, Siqing Wang, Yuxian Xia and Guoxiong Peng
J. Fungi 2024, 10(8), 564; https://doi.org/10.3390/jof10080564 - 9 Aug 2024
Cited by 1 | Viewed by 1329
Abstract
The entomopathogenic fungus (EPF) Metarhizium acridum is a typical filamentous fungus and has been used to control migratory locusts (Locusta migratoria manilensis). This study examines the impact of the Zn(II)2Cys6 transcription factor, MaAzaR, in the virulence of M. acridum. Disruption [...] Read more.
The entomopathogenic fungus (EPF) Metarhizium acridum is a typical filamentous fungus and has been used to control migratory locusts (Locusta migratoria manilensis). This study examines the impact of the Zn(II)2Cys6 transcription factor, MaAzaR, in the virulence of M. acridum. Disruption of MaAzaRMaAzaR) diminished the fungus’s ability to penetrate the insect cuticle, thereby decreasing its virulence. The median lethal time (LT50) for the ΔMaAzaR strain increased by approximately 1.5 d compared to the wild-type (WT) strain when topically inoculated, simulating natural infection conditions. ΔMaAzaR compromises the formation, turgor pressure, and secretion of extracellular hydrolytic enzymes in appressoria. However, the growth ability of ΔMaAzaR within the hemolymph is not impaired; in fact, it grows better than the WT strain. Moreover, RNA-sequencing (RNA-Seq) analysis of ΔMaAzaR and WT strains grown for 20 h on locust hindwings revealed 87 upregulated and 37 downregulated differentially expressed genes (DEGs) in the mutant strain. Pathogen–host interaction database (PHI) analysis showed that about 40% of the total DEGs were associated with virulence, suggesting that MaAzaR is a crucial transcription factor that directly regulates the expression of downstream genes. This study identifies a new transcription factor involved in EPF cuticle penetration, providing theoretical support and genetic resources for the developing highly virulent strains. Full article
Show Figures

Figure 1

21 pages, 345 KiB  
Review
Endophytic Trichoderma: Potential and Prospects for Plant Health Management
by Dimitrios Natsiopoulos, Eleni Topalidou, Spyridon Mantzoukas and Panagiotis A. Eliopoulos
Pathogens 2024, 13(7), 548; https://doi.org/10.3390/pathogens13070548 - 28 Jun 2024
Cited by 4 | Viewed by 2748
Abstract
The fungus Trichoderma is widely regarded as the most common fungal biocontrol agent for plant health management. More than 25 Trichoderma species have been extensively studied and have demonstrated significant potential in inhibiting not only phytopathogen growth but also insect pest infestations. In [...] Read more.
The fungus Trichoderma is widely regarded as the most common fungal biocontrol agent for plant health management. More than 25 Trichoderma species have been extensively studied and have demonstrated significant potential in inhibiting not only phytopathogen growth but also insect pest infestations. In addition to their use as biopesticides, there is increasing evidence that several Trichoderma species can function as fungal endophytes by colonizing the tissues of specific plants. This colonization enhances a plant’s growth and improves its tolerance to abiotic and biotic stresses. In recent decades, there has been a proliferation of literature on the role of Trichoderma endophytes in crop protection. Although the mechanisms underlying plant–fungal endophyte interactions are not yet fully understood, several studies have suggested their potential application in agriculture, particularly in the mitigation of plant pests and diseases. This review focuses on the diversity of Trichoderma endophytic strains and their potential use in controlling specific diseases and pests of crop plants. Trichoderma endophytes are considered a potential solution to reduce production costs and environmental impact by decreasing reliance on agrochemicals. Full article
(This article belongs to the Special Issue Fungal Pathogens of Crops)
16 pages, 3002 KiB  
Article
Volatile Semiochemicals Emitted by Beauveria bassiana Modulate Larval Feeding Behavior and Food Choice Preference in Spodoptera frugiperda (Lepidoptera: Noctuidae)
by Arturo Ramírez-Ordorica, Sandra Goretti Adame-Garnica, Hilda Eréndira Ramos-Aboites, Robert Winkler and Lourdes Macías-Rodríguez
J. Fungi 2024, 10(6), 438; https://doi.org/10.3390/jof10060438 - 20 Jun 2024
Cited by 2 | Viewed by 2336
Abstract
Beauveria bassiana is an entomopathogenic fungus that parasitizes and kills insects. The role of volatile organic compounds (VOCs) emitted by B. bassiana acting as semiochemicals during its interaction with lepidopterans is poorly explored. Here, we studied the effect of VOCs from B. bassiana [...] Read more.
Beauveria bassiana is an entomopathogenic fungus that parasitizes and kills insects. The role of volatile organic compounds (VOCs) emitted by B. bassiana acting as semiochemicals during its interaction with lepidopterans is poorly explored. Here, we studied the effect of VOCs from B. bassiana and 3-methylbutanol (as a single compound) on the feeding behavior of L2 larvae of Spodoptera frugiperda in sorghum plants. Additionally, we assessed whether fungal VOCs induce chemical modifications in the plants that affect larval food preferences. Metabolomic profiling of plant tissues was performed by mass spectrometry and bioassays in a dual-choice olfactometer. The results showed that the larval feeding behavior was affected by the B. bassiana strain AI2, showing that the insect response is strain-specific. Furthermore, 80 µg of 3-methylbutanol affected the number of bites. The larval feeding choice was dependent on the background context. Fragment spectra and a matching precursor ion mass of 165.882 m/z enabled the putative identification of 4-coumaric acid in sorghum leaves exposed to fungal VOCs, which may be associated with larval deterrent responses. These results provide valuable insights into the bipartite interaction of B. bassiana with lepidopterans through VOC emission, with the plant as a mediator of the interaction. Full article
(This article belongs to the Collection Entomopathogenic and Nematophagous Fungi)
Show Figures

