Endophytic Trichoderma: Potential and Prospects for Plant Health Management
Abstract
:1. Fungal Endophytes
2. Endophytic Trichoderma
2.1. Endophytic Trichoderma Diversity
Trichoderma Species | Host Plant | Plant Part a | Reference |
---|---|---|---|
T. acreanum | Hevea spp. | * | [21] |
T. afroharzianum | Pandanus sp. | R | [25] |
Triticum aestivum | R | [26,27] | |
T. ararianum | Hevea spp. | * | [21] |
T. asperelloides | Adinandra sp. | R | [25] |
Bambusa sp. | |||
Cymbopogon citratus | |||
Dimocarpus fumatus | |||
Durio sp. | |||
Eucalyptus pellita | |||
Homalomena sp. | |||
Ixora coccinea | |||
Koompassia excelsa | |||
Mimosa pudica | |||
Paspalum sp. | |||
Piper nigrum | |||
Psidium guajava | |||
Saccharum officinarum | |||
Shorea sp. | |||
Turnera subulata | |||
Veitchia merrillii | |||
T. asperellum | Alstonia sp. | R | [25] |
Andira inermis | |||
Bambusa sp. | |||
Cyrtostachys renda | |||
Elaeis guineensis | |||
Eusideroxylon zwageri | |||
Helianthus sp. | |||
Hymenocallis littoralis | |||
Melastoma malabathricum | |||
Turnera subulata | |||
Saccharum spp. | R, L | [28] | |
Theobroma cacao | F, W | [29] | |
T. atroviride | Cupressus sempervirens | T | [30] |
Cupressus arizonica | L | ||
Juniperus excelsa | L | ||
Hevea spp. | * | [21] | |
Coffea sp. | L | [5] | |
Terminalia catappa | B | [31] | |
Ananas comosus var. bracteatus | S | [32] | |
Astronium fraxinifolium | Sp | ||
T. botryosum | Coffea arabica | L, F, S | [5] |
Coffea canephora | S | ||
T. brasiliensis | Hevea spp. | * | [21] |
T. breve | Coffea canephora | S | [5] |
Coffea arabica | F | ||
T. brevicompactum | Allium sativum | * | [33] |
T. caeruloviride | Coffea arabica | F | [5] |
T. caribbaeum | Theobroma gileri | Tr | [34] |
T. erinaceum | Hevea spp. | * | [21] |
T. guizhouense | Vatica micrantha | R | [25] |
Coffea sp. | S | [5] | |
Triticum aestivum | R | [27] | |
T. hamatum | Coffea arabica | S, F | [5] |
Theobroma gileri | F | [35] | |
T. harzianum | Acacia crassicarpa | R | [25] |
Acacia mangium | |||
Acranthera sp. | |||
Adinandra sp. | |||
Alstonia sp. | |||
Bambusa sp. | |||
Campnosperma sp. | |||
Casuarina sp. | |||
Dryobalanops beccarii | |||
Durio griffithii | |||
Elateriospermum tapos | |||
Eucalyptus pellita | |||
Eurycoma longifolia | |||
Excoecaria agallocha | |||
Ficus sp. | |||
Ilex sp. | |||
Musa sp. | |||
Neolamarckia cadamba | |||
Palaquium sp. | |||
Shorea sp. | |||
Sindora sp. | |||
Tristaniopsis whiteana | |||
Xanthophyllum sp. | |||
Triticum aestivum | R | [26] | |
Ananas comosus var. bracteatus | S | [32] | |
Astronium fraxinifolium | Sp | ||
Bowdichia virgilioides | Sp | ||
Caesalpinia pyramidalis | Sp | ||
Glycine max | S | [36] | |
T. heveae | Hevea spp. | * | [21] |
T. konigiopsis | Combretum laxum | L | [37,38] |
Myrcia tomentosa | |||
Hevea spp. | * | [21] | |
Coffea canephora | S, L | [5] | |
Ananas comosus var. bracteatus | S | [32] | |
Astronium fraxinifolium | Sp | ||
Bowdichia virgilioides | Sp | ||
Caesalpinia pyramidalis | Sp | ||
T. koningii | Cypressus sempervirens | T | [30] |
T. lentiforme | Hevea spp. | * | [21] |
T. lentissimum | Coffea arabica | S | [5] |
T. longibrachiatum | Combretum glaucocarpum | L | [37,38] |
Posidonia oceanica | R | [39] | |
Saccharum spp. | R | [28] | |
Ananas comosus var. bracteatus | S | [32] | |
Astronium fraxinifolium | Sp | [32] | |
Bowdichia virgilioides | Sp | [32] | |
Caesalpinia pyramidalis | Sp | [32] | |
T. orientale | Cenostigma macrophyllum | L | [37,38] |
T. ovalisporum | Hevea spp. | * | [21] |
Banisteriopsis caapi | S | [40] | |
T. parareesei | Coffea arabica | S | [5] |
T. pseudopyramidale | Coffea arabica | S, L | [5] |
T. reesei | Alstonia sp. | R | [25] |
Amorphophallus sp. | |||
T. simmonsii | Triticum aestivum | R | [26] |
T. sinuosum | Ananas comosus var. bracteatus | S | [32] |
Astronium fraxinifolium | Sp | [32] | |
T. sparsum | Hevea spp. | * | [21] |
T. spirale | Hevea spp. | * | [21] |
Coffea canephora | S | [5] | |
T. strigosum | Tristaniopsis sp. | R | [25] |
T. theobromicola | Coffea canephora | S | [5] |
Theobroma cacao | Tr | [41] | |
Cola praecuta | Tr | [42] | |
T. virens | Acacia mangium | R | [25] |
Baccaurea motleyana | |||
Bambusa sp. | |||
Calamus sp. | |||
Casuarina equisetifolia | |||
Cleistanthus sp. | |||
Cratoxylum sp. | |||
Dipterocarpus sp. | |||
Elaeis guineensis | |||
Eusideroxylon zwageri | |||
Ficus variegata | |||
Garcinia mangostana | |||
Ixora coccinea | |||
Koompassia excelsa | |||
Lansium parasiticum | |||
Macaranga gigantea | |||
Melastoma sp. | |||
Metroxylon sagu | |||
Nauclea sp. | |||
Neolamarckia cadamba | |||
Pandanus amaryllifolius | |||
Hevea spp. | * | [21] | |
Coffea brevipes | S | [5] | |
Caesalpinia pyramidalis | Sp | [32] | |
Τ. viride | Spilanthes paniculata | R | [43] |
Trichoderma sp. | Bauhinia cheilantha | L | [37,38] |
Cordia toqueve | |||
Diptychandra aurantiaca | |||
Mimosa tenuiflora | |||
Pityrocarpa moniliformis | |||
Calophyllum sp. | R | [25] | |
Duabanga moluccana | |||
Durio sp. | |||
Koompassia malaccensis | |||
