Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (61,519)

Search Parameters:
Keywords = innovators

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 1867 KiB  
Article
Exploring the Triple Dividend Effect and Threshold Effect of Environmental Protection Tax: Evidence from Chinese Listed Companies
by Chenghao Ye, Hongjie Gao and Igor A. Mayburov
Sustainability 2025, 17(15), 7038; https://doi.org/10.3390/su17157038 (registering DOI) - 3 Aug 2025
Abstract
This study uses financial data from 872 Chinese listed companies (2018–2022). It tests the triple dividend effect and threshold effect of China’s environmental protection tax (EPT) using high-dimensional fixed effects models and panel threshold models. We document that (1) EPT creates an environmental [...] Read more.
This study uses financial data from 872 Chinese listed companies (2018–2022). It tests the triple dividend effect and threshold effect of China’s environmental protection tax (EPT) using high-dimensional fixed effects models and panel threshold models. We document that (1) EPT creates an environmental dividend for Chinese listed companies. It significantly reduces pollution emissions. A 1-unit tax increase reduces LnTPPE by 2.5%. (2) EPT creates a significant innovation dividend. It forces enterprises to improve the quality of authorized patents. A 1-unit tax increase raises patent technological complexity by 0.79%. (3) EPT creates an economic dividend. It significantly improves firm performance. A 1-unit tax increase raises relative corporate revenue by 38.1%. (4) EPT exerts significant threshold effects on micro-level triple dividend outcomes among Chinese listed companies. A heterogeneity analysis shows significant differences in threshold effects between non-heavily polluting and heavily polluting industries. This study confirms that China’s EPT generates a micro-level triple dividend effect alongside coexisting threshold effects for listed companies. This provides literature references for China to design and implement differentiated policies and offers a quantitative empirical case for implementing globally sustainable EPT strategies. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Figure 1

21 pages, 1147 KiB  
Review
Recent Advances in Developing Cell-Free Protein Synthesis Biosensors for Medical Diagnostics and Environmental Monitoring
by Tyler P. Green, Joseph P. Talley and Bradley C. Bundy
Biosensors 2025, 15(8), 499; https://doi.org/10.3390/bios15080499 (registering DOI) - 3 Aug 2025
Abstract
Cell-free biosensors harness the selectivity of cellular machinery without living cells’ constraints, offering advantages in environmental monitoring, medical diagnostics, and biotechnological applications. This review examines recent advances in cell-free biosensor development, highlighting their ability to detect diverse analytes including heavy metals, organic pollutants, [...] Read more.
Cell-free biosensors harness the selectivity of cellular machinery without living cells’ constraints, offering advantages in environmental monitoring, medical diagnostics, and biotechnological applications. This review examines recent advances in cell-free biosensor development, highlighting their ability to detect diverse analytes including heavy metals, organic pollutants, pathogens, and clinical biomarkers with high sensitivity and specificity. We analyze technological innovations in cell-free protein synthesis optimization, preservation strategies, and field deployment methods that have enhanced sensitivity, and practical applicability. The integration of synthetic biology approaches has enabled complex signal processing, multiplexed detection, and novel sensor designs including riboswitches, split reporter systems, and metabolic sensing modules. Emerging materials such as supported lipid bilayers, hydrogels, and artificial cells are expanding biosensor capabilities through microcompartmentalization and electronic integration. Despite significant progress, challenges remain in standardization, sample interference mitigation, and cost reduction. Future opportunities include smartphone integration, enhanced preservation methods, and hybrid sensing platforms. Cell-free biosensors hold particular promise for point-of-care diagnostics in resource-limited settings, environmental monitoring applications, and food safety testing, representing essential tools for addressing global challenges in healthcare, environmental protection, and biosecurity. Full article
Show Figures