Figure 1

20 pages, 3403 KiB  
Article
Altered Gene Expression of the Parasitoid Pteromalus puparum after Entomopathogenic Fungus Beauveria bassiana Infection
by Lei Yang, Jinting Li, Lei Yang, Xiaofu Wang, Shan Xiao, Shijiao Xiong, Xiaoli Xu, Junfeng Xu and Gongyin Ye
Int. J. Mol. Sci. 2023, 24(23), 17030; https://doi.org/10.3390/ijms242317030 - 1 Dec 2023
Cited by 3 | Viewed by 1725
Abstract
Both parasitoids and entomopathogenic fungi are becoming increasingly crucial for managing pest populations. Therefore, it is essential to carefully consider the potential impact of entomopathogenic fungi on parasitoids due to their widespread pathogenicity and the possible overlap between these biological control tools during [...] Read more.
Both parasitoids and entomopathogenic fungi are becoming increasingly crucial for managing pest populations. Therefore, it is essential to carefully consider the potential impact of entomopathogenic fungi on parasitoids due to their widespread pathogenicity and the possible overlap between these biological control tools during field applications. However, despite their importance, little research has been conducted on the pathogenicity of entomopathogenic fungi on parasitoids. In our study, we aimed to address this knowledge gap by investigating the interaction between the well-known entomopathogenic fungus Beauveria bassiana, and the pupal endoparasitoid Pteromalus puparum. Our results demonstrated that the presence of B. bassiana significantly affected the survival rates of P. puparum under laboratory conditions. The pathogenicity of B. bassiana on P. puparum was dose- and time-dependent, as determined via through surface spraying or oral ingestion. RNA-Seq analysis revealed that the immune system plays a primary and crucial role in defending against B. bassiana. Notably, several upregulated differentially expressed genes (DEGs) involved in the Toll and IMD pathways, which are key components of the insect immune system, and antimicrobial peptides were rapidly induced during both the early and late stages of infection. In contrast, a majority of genes involved in the activation of prophenoloxidase and antioxidant mechanisms were downregulated. Additionally, we identified downregulated DEGs related to cuticle formation, olfactory mechanisms, and detoxification processes. In summary, our study provides valuable insights into the interactions between P. puparum and B. bassiana, shedding light on the changes in gene expression during fungal infection. These findings have significant implications for the development of more effective and sustainable strategies for pest management in agriculture. Full article
(This article belongs to the Special Issue Molecular Biology of Host and Pathogen Interactions)
Show Figures

