Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (250)

Search Parameters:
Keywords = inorganic-organic hybrid polymer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 42729 KiB  
Article
Sustainable and Functional Polymeric Coating for Wood Preservation
by Ramona Marina Grigorescu, Rodica-Mariana Ion, Lorena Iancu, Sofia Slamnoiu-Teodorescu, Anca Irina Gheboianu, Elvira Alexandrescu, Madalina Elena David, Mariana Constantin, Iuliana Raut, Celina Maria Damian, Cristian-Andi Nicolae and Bogdan Trica
Coatings 2025, 15(8), 875; https://doi.org/10.3390/coatings15080875 - 25 Jul 2025
Viewed by 356
Abstract
The development of sustainable and functional nanocomposites has attracted considerable attention in recent years due to their broad spectrum of potential applications, including wood preservation. Also, a global goal is to reuse the large volumes of waste for environmental issues. In this context, [...] Read more.
The development of sustainable and functional nanocomposites has attracted considerable attention in recent years due to their broad spectrum of potential applications, including wood preservation. Also, a global goal is to reuse the large volumes of waste for environmental issues. In this context, the aim of the study was to obtain soda lignin particles, to graft ZnO nanoparticles onto their surface and to apply these hybrids, embedded into a biodegradable polymer matrix, as protection/preservation coating for oak wood. The organic–inorganic hybrids were characterized in terms of compositional, structural, thermal, and morphological properties that confirm the efficacy of soda lignin extraction and ZnO grafting by physical adsorption onto the decorating support and by weak interactions and coordination bonding between the components. The developed solution based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and lignin-ZnO was applied to oak wood specimens by brushing, and the improvement in hydrophobicity (evaluated by water absorption that decreased by 48.8% more than wood, humidity tests where the treated sample had a humidity of 4.734% in comparison with 34.911% for control, and contact angle of 97.8° vs. 80.5° for untreated wood) and UV and fungal attack protection, while maintaining the color and aspect of specimens, was sustained. L.ZnO are well dispersed into the polymer matrix, ensuring a smooth and less porous wood surface. According to the results, the obtained wood coating using both a biodegradable polymeric matrix and a waste-based preservative can be applied for protection against weathering degradation factors, with limited water uptake and swelling of the wood, UV shielding, reduced wood discoloration and photo-degradation, effective protection against fungi, and esthetic quality. Full article
Show Figures

Figure 1

24 pages, 1714 KiB  
Review
Engineering and Exploiting Immobilized Peptide Organocatalysts for Modern Synthesis
by Marco Francescato, Hang Liao and Luca Gentilucci
Molecules 2025, 30(12), 2517; https://doi.org/10.3390/molecules30122517 - 9 Jun 2025
Viewed by 757
Abstract
Short- and medium-sized peptides have long been used as effective and versatile organocatalysts. In the early 80s, Inoue used diketopiperazines in the Strecker reaction, while Juliá and Colonna reported the epoxidation of chalcone catalyzed by poly-L-Ala. Since then, a variety of peptide-catalyzed reactions [...] Read more.
Short- and medium-sized peptides have long been used as effective and versatile organocatalysts. In the early 80s, Inoue used diketopiperazines in the Strecker reaction, while Juliá and Colonna reported the epoxidation of chalcone catalyzed by poly-L-Ala. Since then, a variety of peptide-catalyzed reactions have been described. However, peptide synthesis typically implicates the use of toxic reagents and generates wastes; therefore, peptide recycling is expected to significantly improve the overall sustainability of the process. Easy recovery and recycling of peptide catalysts can be expediently attained by covalent binding, inclusion, or adsorption. In addition, immobilization can significantly accelerate the screening of new peptide catalysts. For these reasons, diverse supports have been tested, including natural or synthetic polymers, porous polymeric networks, inorganic porous materials, organic-inorganic hybrid materials, and finally metal–organic frame-works. Full article
(This article belongs to the Special Issue Organocatalysis: Past, Present, and Future Perspectives)
Show Figures