Musa campestris | |||
Shorea sp. |
2.2. Pest Control
2.3. Disease Management
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Terhonen, E.; Blumenstein, K.; Kovalchuk, A.; Asiegbu, F.O. Forest tree microbiomes and associated fungal endophytes: Functional roles and impact on Forest Health. Forests 2019, 10, 42. [Google Scholar] [CrossRef]
- Chauhan, N.M.; Gutama, A.D.; Aysa, A. Endophytic fungal diversity isolated from different agro-ecosystem of Enset (ensete v entericosum) in Gedeo Zone, SNNPRS, Ethiopia. BMC Microbiol. 2019, 19, 172. [Google Scholar] [CrossRef] [PubMed]
- Khiralla, A.; Spina, R.; Yagi, S.; Mohamed, I.; Laurain-Mattar, D. Endophytic Fungi: Occurrence, Classification, Function and Natural Products. In Symbiotic Fungi Principles and Practice; Varma, A., Kharkwal, C.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–38. [Google Scholar]
- Redman, R.S.; Dunigan, D.D.; Rodriguez, R.J. Fungal symbiosis from mutualism to parasitism: Who controls the outcome, host or invader? New Phytol. 2001, 151, 705–716. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, R.J.; White, J.F., Jr.; Arnold, A.E.; Redman, R.S. Fungal endophytes: Diversity and functional roles. New Phytol. 2009, 182, 314–330. [Google Scholar] [CrossRef] [PubMed]
- Omomowo, O.I.; Babalola, O.O. Bacterial and fungal endophytes: Tiny Giants with immense beneficial potential for plant growth and sustainable agricultural productivity. Microorganisms 2019, 7, 481. [Google Scholar] [CrossRef] [PubMed]
- Andrade-Linares, D.R.; Franken, P. Fungal Endophytes in Plant Roots: Taxonomy, Colonization Patterns, and Functions. In Symbiotic Endophytes; Aroca, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 311–334. [Google Scholar]
- Arnold, A.E. Understanding the diversity of foliar endophytic fungi: Progress, challenges, and Frontiers. Fungal Biol. Rev. 2007, 21, 51–66. [Google Scholar] [CrossRef]
- Xiang, S.; Liang, D.G. Endophytic fungal diversity: Review of traditional and molecular techniques. Mycology 2012, 3, 65–76. [Google Scholar]
- Rashmi, M. A worldwide list of endophytic fungi with notes on ecology and Diversity. Mycosphere 2019, 10, 798–1079. [Google Scholar] [CrossRef]
- Kamat, S.; Kumari, M.; Taritla, S.; Jayabaskaran, C. Endophytic fungi of marine alga from Konkan coast, India—A rich source of bioactive material. Front. Mar. Sci. 2020, 7, 31. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, J.; Yang, L.; Zhang, L.; Jiang, D.; Chen, W.; Li, G. Diversity and biocontrol potential of endophytic fungi in Brassica napus. Biol. Control 2014, 72, 98–108. [Google Scholar] [CrossRef]
- Arora, P.; Wani, Z.A.; Ahmad, T.; Sultan, P.; Gupta, S.; Riyaz-Ul-Hassan, S. Community structure, spatial distribution, diversity and functional characterization of culturable endophytic fungi associated with Glycyrrhiza glabra L. Fungal Biol. 2019, 123, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Agbessenou, A.; Akutse, K.S.; Yusuf, A.A.; Khamis, F.M. The endophyte Trichoderma asperellum M2RT4 induces the systemic release of methyl salicylate and (z)-jasmone in tomato plant affecting host location and herbivory of Tuta absoluta. Front. Plant Sci. 2022, 13, 860309. [Google Scholar] [CrossRef] [PubMed]
- Agbessenou, A.; Akutse, K.S.; Yusuf, A.A.; Ekesi, S.; Subramanian, S.; Khamis, F.M. Endophytic fungi protect tomato and nightshade plants against Tuta absoluta (Lepidoptera: Gelechiidae) through a hidden friendship and cryptic battle. Sci. Rep. 2020, 10, 22195. [Google Scholar] [CrossRef] [PubMed]
- Contreras-Cornejo, H.A.; del-Val, E.; Macías-Rodríguez, L.; Alarcón, A.; González-Esquivel, C.E.; Larsen, J. Trichoderma atroviride, a maize root associated fungus, increases the parasitism rate of the fall armyworm Spodoptera frugiperda by its natural enemy Campoletis sonorensis. Soil Biol. Biochem. 2018, 122, 196–202. [Google Scholar] [CrossRef]
- Farhat, H.; Urooj, F.; Sohail, N.; Ansari, M.; Ehteshamul-Haque, S. Evaluation of nematicidal potential of endophytic fungi associated with healthy plants and GC-MS profiling of metabolites of endophytic Fusarium solani. S. Afr. J. Bot. 2022, 146, 146–161. [Google Scholar] [CrossRef]
- Verma, H.; Kumar, D.; Kumar, V.; Kumari, M.; Singh, S.K.; Sharma, V.K.; Droby, S.; Santoyo, G.; White, J.F.; Kumar, A. The potential application of endophytes in management of stress from drought and salinity in crop plants. Microorganisms 2021, 9, 1729. [Google Scholar] [CrossRef]
- Yao, X.; Guo, H.; Zhang, K.; Zhao, M.; Ruan, J.; Chen, J. Trichoderma and its role in biological control of plant fungal and nematode disease. Front. Microbiol. 2023, 14, 1160551. [Google Scholar] [CrossRef]
- Bailey, A.B.; Melnick, L.R. The endophytic Trichoderma. In Trichoderma Biology and Applications; Mukherjee, K.P., Horwitz, B.A., Singh, S.U., Mukherjee, M., Schmoll, M., Eds.; CABI: Wallingford, UK, 2013; pp. 152–172. [Google Scholar]