Figure 1

29 pages, 2703 KiB  
Article
Linking Anthropogenic Landscape Perturbation to Herbivory and Pathogen Leaf Damage in Tropical Tree Communities
by José Luis Pablo-Rodríguez, Ángel E. Bravo-Monzón, Cristina Montiel-González, Julieta Benítez-Malvido, Sandra Álvarez-Betancourt, Oriana Ramírez-Sánchez, Ken Oyama, María Leticia Arena-Ortiz, Mariana Yólotl Alvarez-Añorve and Luis Daniel Avila-Cabadilla
Plants 2023, 12(22), 3839; https://doi.org/10.3390/plants12223839 - 13 Nov 2023
Cited by 5 | Viewed by 2146
Abstract
Anthropogenic disturbance of tropical humid forests leads to habitat loss, biodiversity decline, landscape fragmentation, altered nutrient cycling and carbon sequestration, soil erosion, pest/pathogen outbreaks, among others. Nevertheless, the impact of these alterations in multitrophic interactions, including host–pathogen and vector–pathogen dynamics, is still not [...] Read more.
Anthropogenic disturbance of tropical humid forests leads to habitat loss, biodiversity decline, landscape fragmentation, altered nutrient cycling and carbon sequestration, soil erosion, pest/pathogen outbreaks, among others. Nevertheless, the impact of these alterations in multitrophic interactions, including host–pathogen and vector–pathogen dynamics, is still not well understood in wild plants. This study aimed to provide insights into the main drivers for the incidence of herbivory and plant pathogen damage, specifically, into how vegetation traits at the local and landscape scale modulate such interactions. For this purpose, in the tropical forest of Calakmul (Campeche, Mexico), we characterised the foliar damage caused by herbivores and pathogens in woody vegetation of 13 sampling sites representing a gradient of forest disturbance and fragmentation in an anthropogenic landscape from well preserved to highly disturbed and fragmented areas. We also evaluated how the incidence of such damage was modulated by the vegetation and landscape attributes. We found that the incidence of damage caused by larger, mobile, generalist herbivores, was more sensitive to changes in landscape configuration, while the incidence of damage caused by small and specialised herbivores with low dispersal capacity was more influenced by vegetation and landscape composition. In relation to pathogen symptoms, the herbivore-induced foliar damage seems to be the main factor related to their incidence, indicating the enormous importance of herbivorous insects in the modulation of disease dynamics across tropical vegetation, as they could be acting as vectors and/or facilitating the entry of pathogens by breaking the foliar tissue and the plant defensive barriers. The incidence of pathogen damage also responded to vegetation structure and landscape configuration; the incidence of anthracnose, black spot, and chlorosis, for example, were favoured in sites surrounded by smaller patches and a higher edge density, as well as those with a greater aggregation of semi-evergreen forest patches. Fungal pathogens were shown to be an important cause of foliar damage for many woody species. Our results indicate that an increasing transformation and fragmentation of the tropical forest of southern Mexico could reduce the degree of specialisation in plant–herbivore interactions and enhance the proliferation of generalist herbivores (chewers and scrapers) and of mobile leaf suckers, and consequently, the proliferation of some symptoms associated with fungal pathogens such as fungus black spots and anthracnose. The symptoms associated with viral and bacterial diseases and to nutrient deficiency, such as chlorosis, could also increase in the vegetation in fragmented landscapes with important consequences in the health and productivity of wild and cultivated plant species. This is a pioneering study evaluating the effect of disturbances on multitrophic interactions, offering key insights on the main drivers of the changes in herbivory interactions and incidence of plant pathogens in tropical forests. Full article
Show Figures