Figure 1

41 pages, 1254 KiB  
Review
Hydrogen Production Through Newly Developed Photocatalytic Nanostructures and Composite Materials
by Amra Bratovčić and Vesna Tomašić
Processes 2025, 13(6), 1813; https://doi.org/10.3390/pr13061813 - 7 Jun 2025
Viewed by 2111
Abstract
Photocatalytic hydrogen (H2) production offers a promising solution to energy shortages and environmental challenges by converting solar energy into chemical energy. Hydrogen, as a versatile energy carrier, can be generated through photocatalysis under sunlight or via electrolysis powered by solar or [...] Read more.
Photocatalytic hydrogen (H2) production offers a promising solution to energy shortages and environmental challenges by converting solar energy into chemical energy. Hydrogen, as a versatile energy carrier, can be generated through photocatalysis under sunlight or via electrolysis powered by solar or wind energy. However, the advancement of photocatalysis is hindered by the limited availability of effective visible light-responsive semiconductors and the challenges of charge separation and transport. To address these issues, researchers are focusing on the development of novel nanostructured semiconductors and composite materials that can enhance photocatalytic performance. In this paper, we provide an overview of the advanced photocatalytic materials prepared so far that can be activated by sunlight, and their efficiency in H2 production. One of the key strategies in this research area concerns improving the separation and transfer of electron–hole pairs generated by light, which can significantly boost H2 production. Advanced hybrid materials, such as organic–inorganic hybrid composites consisting of a combination of polymers with metal oxide photocatalysts, and the creation of heterojunctions, are seen as effective methods to improve charge separation and interfacial interactions. The development of Schottky heterojunctions, Z-type heterojunctions, p–n heterojunctions from nanostructures, and the incorporation of nonmetallic atoms have proven to reduce photocorrosion and enhance photocatalytic efficiency. Despite these advancements, designing efficient semiconductor-based heterojunctions at the atomic scale remains a significant challenge for the realization of large-scale photocatalytic H2 production. In this review, state-of-the-art advancements in photocatalytic hydrogen production are presented and discussed in detail, with a focus on photocatalytic nanostructures, heterojunctions and hybrid composites. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

43 pages, 1026 KiB  
Review
Most Important Biomedical and Pharmaceutical Applications of Silicones
by Jerzy J. Chruściel
Materials 2025, 18(11), 2561; https://doi.org/10.3390/ma18112561 - 30 May 2025
Viewed by 1404
Abstract
Many kinds of silicones are a wide family of hybrid inorganic–organic polymers which have valuable physical and chemical properties and find plenty of practical applications, not only industrial, but also numerous medical and pharmaceutical ones, mainly due to their good thermal and chemical [...] Read more.
Many kinds of silicones are a wide family of hybrid inorganic–organic polymers which have valuable physical and chemical properties and find plenty of practical applications, not only industrial, but also numerous medical and pharmaceutical ones, mainly due to their good thermal and chemical stability, hydrophobicity, low surface tension, biocompatibility, and bio-durability. The important biomedical applications of silicones include drains, shunts, and catheters, used for medical treatment and short-term implants; inserts and implants to replace various body parts; treatment, assembly, and coating of various medical devices; breast and aesthetic implants; specialty contact lenses; and components of cosmetics, drugs, and drug delivery systems. The most important achievements concerning the biomedical and pharmaceutical applications of silicones, their copolymers and blends, and also silanes and low-molecular-weight siloxanes have been summarized and updated. The main physiological properties of organosilicon compounds and silicones, and the methods of antimicrobial protection of silicone implants, have also been described and discussed. The toxicity of silicones, the negative effects of breast implants, and the environmental effects of silicone-containing personal care and cosmetic products have been reported and analyzed. Important examples of the 3D printing of silicone elastomers for biomedical applications have been presented as well. Full article
Show Figures