- Nascimento Brito, V.; Lana Alves, J.; Sírio Araújo, K.; de Souza Leite, T.; Borges de Queiroz, C.; Liparini Pereira, O.; de Queiroz, M.V. Endophytic Trichoderma species from rubber trees native to the Brazilian Amazon, including four new species. Front. Microbiol. 2023, 14, 1095199. [Google Scholar] [CrossRef]
- Harman, E.G.; Shoresh, M. The mechanisms and applications of symbiotic opportunistic plant symbionts. In Novel Biotechnologies for Biocontrol Agent Enhancement and Management; Vurro, M., Gressel, J., Eds.; Springer: Dodrecht, The Netherlands, 2007; pp. 131–156. [Google Scholar]
- Hu, J.; Zhou, Y.; Chen, K.; Li, J.; Wei, Y.; Wang, Y.; Wu, Y.; Ryder, M.H.; Yang, H.; Denton, M.D. Large-scale Trichoderma diversity was associated with ecosystem, climate and geographic location. Environ Microbiol. 2020, 22, 1011–1024. [Google Scholar] [CrossRef]
- del Carmen, H.; Rodríguez, M.; Evans, H.C.; de Abreu, L.M.; de Macedo, D.M.; Ndacnou, M.K.; Bekele, K.B.; Barreto, R.W. New species and records of Trichoderma isolated as mycoparasites and endophytes from cultivated and wild coffee in Africa. Sci. Rep. 2021, 11, 5671. [Google Scholar] [CrossRef]
- Cummings, N.J.; Ambrose, A.; Braithwaite, M.; Bissett, J.; Roslan, H.A.; Abdullah, J.; Stewart, A.; Agbayani, F.V.; Steyaert, J.; Hill, R.A. Diversity of root-endophytic Trichoderma from Malaysian Borneo. Mycol. Prog. 2016, 15, 50. [Google Scholar] [CrossRef]
- Pedrero-Méndez, A.; Insuasti, H.C.; Neagu, T.; Illescas, M.; Rubio, M.B.; Monte, E.; Hermosa, R. Why is the correct selection of trichoderma strains important? the case of wheat endophytic strains of T. Harzianum and T. simmonsii. J. Fungi 2021, 7, 1087. [Google Scholar] [CrossRef] [PubMed]
- Matar, N.; Macadré, C.; Ammar, G.A.; Peres, A.; Collet, B.; Boustany, N.E.; Rajjou, L.; As-Sadi, F.; Dufresne, M.; Ratet, P. Identification of beneficial Lebanese Trichoderma spp. wheat endophytes. Front. Plant Sci. 2022, 13, 1017890. [Google Scholar] [CrossRef] [PubMed]
- Joshi, D.; Gupta, J.; Mishra, A.; Upadhyay, M.; Holkar, S.K.; Singh, P. Distribution, composition and bioactivity of endophytic Trichoderma spp. associated with sugarcane. Proc. Natl. Acad. Sci. India B Biol. Sci. 2018, 89, 1189–1200. [Google Scholar] [CrossRef]
- Rosmana, A.; Samuels, G.J.; Ismaiel, A.; Ibrahim, E.S.; Chaverri, P.; Herawati, Y.; Asman, A. Trichoderma asperellum: A dominant endophyte species in cacao grown in Sulawesi with potential for controlling vascular streak dieback disease. Trop. Plant Pathol. 2015, 40, 19–25. [Google Scholar] [CrossRef]
- Hosseyni-Moghaddam, M.S.; Soltani, J. Bioactivity of endophytic Trichoderma fungal species from the plant family Cupressaceae. Ann. Microbiol. 2013, 64, 753–761. [Google Scholar] [CrossRef]
- Toghueo, R.M.; Eke, P.; Zabalgogeazcoa, Í.; de Aldana, B.R.; Nana, L.W.; Boyom, F.F. Biocontrol and growth enhancement potential of two endophytic Trichoderma spp. from Terminalia catappa against the causative agent of common bean root rot (Fusarium solani). Biol. Control 2016, 96, 8–20. [Google Scholar] [CrossRef]
- De Souza, J.T.; Trocoli, R.O.; Monteiro, F.P. Plants from the Caatinga biome harbor endophytic Trichoderma species active in the biocontrol of Pineapple Fusariosis. Biol. Control 2016, 94, 25–32. [Google Scholar] [CrossRef]
- Shentu, X.; Zhan, X.; Ma, Z.; Yu, X.; Zhang, C. Antifungal activity of metabolites of the endophytic fungus Trichoderma brevicompactum from garlic. Braz. J. Microbiol. 2014, 45, 248–254. [Google Scholar] [CrossRef]
- Samuels, G.J.; Dodd, S.L.; Lu, B.-S.; Petrini, O.; Schroers, H.-J.; Druzhinina, I.S. The Trichoderma koningii aggregate species. Stud. Mycol. 2006, 56, 67–133. [Google Scholar] [CrossRef]
- Bae, H.; Sicher, R.C.; Kim, M.S.; Kim, S.-H.; Strem, M.D.; Melnick, R.L.; Bailey, B.A. The beneficial endophyte Trichoderma hamatum isolate DIS 219B promotes growth and delays the onset of the drought response in Theobroma cacao. J. Exp. Bot. 2009, 60, 3279–3295. [Google Scholar] [CrossRef]
- Larran, S.; Perelló, A.E.; Simón, M.R.; Moreno, V. The Endophytic fungi from wheat (Triticum aestivum L.). World J. Microbiol. Biotechnol. 2007, 23, 565–572. [Google Scholar] [CrossRef]
- Silva, H.F.; Santos, A.M.G.; Santos, M.V.O.D.; Bezerra, J.L.; Luz, E.D.M.N. Seasonal variation in the occurrence of fungi associated with forest species in a Cerrado-Caatinga transition area. Rev. Árvore 2020, 44, e4409. [Google Scholar] [CrossRef]
- Morais, E.M.; Silva, A.A.; Sousa, F.W.; Azevedo, I.M.; Silva, H.F.; Santos, A.M.; Beserra Júnior, J.E.; Carvalho, C.P.; Eberlin, M.N.; Porcari, A.M.; et al. Endophytic Trichoderma strains isolated from forest species of the Cerrado-caatinga ecotone are potential biocontrol agents against crop pathogenic fungi. PLoS ONE 2022, 17, e0265824. [Google Scholar] [CrossRef]
- Sánchez-Montesinos, B.; Diánez, F.; Moreno-Gavira, A.; Gea, F.J.; Santos, M. Plant growth promotion and biocontrol of Pythium ultimum by saline tolerant Trichoderma isolates under salinity stress. Int. J. Environ. Res. Public Health 2019, 16, 2053. [Google Scholar] [CrossRef]