Figure 1

15 pages, 2887 KiB  
Article
Reconstruction of Gut Bacteria in Spodoptera frugiperda Infected by Beauveria bassiana Affects the Survival of Host Pest
by Yuejin Peng, Shaohai Wen, Guang Wang, Xu Zhang, Teng Di, Guangzu Du, Bin Chen and Limin Zhang
J. Fungi 2023, 9(9), 906; https://doi.org/10.3390/jof9090906 - 6 Sep 2023
Cited by 4 | Viewed by 2328
Abstract
Spodoptera frugiperda (Lepidoptera: Noctuidae) is a migratory agricultural pest that is devastating on a global scale. Beauveria bassiana is a filamentous entomopathogenic fungus that has a strong pathogenic effect on Lepidoptera pests but little is known about the microbial community in the host [...] Read more.
Spodoptera frugiperda (Lepidoptera: Noctuidae) is a migratory agricultural pest that is devastating on a global scale. Beauveria bassiana is a filamentous entomopathogenic fungus that has a strong pathogenic effect on Lepidoptera pests but little is known about the microbial community in the host gut and the dominant populations in fungus-infected insects. B. bassiana AJS91881 was isolated and identified from the infected larvae of Spodoptera litura. The virulence of AJS91881 to the eggs, larvae, pupae and adults of S. frugiperda was measured. Moreover, the gut microbial community diversity of healthy and fungus-infected insects was analyzed. Our results showed that after treatment with B. bassiana AJS91881, the egg hatching rate, larval survival rate and adult lifespan of the insects were significantly reduced, and the pupae rigor rate was significantly increased compared to that of the control group. Additionally, the gut microbial community was reconstructed after B. bassiana infection. At the phylum and genus level, the relative abundance of the Proteobacteria and Serratia increased significantly in the B. bassiana treatment group. The KEGG function prediction results showed that fungal infection affected insect gut metabolism, environmental information processing, genetic information processing, organism systems and cellular processes. Fungal infection was closely related to the metabolism of various substances in the insect gut. Serratia marcescens was the bacterium with the highest relative abundance after infection by B. bassiana; intestinal bacteria S. marcescens inhibited the infection of insect fungi B. bassiana against the S. frugiperda. The presence of gut bacteria also significantly reduced the virulence of the fungi against the insects when compared to the group with the larvae fed antibiotics that were infected with fungal suspension (Germfree, GF) and healthy larvae that were infected with fungal suspension prepared with an antibiotic solution (+antibiotic). In conclusion, the reconstruction of the insect intestinal bacterial community is an indispensable link for understanding the pathogenicity of B. bassiana against S. frugiperda. Most importantly, in the later stage of fungal infection, the increased abundance of S. marcescens in the insect intestine inhibited the virulence of B. bassiana to some extent. The findings aid in understanding changes in the gut microbiota during the early stages of entomopathogenic fungal infection of insects and the involvement of insect gut microbes in host defense mediated by pathogenic fungal infection. This study is also conducive to understanding the interaction between entomopathogenic fungi, hosts and gut microbes, and provides a new idea for the joint use of entomopathogenic fungi and gut bacteria to control pests. Full article
Show Figures

Figure 1

14 pages, 314 KiB  
Review
Symbiotic Bacteria Regulating Insect–Insect/Fungus/Virus Mutualism
by Siqi Chen, Aiming Zhou and Yijuan Xu
Insects 2023, 14(9), 741; https://doi.org/10.3390/insects14090741 - 3 Sep 2023
Cited by 4 | Viewed by 5059
Abstract
Bacteria associated with insects potentially provide many beneficial services and have been well documented. Mutualism that relates to insects is widespread in ecosystems. However, the interrelation between “symbiotic bacteria” and “mutualism” has rarely been studied. We introduce three systems of mutualism that relate [...] Read more.
Bacteria associated with insects potentially provide many beneficial services and have been well documented. Mutualism that relates to insects is widespread in ecosystems. However, the interrelation between “symbiotic bacteria” and “mutualism” has rarely been studied. We introduce three systems of mutualism that relate to insects (ants and honeydew-producing Hemiptera, fungus-growing insects and fungi, and plant persistent viruses and vector insects) and review the species of symbiotic bacteria in host insects, as well as their functions in host insects and the mechanisms underlying mutualism regulation. A deeper understanding of the molecular mechanisms and role of symbiotic bacteria, based on metagenomics, transcriptomics, proteomics, metabolomics, and microbiology, will be required for describing the entire interaction network. Full article
(This article belongs to the Section Insect Behavior and Pathology)
19 pages, 3852 KiB  
Article
Transcriptomic Analysis Reveals the Impact of the Biopesticide Metarhizium anisopliae on the Immune System of Major Workers in Solenopsis invicta
by Hongxin Wu, Yating Xu, Junaid Zafar, Surajit De Mandal, Liangjie Lin, Yongyue Lu, Fengliang Jin, Rui Pang and Xiaoxia Xu
Insects 2023, 14(8), 701; https://doi.org/10.3390/insects14080701 - 11 Aug 2023
Cited by 7 | Viewed by 2817
Abstract
The red imported fire ant (Solenopsis invicta Buren, 1972) is a globally significant invasive species, causing extensive agricultural, human health, and biodiversity damage amounting to billions of dollars worldwide. The pathogenic fungus Metarhizium anisopliae (Metchnikoff) Sorokin (1883), widely distributed in natural environments, [...] Read more.
The red imported fire ant (Solenopsis invicta Buren, 1972) is a globally significant invasive species, causing extensive agricultural, human health, and biodiversity damage amounting to billions of dollars worldwide. The pathogenic fungus Metarhizium anisopliae (Metchnikoff) Sorokin (1883), widely distributed in natural environments, has been used to control S. invicta populations. However, the interaction between M. anisopliae and the immune system of the social insect S. invicta remains poorly understood. In this study, we employed RNA-seq to investigate the effects of M. anisopliae on the immune systems of S. invicta at different time points (0, 6, 24, and 48 h). A total of 1313 differentially expressed genes (DEGs) were identified and classified into 12 expression profiles using short time-series expression miner (STEM) for analysis. Weighted gene co-expression network analysis (WGCNA) was employed to partition all genes into 21 gene modules. Upon analyzing the statistically significant WGCNA model and conducting Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis on the modules, we identified key immune pathways, including the Toll and Imd signaling pathways, lysosomes, autophagy, and phagosomes, which may collectively contribute to S. invicta defense against M. anisopliae infection. Subsequently, we conducted a comprehensive scan of all differentially expressed genes and identified 33 immune-related genes, encompassing various aspects such as recognition, signal transduction, and effector gene expression. Furthermore, by integrating the significant gene modules derived from the WGCNA analysis, we constructed illustrative pathway diagrams depicting the Toll and Imd signaling pathways. Overall, our research findings demonstrated that M. anisopliae suppressed the immune response of S. invicta during the early stages while stimulating its immune response at later stages, making it a potential biopesticide for controlling S. invicta populations. These discoveries lay the foundation for further understanding the immune mechanisms of S. invicta and the molecular mechanisms underlying its response to M. anisopliae. Full article
(This article belongs to the Special Issue Biology, Chemical Ecology and Control of Ants)
Show Figures