Figure 1

16 pages, 5706 KiB  
Article
In Situ-Prepared Nanocomposite for Water Management in High-Temperature Reservoirs
by Hui Yang, Jian Zhang, Zhiwei Wang, Shichao Li, Qiang Wei, Yunteng He, Luyao Li, Jiachang Zhao, Caihong Xu and Zongbo Zhang
Gels 2025, 11(6), 405; https://doi.org/10.3390/gels11060405 - 29 May 2025
Viewed by 436
Abstract
In the field of enhanced oil recovery (EOR), particularly for water control in high-temperature reservoirs, there is a critical need for effective in-depth water shutoff and conformance control technologies. Polymer-based in situ-cross-linked gels are extensively employed for enhanced oil recovery (EOR), yet their [...] Read more.
In the field of enhanced oil recovery (EOR), particularly for water control in high-temperature reservoirs, there is a critical need for effective in-depth water shutoff and conformance control technologies. Polymer-based in situ-cross-linked gels are extensively employed for enhanced oil recovery (EOR), yet their short gelation time under high-temperature reservoir conditions (e.g., >120 °C) limits effective in-depth water shutoff and conformance control. To address this, we developed a hydrogel system via the in situ cross-linking of polyacrylamide (PAM) with phenolic resin (PR), reinforced by silica sol (SS) nanoparticles. We employed a variety of research methods, including bottle tests, viscosity and rheology measurements, scanning electron microscopy (SEM) scanning, density functional theory (DFT) calculations, differential scanning calorimetry (DSC) measurements, quartz crystal microbalance with dissipation (QCM-D) measurement, contact angle (CA) measurement, injectivity and temporary plugging performance evaluations, etc. The composite gel exhibits an exceptional gelation period of 72 h at 130 °C, surpassing conventional systems by more than 4.5 times in terms of duration. The gelation rate remains almost unchanged with the introduction of SS, due to the highly pre-dispersed silica nanoparticles that provide exceptional colloidal stability and the system’s pH changing slightly throughout the gelation process. DFT and SEM results reveal that synergistic interactions between organic (PAM-PR networks) and inorganic (SS) components create a stacked hybrid network, enhancing both mechanical strength and thermal stability. A core flooding experiment demonstrates that the gel system achieves 92.4% plugging efficiency. The tailored nanocomposite allows for the precise management of gelation kinetics and microstructure formation, effectively addressing water control and enhancing the plugging effect in high-temperature reservoirs. These findings advance the mechanistic understanding of organic–inorganic hybrid gel systems and provide a framework for developing next-generation EOR technologies under extreme reservoir conditions. Full article
Show Figures

Figure 1

19 pages, 7054 KiB  
Article
Synthesis and Performance Evaluation of Anti-Washout Admixtures for Underwater Non-Dispersive Concrete Based on Nanosilica
by Jian Wang, Kaijian Huang, Hongyan Chu and Jianhui Li
Materials 2025, 18(11), 2541; https://doi.org/10.3390/ma18112541 - 28 May 2025
Viewed by 391
Abstract
Anti-washout admixtures (AWAs) are a unique component of underwater non-dispersive concrete (UNDC), which gives the concrete the ability to remain undispersed in water. On some special occasions, freshly mixed underwater non-dispersive concrete is exposed to the erosion of moving water, and conventional acrylamide-based [...] Read more.
Anti-washout admixtures (AWAs) are a unique component of underwater non-dispersive concrete (UNDC), which gives the concrete the ability to remain undispersed in water. On some special occasions, freshly mixed underwater non-dispersive concrete is exposed to the erosion of moving water, and conventional acrylamide-based AWAs are only suitable for static water or the water flow rate is small. In this study, the inorganic component nanosilica (NS) is modified, treated, and copolymerized with the organic components acrylamide (AM) and acrylic acid (AA) to form an inorganic–organic hybrid polymer with a hyperbranched structure, which changes the linear structure of the original polyacrylamide molecule, and we optimize the synthesis process. The polymers are characterized at the microscopic level and their compatibility with polycarboxylic acid water-reducing agents (SP) is investigated. In addition, the polymers are compared and evaluated with commonly used PAM in terms of their working performance. The experimental results indicated that under specific process conditions, polymers endow cement mortar with good resistance to water erosion. At the same time, the polymers’ three-dimensional network structure is prominent, with good compatibility with SP and better anti-dispersity. The microstructure of the cement paste with added polymers is dense and flat, but its flowability and setting time are slightly worse. This study provides a new development direction for the development of AWAs under a dynamic water environment, which has specific engineering significance. Full article
Show Figures