- Holmes, K.A.; Schroers, H.-J.; Thomas, S.E.; Evans, H.C.; Samuels, G.J. Taxonomy and biocontrol potential of a new species of Trichoderma from the amazon basin of South America. Mycol. Prog. 2004, 3, 199–210. [Google Scholar] [CrossRef]
- Samuels, G.J.; Suarez, C.; Solis, K.; Holmes, K.A.; Thomas, S.E.; Ismaiel, A.; Evans, H.C. Trichoderma theobromicola and T. paucisporum: Two new species isolated from cacao in South America. Mycol. Res. 2006, 110, 381–392. [Google Scholar] [CrossRef]
- Samuels, G.J.; Ismaiel, A. Trichoderma evansii and T. lieckfeldtiae: Two new T. hamatum-like species. Mycologia 2009, 101, 142–156. [Google Scholar] [CrossRef]
- Talapatra, K.; Das, A.R.; Saha, A.K.; Das, P. In vitro antagonistic activity of a root endophytic fungus towards plant pathogenic fungi. J. App. Biol. Biotech. 2017, 5, 68–71. [Google Scholar]
- De Souza Sebastianes, F.L.; Romão-Dumaresq, A.S.; Lacava, P.T.; Harakava, R.; Azevedo, J.L.; de Melo, S.I.; Pizzirani-Kleiner, A.A. Species diversity of culturable endophytic fungi from Brazilian mangrove forests. Curr. Genet. 2013, 59, 153–166. [Google Scholar] [CrossRef]
- Petrini, O. Ecological and physiological aspects of host-specificity in endophytic fungi. In Endopytic Fungi in Grasses and Woody Plants; Redlin, S.C., Carris, L.M., Eds.; APS Press: St. Paul, MN, USA, 1996; pp. 87–100. [Google Scholar]
- Poveda, J. Trichoderma as biocontrol agent against pests: New uses for a mycoparasite. Biol. Control 2021, 159, 104634. [Google Scholar] [CrossRef]
- Monte, E. The sophisticated evolution of Trichoderma to control insect pests. Proc. Natl. Acad. Sci. USA 2023, 120, e2301971120. [Google Scholar] [CrossRef] [PubMed]
- Contreras-Cornejo, H.A.; Macías-Rodríguez, L.; del-Val, E.; Larsen, J. The root endophytic fungus Trichoderma atroviride induces foliar herbivory resistance in maize plants. Appl. Soil Ecol. 2018, 124, 45–53. [Google Scholar] [CrossRef]
- Coppola, M.; Cascone, P.; Lelio, I.D.; Woo, S.L.; Lorito, M.; Rao, R.; Pennacchio, F.; Guerrieri, E.; Digilio, M.C. Trichoderma atroviride P1 colonization of tomato plants enhances both direct and indirect defense barriers against insects. Front. Physiol. 2019, 10, 464382. [Google Scholar] [CrossRef] [PubMed]
- Macías-Rodríguez, L.; Contreras-Cornejo, H.A.; Adame-Garnica, S.G.; Del-Val, E.; Larsen, J. The interactions of Trichoderma at multiple trophic levels: Inter-kingdom communication. Microbiol. Res. 2020, 240, 126552. [Google Scholar] [CrossRef] [PubMed]
- Di Lelio, I.; Forni, G.; Magoga, G.; Brunetti, M.; Bruno, D.; Becchimanzi, A.; De Luca, M.G.; Sinno, M.; Barra, E.; Bonelli, M.; et al. A soil fungus confers plant resistance against a phytophagous insect by disrupting the symbiotic role of its gut microbiota. Proc. Natl. Acad. Sci. USA 2023, 120, e2216922120. [Google Scholar] [CrossRef] [PubMed]
- Leon Ttacca, B.; Ortiz Calcina, N.; Pauro Flores, L.; Borja Loza, R.; Mendoza Coari, P.P.; Palao Iturregui, L.A. Inoculation methods of native strains of Trichoderma sp. and their effect on the growth and yield of quinoa. Rev. Fac. Agron. (LUZ) 2022, 39, e223955. [Google Scholar] [CrossRef]
- Salari, E.; Rouhani, H.; Mahdikhani-Moghaddam, E.; Saberi, R.; Mehrabi-Koushki, M. Efficacy of Two Methods “Seed Coating” and “Soil Application” of Trichoderma on Growth Parameters of Tomato Plant. J. Iran. Plant Prot. Res. 2015, 28, 500–507. [Google Scholar]
- Muvea, A.M.; Meyhöfer, R.; Subramanian, S.; Poehling, H.-M.; Ekesi, S.; Maniania, N.K. Colonization of Onions by Endophytic Fungi and Their Impacts on the Biology of Thrips tabaci. PLoS ONE 2014, 9, e108242. [Google Scholar] [CrossRef]
- Akutse, K.S.; Maniania, N.K.; Fiaboe, K.K.M.; Van den Berg, J.; Ekesi, S.J.F.E. Endophytic colonization of Vicia faba and Phaseolus vulgaris (Fabaceae) by fungal pathogens and their effects on the life-history parameters of Liriomyza huidobrensis (Diptera: Agromyzidae). Fungal Ecol. 2013, 6, 293–301. [Google Scholar] [CrossRef]
- Lana, M.; Simón, O.; Velasco, P.; Rodríguez, M.V.; Caballero, P.; Poveda, J. First study on the root endophytic fungus Trichoderma hamatum as an entomopathogen: Development of a fungal bio-insecticide against cotton leafworm (Spodoptera littoralis). Microbiol. Res. 2023, 270, 127334. [Google Scholar] [CrossRef] [PubMed]
- Jafarbeigi, F.; Samih, M.A.; Alaei, H.; Shirani, H. Induced tomato resistance against Bemisia tabaci triggered by salicylic acid, β-aminobutyric acid, and Trichoderma. Neotrop. Entomol. 2020, 49, 456–467. [Google Scholar] [CrossRef] [PubMed]
- Błaszczyk, L.; Siwulski, M.; Sobieralski, K.; Lisiecka, J.; Jędryczka, M. Trichoderma spp.—Application and prospects for use in organic farming and industry. J. Plant Prot. Res. 2014, 54, 309–317. [Google Scholar] [CrossRef]
- Bailey, B.A.; Bae, H.; Strem, M.D.; Roberts, D.P.; Thomas, S.E.; Crozier, J.; Samuels, G.J.; Choi, I.Y.; Holmes, K.A. Fungal and plant gene expression during the colonization of cacao seedlings by endophytic isolates of four Trichoderma species. Planta 2006, 224, 1449–1464. [Google Scholar] [CrossRef] [PubMed]