Figure 1

17 pages, 4584 KiB  
Article
Adaptive Reproductive Strategies of an Ectoparasitoid Sclerodermus guani under the Stress of Its Entomopathogenic Fungus Beauveria bassiana
by Yun Wei, Li Li, Shumei Pan, Zhudong Liu, Jianting Fan and Ming Tang
Insects 2023, 14(4), 320; https://doi.org/10.3390/insects14040320 - 27 Mar 2023
Cited by 5 | Viewed by 2503
Abstract
Complex interspecific relationships between parasites and their insect hosts involve multiple factors and are affected by their ecological and evolutionary context. A parasitoid Sclerodermus guani (Hymenoptera: Bethylidae) and an entomopathogenic fungus Beauveria bassiana (Hypocreales: Cordycipitaceae) shared the same host in nature, Monochamus alternatus [...] Read more.
Complex interspecific relationships between parasites and their insect hosts involve multiple factors and are affected by their ecological and evolutionary context. A parasitoid Sclerodermus guani (Hymenoptera: Bethylidae) and an entomopathogenic fungus Beauveria bassiana (Hypocreales: Cordycipitaceae) shared the same host in nature, Monochamus alternatus (Coleoptera: Cerambycidae). They often encountered the semi-enclosed microhabitat of the host larvae or pupae. We tested the survival and reproduction of the parasitoid’s parent and its offspring fitness under different concentrations of B. bassiana suspension. The results show that S. guani parent females carrying higher concentrations of the pathogen shorten the pre-reproductive time and regulate their own fertility and their offspring’s survival and development. This minimal model of the interspecific interactions contains three dimensionless parameters, vulnerability (θ), dilution ratio (δ), and PR, which were used to evaluate the mortality effect of the parasitoid S. guani on its host M. alternatus under the stress of the entomopathogenic fungus B. bassiana. We compared the infection and lethal effect of the fungus B. bassiana with different concentrations to the parasitoid S. guani and the host larvae M. alternatus. At higher concentrations of the pathogen, the parasitoid parent females shorten the pre-reproductive time and regulate their own fertility and their offspring’s survival and development. At moderate concentrations of the pathogen, however, the ability of the parasitoid to exploit the host is more flexible and efficient, possibly reflecting the potential interspecific interactions between the two parasites which were able to coexist and communicate with their hosts in ecological contexts (with a high overlap in time and space) and cause interspecific competition and intraguild predation. Full article
(This article belongs to the Topic Host–Parasite Interactions)
Show Figures

Figure 1

Back to TopTop