Figure 1

18 pages, 4156 KiB  
Article
Influence of P(V3D3-co-TFE) Copolymer Coverage on Hydrogen Detection Performance of a TiO2 Sensor at Different Relative Humidity for Industrial and Biomedical Applications
by Mihai Brinza, Lynn Schwäke, Lukas Zimoch, Thomas Strunskus, Thierry Pauporté, Bruno Viana, Tayebeh Ameri, Rainer Adelung, Franz Faupel, Stefan Schröder and Oleg Lupan
Chemosensors 2025, 13(4), 150; https://doi.org/10.3390/chemosensors13040150 - 19 Apr 2025
Viewed by 745
Abstract
The detection of hydrogen gas is crucial for both industrial fields, as a green energy carrier, and biomedical applications, where it is a biomarker for diagnosis. TiO2 nanomaterials are stable and sensitive to hydrogen gas, but their gas response can be negatively [...] Read more.
The detection of hydrogen gas is crucial for both industrial fields, as a green energy carrier, and biomedical applications, where it is a biomarker for diagnosis. TiO2 nanomaterials are stable and sensitive to hydrogen gas, but their gas response can be negatively affected by external factors such as humidity. Therefore, a strategy is required to mitigate these influences. The utilization of organic–inorganic hybrid gas sensors, specifically metal oxide gas sensors coated with ultra-thin copolymer films, is a relatively novel approach in this field. In this study, we examined the performance and long-term stability of novel TiO2-based sensors that were coated with poly(trivinyltrimethylcyclotrisiloxane-co-tetrafluoroethylene) (P(V3D3-co-TFE)) co-polymers. The P(V3D3-co-TFE)/TiO2 hybrid sensors exhibit high reliability even for more than 427 days. They exhibit excellent hydrogen selectivity, particularly in environments with high humidity. An optimum operating temperature of 300 °C to 350 °C was determined. The highest recorded response to H2 was approximately 153% during the initial set of measurements at a relative humidity of 10%. The developed organic–inorganic hybrid structures open wide opportunities for gas sensor tuning and customization, paving the way for innovative applications in industry and biomedical fields, such as exhaled breath analysis, etc. Full article
(This article belongs to the Special Issue Advanced Chemical Sensors for Gas Detection)
Show Figures

Figure 1

17 pages, 1503 KiB  
Review
Evolution of Theranostic Nanoparticles Through the Lens of Patents
by Danielle Teixeira Freire, Júlio Abreu Miranda, Douglas Dourado and Éverton do Nascimento Alencar
J. Nanotheranostics 2025, 6(2), 11; https://doi.org/10.3390/jnt6020011 - 9 Apr 2025
Viewed by 1258
Abstract
Theranostic nanoparticles integrate diagnostic and therapeutic potential, representing a promising approach in precision medicine. Accordingly, numerous inventions have been patented to protect novel formulations and methods. This review examines the evolution of patented theranostic nanoparticles, focusing on organic nanosystems, particularly polymeric and lipid [...] Read more.
Theranostic nanoparticles integrate diagnostic and therapeutic potential, representing a promising approach in precision medicine. Accordingly, numerous inventions have been patented to protect novel formulations and methods. This review examines the evolution of patented theranostic nanoparticles, focusing on organic nanosystems, particularly polymeric and lipid nanoparticles, to assess their development, technological advances, and patentability. A scoping review approach was conducted following the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines in the World Intellectual Property Organization (WIPO) and European Patent Office (EPO) database. The search included patents filed within the last ten years (2014–2024) that specifically claimed organic and/or hybrid theranostic nanoparticles. Data extraction focused on nanoparticle composition, synthesis methods, functionalization strategies, and theranostic applications. The search identified 130 patents, of which 13 met the inclusion criteria. These patents were primarily filed by inventors from the United States, Canada, Great Britain, Italy, and China. Polymeric nanoparticles were frequently engineered for targeted drug delivery and imaging, utilizing hyperbranched polyesters, sulfated polymers, or chitosan-based formulations. Lipid nanoparticles were often hybridized with inorganic nanomaterials or magnetic nanostructures to enhance their theranostic potential. While most patents detailed synthesis methods and physicochemical characterizations, only a few provided comprehensive preclinical validation, limiting their demonstrated efficacy. The analysis of recent patents highlights significant advances in the design and application of theranostic nanoparticles. However, a notable gap remains in validating these nanosystems for clinical translation. Future efforts should emphasize robust preclinical data, including in vitro and in vivo assessments, to enhance patent quality and applicability to substantiate the claimed theranostic capabilities. Full article
Show Figures