- Harman, G.E.; Howell, C.R.; Viterbo, A.; Chet, I.; Lorito, M. Trichoderma species—Opportunistic, avirulent plant symbionts. Nat. Rev. 2005, 2, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Howell, C.R. The Role of Antibiosis in Biocontrol. In Trichoderma and Gliocladium; Harman, G.E., Kubicek, C.P., Eds.; Taylor and Francis: London, UK, 1998; Volume 2, pp. 173–184. [Google Scholar]
- Hoyos, P.A.; Silva-Rojas, H.V.; Arenas, O.A. Endophytic Trichoderma species isolated from Persea americana and Cinnamomum verum roots reduce symptoms caused by Phytophthora cinnamomi in Avocado. Plants 2020, 9, 1220. [Google Scholar] [CrossRef] [PubMed]
- Sirikamonsathien, T.; Kenji, M.; Dethoup, T. Potential of endophytic Trichoderma in controlling Phytophthora leaf fall disease in rubber (Hevea brasiliensis). Biol. Control 2023, 179, 105175. [Google Scholar] [CrossRef]
- Taribuka, J.; Wibowo, A.; Widyastuti, S.M.; Sumardiyono, C. Potency of six isolates of biocontrol agents endophytic Trichoderma against Fusarium wilt on banana. J. Degrad. Min. Lands Manag. 2017, 4, 723–731. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, R.; Duan, Y.; Jiang, W.; Chen, X.; Shen, X.; Yin, C.; Mao, Z. The endophytic strain Trichoderma asperellum 6S-2: An efficient biocontrol agent against apple replant disease in China and a potential plant-growth-promoting fungus. J. Fungi 2021, 7, 1050. [Google Scholar] [CrossRef]
- Rees, H.J.; Drakulic, J.; Cromey, M.G.; Bailey, A.M.; Foster, G.D. Endophytic Trichoderma spp. can protect strawberry and privet plants from infection by the fungus Armillaria mellea. PLoS ONE 2022, 17, e0271622. [Google Scholar] [CrossRef]
- Hasan, M.; Hossain, M.; Jiang, D. New endophytic strains of Trichoderma promote growth and reduce clubroot severity of rapeseed (Brassica napus). PLoS ONE 2023, 18, e0287899. [Google Scholar] [CrossRef] [PubMed]
- Tseng, Y.-H.; Rouina, H.; Groten, K.; Rajani, P.; Furch, A.C.U.; Reichelt, M.; Baldwin, I.T.; Nataraja, K.N.; Shaanker, R.U.; Oelmüller, R. An Endophytic Trichoderma Strain Promotes Growth of Its Hosts and Defends Against Pathogen Attack. Front. Plant Sci. 2020, 11, 573670. [Google Scholar] [CrossRef]
- Rajani, P.; Rajasekaran, C.; Vasanthakumari, M.M.; Olsson, S.B.; Ravikanth, G.; Shaanker, R.U. Inhibition of plant pathogenic fungi by endophytic Trichoderma spp. Through mycoparasitism and volatile organic compounds. Microbiol. Res. 2021, 242, 126595. [Google Scholar] [CrossRef] [PubMed]
- Larran, S.; Simón, M.R.; Santamarina, M.P.; Roselló, J.; Consolo, V.F.; Perelló, A. Endophytic Trichoderma strains increase soya bean growth and promote control against charcoal rot. J. Saudi Soc. Agric. Sci. 2023, 22, 395–406. [Google Scholar]
- Sridharan, A.; Sugitha, T.; Karthikeyan, G.; Nakkeeran, S.; Sivakumar, U. Metabolites of Trichoderma longibrachiatum EF5 inhibits soil borne pathogen, Macrophomina phaseolina by triggering amino sugar metabolism. Microb. Pathog. 2021, 150, 104714. [Google Scholar] [CrossRef] [PubMed]
- Sornakili, A.; Thankappan, S.; Sridharan, A.P.; Nithya, P.; Uthandi, S. Antagonistic fungal endophytes and their metabolite-mediated interactions against phytopathogens in rice. Physiol. Mol. Plant Pathol. 2020, 112, 101525. [Google Scholar] [CrossRef]
- Nuangmek, W.; Aiduang, W.; Kumla, J.; Lumyong, S.; Suwannarach, N. Evaluation of a Newly identified endophytic fungus, Trichoderma phayaoense for plant growth promotion and biological control of gummy stem blight and wilt of muskmelon. Front. Microbiol. 2021, 12, 634772. [Google Scholar] [CrossRef] [PubMed]
- Bae, H.; Roberts, D.P.; Lim, H.S.; Strem, M.D.; Park, S.C.; Ryu, C.M.; Melnick, R.L.; Bailey, B.A. Endophytic Trichoderma isolates from tropical environments delay disease onset and induce resistance against Phytophthora capsici in hot pepper using multiple mechanisms. Mol. Plant-Microbe Interact. 2011, 24, 336–351. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, M.; Awasthi, A.; Joshi, D. Exploring biocontrol efficacy of Trichoderma spp. against Fusarium sacchari, the causal agent of sugarcane wilt. Biotecnol. Veg. 2020, 20, 237–247. [Google Scholar]
- Rees, H.J.; Bashir, N.; Drakulic, J.; Cromey, M.G.; Bailey, A.M.; Foster, G.D. Identification of native endophytic Trichoderma spp. for investigation of in vitro antagonism towards Armillaria mellea using synthetic- and plant-based substrates. J. Appl. Microbiol. 2021, 131, 392–403. [Google Scholar] [CrossRef]
- Barka, E.A.; Gognies, S.; Nowak, J.; Audran, J.C.; Belarbi, A. Inhibitory effect of endophyte bacteria on Botrytis cinerea and its influence to promote the grapevine growth. Biol. Control 2002, 24, 135–142. [Google Scholar] [CrossRef]
- Kovács, C.; Csótó, A.; Pál, K.; Nagy, A.; Fekete, E.; Karaffa, L.; Kubicek, C.P.; Sándor, E. The Biocontrol Potential of Endophytic Trichoderma Fungi Isolated from Hungarian Grapevines. Part I. Isolation, Identification and In Vitro Studies. Pathogens 2021, 10, 1612. [Google Scholar] [CrossRef] [PubMed]