Figure 1

23 pages, 3330 KiB  
Review
Organic Semiconducting Polymers in Photonic Devices: From Fundamental Properties to Emerging Applications
by Martin Weis
Appl. Sci. 2025, 15(7), 4028; https://doi.org/10.3390/app15074028 - 6 Apr 2025
Cited by 1 | Viewed by 1256
Abstract
This review examines the distinct advantages of organic semiconductors over conventional insulating polymers as optically active materials in photonic applications. We analyze the fundamental principles governing their unique optical and electronic properties, from basic conjugated polymer systems to advanced molecular architectures. The review [...] Read more.
This review examines the distinct advantages of organic semiconductors over conventional insulating polymers as optically active materials in photonic applications. We analyze the fundamental principles governing their unique optical and electronic properties, from basic conjugated polymer systems to advanced molecular architectures. The review systematically explores key material classes, including polyfluorenes, polyphenylene vinylenes, and polythiophenes, highlighting their dual electrical–optical functionality unavailable in passive polymer systems. Particular attention is given to polymer blends, composites, and hybrid organic–inorganic systems, demonstrating how semiconductor properties enable enhanced performance through materials engineering. We contrast passive components with active photonic devices, illustrating how the semiconductor nature of these polymers facilitates novel functionalities beyond simple light guiding. The review explores emerging applications in neuromorphic photonics, quantum systems, and bio-integrated devices, where the combined electronic–optical properties of organic semiconductors create unique capabilities impossible with insulating polymers. Finally, we discuss design strategies for optimizing these distinctive properties and present perspectives on future developments. This review establishes organic semiconductors as transformative materials for advancing photonic technologies through their combined electronic–optical functionality. Full article
Show Figures

Figure 1

13 pages, 3097 KiB  
Article
Moth-Eye-Inspired Antireflective Structures in Hybrid Polymers: Depth-Variable Etching Techniques, Optical Performance, Thermal Stability, and Hydrophobicity
by Lukas Werner, Zhaolu Diao, Joachim P. Spatz, Marcus Abend, Steffen Resche, Nico Hagen, Richard Busch and Robert Brunner
Nanomaterials 2025, 15(7), 490; https://doi.org/10.3390/nano15070490 - 25 Mar 2025
Viewed by 768
Abstract
Hybrid polymers combine the benefits of inorganic and organic material properties, offering superior thermal, mechanical, and chemical stability, making them ideal for optical applications. This study focuses on the fabrication and characterization of antireflective (AR) structures within hybrid polymers using reactive ion etching [...] Read more.
Hybrid polymers combine the benefits of inorganic and organic material properties, offering superior thermal, mechanical, and chemical stability, making them ideal for optical applications. This study focuses on the fabrication and characterization of antireflective (AR) structures within hybrid polymers using reactive ion etching (RIE). The etching process produces nanopillars with controlled heights, achieving excellent AR performance across a broad spectral range from 450 nm to 2 µm. Optical characterization, including angle-resolved transmission and reflection measurements, shows that the structured samples maintain high transmission efficiency and reduced reflectance at varying incidence angles. Thermal stability tests reveal that the AR structures preserve their optical properties after exposure to temperatures up to 250 °C. Higher temperatures cause significant material yellowing, which is attributed to changes in the bulk material rather than damage to the structured surface. Hydrophobicity measurements show significant water repellency in structured samples, with contact angles more than twice those of unstructured layers. These findings highlight the potential of hybrid polymers with moth-eye-inspired nanostructures for high-performance, durable optical components in demanding environments. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

21 pages, 3840 KiB  
Article
Newly Designed Organic-Inorganic Nanocomposite Membrane for Simultaneous Cr and Mn Speciation in Waters
by Penka Vasileva and Irina Karadjova
Gels 2025, 11(3), 205; https://doi.org/10.3390/gels11030205 - 15 Mar 2025
Cited by 1 | Viewed by 743
Abstract
A sol-gel approach was used to prepare a thin hydrogel membrane based on an organic-inorganic polymer matrix embedded with pre-synthesized gold nanoparticles (AuNPs). The organic polymers utilized were poly(vinyl alcohol) (PVA) and poly(ethylene oxide) 400 (PEO) while tetraethoxysilane (TEOS) served as a precursor [...] Read more.
A sol-gel approach was used to prepare a thin hydrogel membrane based on an organic-inorganic polymer matrix embedded with pre-synthesized gold nanoparticles (AuNPs). The organic polymers utilized were poly(vinyl alcohol) (PVA) and poly(ethylene oxide) 400 (PEO) while tetraethoxysilane (TEOS) served as a precursor for the inorganic silica polymer. AuNPs were synthesized using D-glucose as a reducing agent and starch as a capping agent. A mixture of PVA, PEO, pre-hydrolyzed TEOS, and AuNP dispersions was cast and dried at 50 °C to obtain the hybrid hydrogel membrane. The structure, morphology, and optical properties of the nanocomposite membrane were analyzed using TEM, SEM, XRD, and UV-Vis spectroscopy. The newly designed hybrid hydrogel membrane was utilized as an efficient sorbent for the simultaneous speciation analysis of valence species of chromium and manganese in water samples via solid-phase extraction. This study revealed that Cr(III) and Mn(II) could be simultaneously adsorbed onto the PVA/PEO/SiO2/AuNP membrane at pH 9 while Cr(VI) and Mn(VII) remained in solution due to their inability to bind under these conditions. Under optimized parameters, detection limits and relative standard deviations were determined for chromium and manganese species. The developed analytical method was successfully applied for the simultaneous speciation analysis of chromium and manganese in drinking water and wastewater samples. Full article
(This article belongs to the Special Issue Gel-Related Materials: Challenges and Opportunities)
Show Figures

Figure 1

15 pages, 2222 KiB  
Article
One-Component Catalytic Electrodes from Metal–Organic Frameworks Covalently Linked to an Anion Exchange Ionomer
by Riccardo Narducci, Emanuela Sgreccia, Alessio Vincenzo Montella, Gianfranco Ercolani, Saulius Kaciulis, Suanto Syahputra, Emily Bloch, Luca Pasquini, Philippe Knauth and Maria Luisa Di Vona
Molecules 2025, 30(6), 1230; https://doi.org/10.3390/molecules30061230 - 10 Mar 2025
Viewed by 1690
Abstract
Anion-conducting organic–inorganic polymers (OIPs), constructed using metal–organic framework (MOF)-like structures with non-toxic, non-rare catalytic metals (Fe3+, Zr4+), have been developed. The incorporation of MOF-like structures imparts porosity to the polymers, classifying them as porous organic polymers (POPs). The combination [...] Read more.
Anion-conducting organic–inorganic polymers (OIPs), constructed using metal–organic framework (MOF)-like structures with non-toxic, non-rare catalytic metals (Fe3+, Zr4+), have been developed. The incorporation of MOF-like structures imparts porosity to the polymers, classifying them as porous organic polymers (POPs). The combination between catalytic activity, ion conduction, and porosity allows the material to act as one-component catalytic electrodes. A high catalytic activity is expected since the entire surface area contributes to electrocatalysis, rather than being restricted to triple-phase boundaries. The synthesis involved anchoring a synthon onto a commercial polymer, assembling organo-metallic moieties, and functionalizing with quaternary ammonium (QA) groups. Two hybrid materials, Zr-POP-QA and Fe-POP-QA, were thoroughly characterized by NMR, FTIR, XPS, BET surface area (≈200 m2/g), and TGA. The resulting electrodes demonstrated a high electrochemically active surface area and a high efficiency for the oxygen reduction reaction (ORR), a critical process for energy storage and conversion technologies. The performance was characterized by a 4-electron reduction pathway, a high onset potential (≈0.9 V vs. RHE), and a low Tafel slope (≈0.06 V). We attribute this efficiency to the high active surface area, which results from the simultaneous presence of catalytic transition metal ions (Zr or Fe) and ion conducting groups. Full article
Show Figures