- Billar de Almeida, A.; Concas, J.; Campos, M.D.; Materatski, P.; Varanda, C.; Patanita, M.; Murolo, S.; Romanazzi, G.; Félix, M.R. Endophytic Fungi as Potential Biological Control Agents against Grapevine Trunk Diseases in Alentejo Region. Biology. 2020, 9, 420. [Google Scholar] [CrossRef]
- Ferigo, D.; Causin, R.; Raiola, A. Effect of potential biocontrol agents selected among grapevine endophytes and commercial products on crown gall disease. BioControl 2017, 62, 821–833. [Google Scholar]
- Aleynova, O.A.; Suprun, A.R.; Nityagovsky, N.N.; Dubrovina, A.S.; Kiselev, K.V. The Influence of the Grapevine Bacterial and Fungal Endophytes on Biomass Accumulation and Stilbene Production by the In Vitro Cultivated Cells of Vitis amurensis Rupr. Plants 2021, 10, 1276. [Google Scholar] [CrossRef]
- Langa-Lomba, N.; Martín-Ramos, P.; Casanova-Gascón, J.; Julián-Lagunas, C.; González-García, V. Potential of Native Trichoderma Strains as Antagonists for the Control of Fungal Wood Pathologies in Young Grapevine Plants. Agronomy 2022, 12, 336. [Google Scholar] [CrossRef]
- Huerga, G.C.; Compant, S.; Gorfer, M.; Cardoza, R.E.; Schmoll, M.; Gutiérrez, S.; Casquero, P.A. Colonization of Vitis vinifera L. by the Endophyte Trichoderma sp. Strain T154: Biocontrol Activity Against Phaeoacremonium minimum. Front. Plant Sci. 2020, 11, 117. [Google Scholar]
- Silva-Valderrama, I.; Toapanta, D.; Miccono, M.A.; Lolas, M.; Díaz, G.A.; Cantu, D.; Castro, A. Biocontrol Potential of Grapevine Endophytic and Rhizospheric Fungi Against Trunk Pathogens. Front. Microbiol. 2021, 11, 614620. [Google Scholar]
- Csoto, A.; Kovacs, C.; Pal, K.; Nagy, A.; Peles, F.; Fekete, E.; Karaffa, L.; Kubicek, C.P.; Sandor, E. The Biocontrol Potential of Endophytic Trichoderma Fungi Isolated from Hungarian Grapevines, Part II, Grapevine Stimulation. Pathogens 2023, 12, 2. [Google Scholar] [CrossRef] [PubMed]
- Rai, S.; Solanki, M.K. Beneficial endophytic Trichoderma functions in plant health management. In Microbial Endophytes and Plant Growth; Solanki, M.K., Yadav, M.K., Singh, B.P., Gupta, V.K., Eds.; Academic Press: London, UK, 2023; pp. 233–244. [Google Scholar]
- Wani, S.H.; Kumar, V.; Shriram, V.; Sah, S.K. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J. 2016, 4, 162–176. [Google Scholar] [CrossRef]
- Adeleke, B.S.; Ayilara, M.S.; Akinola, S.A.; Babalola, O. Biocontrol mechanisms of endophytic fungi. Egypt. J. Biol. Pest Control 2022, 32, 46. [Google Scholar] [CrossRef]
- Andrews, J.H.; Harris, R.F. The ecology and biogeography of micro-organisms on plant surfaces. Annu. Rev. Phytopathol. 2000, 38, 145–180. [Google Scholar] [CrossRef] [PubMed]
- Van Wees, S.C.M.; Van der Ent, S.; Pieterse, C.M.J. Plant immune responses triggered by beneficial microbes. Curr. Opin. Plant Biol. 2008, 11, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Ghoneem, K.M.; Al-Askar, A.A.; Saber, W.I.A. A Simple Formula of the Endophytic Trichoderma viride, a Case Study for the Management of Rhizoctonia solani on the Common Bean. Life 2023, 13, 1358. [Google Scholar] [CrossRef] [PubMed]
Trichoderma Species | Host Plant | Target Pest | Treatment Effect | Reference |
---|---|---|---|---|
T. asperellum | Zea mays | Tuta absoluta | Colonized tomato plants recorded significantly lower numbers of eggs, mines, and pupae compared to the control. | [15] |
Sorghum bicolor | Thrips tabaci | Colonized onion plants had significantly fewer thrips and feeding punctures as compared to the control. | [54] | |
Sorghum bicolor | Liriomyza huidobrensis | The leafminer recorded significantly lower mean survival time (>50% reduction) and population (>70% reduction) in colonized Vicia faba plants compared to the control. | [55] | |
T. atroviride | * | Spodoptera frugiperda | T. atroviride inoculation resulted in 25% decrease of the larvae feeding on maize and consumption of significantly less leaf area. Wasp parasitism was significantly increased. | [48] |
* | Spodoptera littoralis | Inoculated tomato plants demonstrated negative effects on moth larval survival and development. | [49] | |
* | Macrosiphum euphorbiae | Survival rate was significantly decreased on treated tomato plants compared to untreated ones. | ||
Allium cepa | Thrips tabaci | Colonized onion plants had significantly fewer thrips and feeding punctures as compared to the control. | [54] | |
T. hamatum | Brassica oleracea var. acephala | Spodoptera littoralis | Topical treatment reached 50% mortality, while oral application was more effective (>80% larval mortality) | [56] |
T. harzianum | * | Bemisia tabaci | Whitefly mortality, oviposition preference and developmental period were negatively affected by leaf and root treatment with T. harzianum on tomato plants. Differences were significant among treated and control plants. | [57] |
Allium cepa | Thrips tabaci | Colonized onion plants had significantly fewer thrips and feeding punctures as compared to the control. | [54] |
Trichoderma Species | Host Plant | Target Pathogen | Treatment Effect | Reference |
---|---|---|---|---|
T. asperellum | Persea americana | Phytophthora cinnamomi | The inhibition rate of the phytopathogen by four strains in dual cultures ranged from 51 to 78%. The inoculation of avocado seedlings resulted in significant reduction (75–93%) of dead plants. | [62] |
Hevea brasiliensis | Phytophthora palmivora | In dual cultures, three strains caused inhibition of the pathogen by 55–73%. Moderate reduction of disease severity (<30%) was recorded, in greenhouse tests (spraying leaves). | [63] | |
Musa sp. | Fusarium oxysporum f.sp. cubense | Inhibition in dual cultures reached 50%. After 5 weeks, the disease intensity was quite low (<17%) | [64] | |
Μalus domestica | Alternaria alternata, Aspergillus flavus, Fusarium spp., Myrothecium verrucaria, Pythium aphanidermatum, Phytophthora cactorum, Phoma asparagi Penicillium brasilianum, Rhizoctonia solani | The strain 6S-2 caused noteworthy inhibition rate on the growth of all phytopathogens (30–75%) | [65] | |
Saccharum spp. | Colletotrichum falcatum | In dual culture tests, the inhibition rate was from 32.3% to 60.1%, depending on the isolate. | [28] | |
Theobroma cacao | Ceratobasidium theobromae | On cacao seedlings inoculated with various isolates, disease symptoms incidence was 0–56%; on untreated seedlings it reached 88.9%. | [29] | |
T. afroharzianum | Triticum aestivum | Fusarium graminearum | In dual culture tests, inhibition percentage was 40.5%. | [26] |
Triticum aestivum | Fusarium graminearum | In dual culture tests, inhibition percentage was 58%. | [27] | |
T. atrobrunneum | Fragaria × ananassa | Armillaria mellea | Inoculated privet plants recorded significantly lower disease symptoms compared to the Armillaria-only control plants. | [66] |
Quercus sp. | Armillaria mellea | Strawberry plants inoculated with the strain T17/11 did not show any symptoms after their infection with Armillaria root rot. | [66] | |
Viburnum bodnantense | Armillaria mellea | The strains T17/15 and T17/16 had a significantly lower disease severity index compared to strawberry control plants. | [66] | |
Quercus sp. | Armillaria mellea | The strain T17/11 had a significantly lower disease severity index compared to Ligustrum vulgare plants infected with Armillaria root rot. | [66] | |
Viburnum bodnantense | Armillaria mellea | The strain T17/15 had a significantly lower disease severity index compared to Ligustrum vulgare plants infected with Armillaria root rot. | [66] | |
Τ.atroviride | Brassica napus | Plasmodiophora brassicae | Symptom incidence in control rapeseed plants grown in artificially infected soil was 85–89%, and it was significantly reduced to 42–44%. | [67] |
Terminalia catappa | Fusarium solani | In dual cultures, inhibition rate was reduced by 86%. Disease severity was also reduced up to 40% in Phaseolus vulgaris plants. | [31] | |
Astronium fraxinifolium | Fusarium guttiforme | In field tests, disease severity on pineapples decreased 81–84%. | [32] | |
T. confertum | Leucas aspera | Alternaria brassicicola | In dual culture tests, it managed to cover 75% of the pathogen colony. Inoculated cress (Arabidopsis thaliana) seedlings recorded significantly reduced symptoms. | [68] |
T. gamsii | Musa sp. | Fusarium oxysporum f.sp. cubense | Inhibition in dual cultures reached 60%. After 5 weeks, the disease intensity was low (<25%) | [64] |
T. guizhouense | Triticum aestivum | Fusarium graminearum | In dual culture tests, inhibition percentage was 50%. | [27] |
T. hamatum | Persea americana | Phytophthora cinnamomi | The inhibition rate of the phytopathogen by the strain T-A12 was 51%. The inoculation of avocado seedlings resulted in significant reduction (75%) of dead plants. | [62] |
Hevea brasiliensis | Phytophthora palmivora | In dual cultures, the inhibition of the pathogen by three strains was 41–49%. They were ineffective in the greenhouse (disease reduction < 20%). | [63] | |
Sorbus aria | Armillaria mellea | The strain T17/10 had a significantly lower disease severity index compared to strawberry and Ligustrum vulgare control plants. | [66] | |
T. harzianum | Pterocarpus santalinus | Sclerotinia sclerotiorum, Sclerotium rolfsii, Fusarium oxysporum, Macrophomina phaseolina | The strain MK751758 caused noteworthy inhibition rate on the growth of all phytopathogens (47–61%) except M. phaseolina (0%). | [69] |
Persea americana | Phytophthora cinnamomi | The inhibition rate of the phytopathogen by three strains in dual cultures ranged from 39 to 73%. The inoculation of avocado seedlings resulted in significant reduction (68–87%) of dead plants. | [62] | |
Hevea brasiliensis | Phytophthora palmivora | In greenhouse tests, two strains showed significant efficacy, reducing the disease severity 43% and 48%, respectively. Under field conditions, the same strains lowered defoliation 30–33%. In dual cultures, the inhibition of the pathogen was 65–81%. | [63] | |
Musa sp. | Fusarium oxysporum f.sp. cubense | Inhibition in dual cultures for three strains was 54–59%. After 5 weeks, the disease intensity was quite low (<17%) | [64] | |