Graphical abstract

21 pages, 6643 KiB  
Article
Impact of Irradiation on Corrosion Performance of Hybrid Organic/Inorganic Coatings on Austenitic Stainless Steel
by Natalie Click, Andrew Knight, Brendan Nation, Makeila Maguire, Samay Verma, Gavin DeBrun, Tyler McCready, Adam Goff, Audrey Rotert, Don Hanson and Rebecca Filardo Schaller
Coatings 2025, 15(3), 312; https://doi.org/10.3390/coatings15030312 - 7 Mar 2025
Viewed by 803
Abstract
The effects of gamma radiation on the performance of two corrosion-resistant coatings applied to stainless-steel 304L (SS304L) surfaces are presented. Specifically, the ability of the coatings to mitigate corrosion of SS304L surfaces as a function of the dose received (0–1300 Mrad) and dose [...] Read more.
The effects of gamma radiation on the performance of two corrosion-resistant coatings applied to stainless-steel 304L (SS304L) surfaces are presented. Specifically, the ability of the coatings to mitigate corrosion of SS304L surfaces as a function of the dose received (0–1300 Mrad) and dose rate (176 compared to 1054 rad/s) is evaluated using electrochemical methods, spectroscopy, and microscopy. Coating A, an organic/inorganic hybrid coating consisting of a two-part silica ceramic component and a polymer linker was evaluated in comparison to Coating B, which utilized Coating A as a topcoat for a commercial, off-the-shelf, Zn-rich primer. Post irradiation, Coating A demonstrated some corrosion protection following exposure to low levels of gamma radiation, but coating degradation occurred with an increased exposure dose and resulted in isolated regions of corrosion initiation. For Coating B, greater corrosion resistance was observed compared to Coating A due to the sacrificial nature of the Zn at elevated doses of gamma radiation. No effect of the dose rate (for the single dose examined) was observed for either coating. It is proposed for Coating B that as the polymer coating thermally degrades above 250 °C (bond scission of the polymer occurs), the remaining Zinc layer adhered to the SS304L post-irradiation enables enhanced corrosion resistance as compared to Coating A, which displays solely polymer degradation. The results presented herein establish an understanding of coating behavior with radiation exposure, specifically the relationship between corrosion coating performance and radiation dose, and can inform ageing and lifetime management for various applications. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

19 pages, 5085 KiB  
Review
Polyoxometalate–Polymer Composites with Distinct Compositions and Structures as High-Performance Solid Electrolytes
by Takeru Ito
Inorganics 2025, 13(3), 75; https://doi.org/10.3390/inorganics13030075 - 5 Mar 2025
Viewed by 963
Abstract
Solid electrolytes, including polymer electrolytes, are a promising option for improving the performance of environmentally friendly batteries such as rechargeable lithium-ion batteries or fuel cells. Hydrogen–oxygen fuel cells producing only water under power generation are attracting widespread attention, and they need proton conductors [...] Read more.
Solid electrolytes, including polymer electrolytes, are a promising option for improving the performance of environmentally friendly batteries such as rechargeable lithium-ion batteries or fuel cells. Hydrogen–oxygen fuel cells producing only water under power generation are attracting widespread attention, and they need proton conductors as electrolytes. Fluoropolymer electrolytes such as Nafion® have been utilized for hydrogen–oxygen fuel cells below 100 °C; however, they are not applicable over the working temperature. Therefore, other types of polymer electrolytes are demanded for hydrogen–oxygen fuel cells. Polyoxometalate (POM) inorganic clusters are known as proton conductors and are utilized to prepare POM–polymer composites for solid electrolyte application. In such POM–polymer composites, distinct compositions and structures are significant for improving the performance of proton conductivity. Recently, POM–polymer composites with distinct compositions and structures have been synthesized to obtain high proton conductivity. The key factor is to use single-crystalline compounds. Here, several examples are overviewed by classifying them into three categories: (i) single-crystalline POM–polymer composites, (ii) organically modified POM (org-POM) polymers, and (iii) POM hybrid polymers using polymerizable cations. The application of proton-conductive solid electrolytes is focused on. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Graphical abstract

38 pages, 43510 KiB  
Review
Coordination Polymers of Vanadium and Selected Metal Ions with N,O-Donor Schiff Base Ligands—Synthesis, Crystal Structure, and Application
by Dariusz Osypiuk, Agata Bartyzel and Beata Cristóvão
Molecules 2025, 30(5), 1104; https://doi.org/10.3390/molecules30051104 - 27 Feb 2025
Viewed by 1176
Abstract
This review provides an overview of the synthesis, characterization and application of coordination polymers based on N,O-donor Schiff base ligands. The coordination polymers (CPs) represent a novel class of inorganic–organic hybrid materials with tunable compositions and fascinating structures. They are [...] Read more.
This review provides an overview of the synthesis, characterization and application of coordination polymers based on N,O-donor Schiff base ligands. The coordination polymers (CPs) represent a novel class of inorganic–organic hybrid materials with tunable compositions and fascinating structures. They are composed of metal ions and organic ligands. Therefore, the nature of the metal ion and type of organic ligand is the most significant factor in constructing targeted coordination polymers with the desired properties. Due to the versatile coordination modes, N,O-donor Schiff base ligands are also used to construct various CPs. Full article
Show Figures

Figure 1

Back to TopTop