Quercus sp. | Armillaria mellea | The strain T17/08 had a significantly lower disease severity index compared to Ligustrum vulgare plants infected with Armillaria root rot. | [66] | |
Triticum aestivum | Fusarium graminearum | In dual culture tests, inhibition percentage was 85.2% and 90.3% for two strains. | [27] | |
Glycine max | Macrophomina phaseolina | All tested strains were successful in controlling M. phaseolina in dual culture tests. Colony growth was reduced, and morphological alterations were observed in the mycelia of the pathogen. | [70] | |
T. koningiopsis | Persea americana | Phytophthora cinnamomi | The inhibition rate of the phytopathogen by two strains in dual cultures reached 48%. The inoculation of avocado seedlings resulted in significant reduction (85%) of dead plants. | [62] |
Musa sp. | Fusarium oxysporum f.sp. cubense | Inhibition in dual cultures reached 55%. After 5 weeks, the disease intensity was moderate (<33%) | [64] | |
Brassica napus | Plasmodiophora brassicae | Symptom incidence in control rapeseed plants grown in artificially infected soil was 85–89%, and it was significantly reduced to 47–47%. | [67] | |
Bowdichia virgilioides | Fusarium guttiforme | In field tests, disease severity on pineapples decreased 68–77%. | [32] | |
Ananas comosus var. bracteatus | Fusarium guttiforme | In field tests, disease severity on pineapples decreased 68–72%. | [32] | |
T. longibrachiatum | Juniperus lutchuensis | Sclerotinia sclerotiorum, Sclerotium rolfsii, Fusarium oxysporum, Macrophomina phaseolina | Two strains managed to inhibit the growth of S. sclerotiorum (40–51%), S. rolfsii (53–57%), and F. oxysporum (49–54%) in dual culture tests. However, M. phaseolina was not affected. | [69]. |
Oryza sativa | Macrophomina phaseolina | Inhibition reached 58% in dual culture tests. | [71] | |
Hevea brasiliensis | Phytophthora palmivora | In dual cultures, the inhibition of the pathogen by one strain (KUFA0442) was 39%. It proved ineffective in the greenhouse (disease reduction < 10%). | [63] | |
Oryza sativa | Many phytopathogenic fungi | In dual culture trials, the strain EF5 recorded the highest growth inhibition activity against many fungal phytopathogens (23–82%). | [72] | |
Saccharum spp. | Colletotrichum falcatum | In dual culture tests, the inhibition rate was from 36.5% to 66.2% depending on the isolate. | [28] | |
T. olivascens | Rhododendron × obtusum | Armillaria mellea | The strain T17/42 had a significantly lower disease severity index compared to Ligustrum vulgare plants infected with Armillaria root rot. | [66] |
T. phayaoense | Chromolaena odorata | Stagonosporopsis cucurbitacearum | In dual culture trials, the inhibition rate was 81.6%. Disease symptoms were reduced by 60% in inoculated Cucumis melo seedlings | [73] |
Chromolaena odorata | Fusarium equiseti | In dual culture trials, the inhibition rate was 90.8%. Disease symptoms were reduced by 80% in inoculated Cucumis melo seedlings. | [73] | |
T. pleuroti | Leucas aspera | Sclerotinia sclerotiorum, Sclerotium rolfsii, Fusarium oxysporum, Macrophomina phaseolina | Growth of S. sclerotiorum, S. rolfsii, and F. oxysporum was significantly halted by all endophytes in dual culture tests (inhibition 40–65%). M. phaseolina was not affected. | [69] |
T. simmonsii | Triticum aestivum | Fusarium graminearum | In dual culture tests, inhibition percentage was 58.1%. | [26] |
T. theobromicola | Cola praecuta | Phytophthora capsici | Inoculated hot pepper seedlings that remained asymptomatic when planted in P. capsici infected soil were 25–60%, while control plants without symptoms were 0–10%. | [74] |
T. virens | Hevea brasiliensis | Phytophthora palmivora | In dual cultures, two strains showed significant inhibitory effect (40–51%). They were ineffective in the greenhouse (disease reduction < 20%). | [63] |
Τ. viride | Spilanthes paniculata | Alternaria sp., Aspergillus sp., Cladosporium sp., Curvularia sp., Fusarium sp., Nigrospora sp., Penicillium sp., Pythium sp. and Trichocladium sp. | Significant inhibitory activity was recorded in all cases except Aspergillus sp. | [43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Natsiopoulos, D.; Topalidou, E.; Mantzoukas, S.; Eliopoulos, P.A. Endophytic Trichoderma: Potential and Prospects for Plant Health Management. Pathogens 2024, 13, 548. https://doi.org/10.3390/pathogens13070548
Natsiopoulos D, Topalidou E, Mantzoukas S, Eliopoulos PA. Endophytic Trichoderma: Potential and Prospects for Plant Health Management. Pathogens. 2024; 13(7):548. https://doi.org/10.3390/pathogens13070548
Chicago/Turabian StyleNatsiopoulos, Dimitrios, Eleni Topalidou, Spyridon Mantzoukas, and Panagiotis A. Eliopoulos. 2024. "Endophytic Trichoderma: Potential and Prospects for Plant Health Management" Pathogens 13, no. 7: 548. https://doi.org/10.3390/pathogens13070548
APA StyleNatsiopoulos, D., Topalidou, E., Mantzoukas, S., & Eliopoulos, P. A. (2024). Endophytic Trichoderma: Potential and Prospects for Plant Health Management. Pathogens, 13(7), 548. https://doi.org/10.3390/pathogens13070548