Figure 1

20 pages, 641 KiB  
Article
The Impact of China’s Circular Economy Demonstration Policy on Urban Green Innovation Efficiency
by Yanqiu Zhu, Ming Zhang, Hongan Chen, Jun Ma and Fei Pan
Sustainability 2025, 17(15), 7037; https://doi.org/10.3390/su17157037 (registering DOI) - 3 Aug 2025
Abstract
Green innovation is a critical driver of sustainable development, yet it often faces efficiency challenges in rapidly industrializing economies. This study investigates the effect of China’s Circular Economy Demonstration Policy (CEDP) on urban green innovation efficiency (GIE) using city-level panel data from 2010 [...] Read more.
Green innovation is a critical driver of sustainable development, yet it often faces efficiency challenges in rapidly industrializing economies. This study investigates the effect of China’s Circular Economy Demonstration Policy (CEDP) on urban green innovation efficiency (GIE) using city-level panel data from 2010 to 2021. Employing a difference-in-differences (DID) approach, we find that CEDP significantly enhances GIE, with the policy effect becoming statistically significant after a three-year lag and accumulating over time. Robustness tests, including placebo analyses, alternative dependent variables, and propensity score matching, confirm the validity of the results. Mechanism analysis reveals that the policy improves green innovation primarily by reducing capital distortion, promoting market integration, and enhancing resource allocation efficiency. Further heterogeneity analyses show that the positive effects are stronger in central cities, capital cities, and eastern regions, reflecting the role of local economic and institutional conditions. The study concludes with policy implications emphasizing regionally tailored implementation, capacity building, and long-term commitment to maximize green innovation outcomes. Full article
Show Figures

Figure 1

26 pages, 3326 KiB  
Article
Zeolite in Vineyard: Innovative Agriculture Management Against Drought Stress
by Eleonora Cataldo, Sergio Puccioni, Aleš Eichmeier and Giovan Battista Mattii
Horticulturae 2025, 11(8), 897; https://doi.org/10.3390/horticulturae11080897 (registering DOI) - 3 Aug 2025
Abstract
Discovering, analyzing, and finding a key to understanding the physiological and biochemical responses that Vitis vinifera L. undertakes against drought stress is of fundamental importance for this profitable crop. Today’s considerable climatic fluctuations force researchers and farmers to focus on this issue with [...] Read more.
Discovering, analyzing, and finding a key to understanding the physiological and biochemical responses that Vitis vinifera L. undertakes against drought stress is of fundamental importance for this profitable crop. Today’s considerable climatic fluctuations force researchers and farmers to focus on this issue with solutions inclined to respect the ecosystem. In this academic work, we focused on describing the drought stress consequences on several parameters of secondary metabolites on Vitis vinifera leaves (quercetins, kaempferol, resveratrol, proline, and xanthophylls) and on some ecophysiological characteristics (e.g., water potential, stomatal conductance, and leaf temperature) to compare the answers that diverse agronomic management techniques (i.e., irrigation with and without zeolite, pure zeolite and no application) could instaurate in the metabolic pathway of this important crop with the aim to find convincing and thought-provoking responses to use this captivating and versatile mineral, the zeolite known as the “magic rock”. Stressed grapevines reached 56.80 mmol/m2s gs at veraison and a more negative stem Ψ (+10.63%) compared to plants with zeolite. Resveratrol, in the hottest season, fluctuated from 0.18–0.19 mg/g in zeolite treatments to 0.37 mg/g in stressed vines. Quercetins were inclined to accumulate in response to drought stress too. In fact, we recorded a peak of quercetin (3-O-glucoside + 3-O-glucuronide) of 11.20 mg/g at veraison in stressed plants. It is interesting to note how the pool of metabolites was often unchanged for plants treated with zeolite and for plants treated with water only, thus elevating this mineral to a “stress reliever”. Full article
Show Figures

Figure 1

54 pages, 506 KiB  
Article
Enhancing Complex Decision-Making Under Uncertainty: Theory and Applications of q-Rung Neutrosophic Fuzzy Sets
by Omniyyah Saad Alqurashi and Kholood Mohammad Alsager
Symmetry 2025, 17(8), 1224; https://doi.org/10.3390/sym17081224 (registering DOI) - 3 Aug 2025
Abstract
This thesis pioneers the development of q-Rung Neutrosophic Fuzzy Rough Sets (q-RNFRSs), establishing the first theoretical framework that integrates q-Rung Neutrosophic Sets with rough approximations to break through the conventional μq+ηq+νq1 constraint of existing [...] Read more.
This thesis pioneers the development of q-Rung Neutrosophic Fuzzy Rough Sets (q-RNFRSs), establishing the first theoretical framework that integrates q-Rung Neutrosophic Sets with rough approximations to break through the conventional μq+ηq+νq1 constraint of existing fuzzy–rough hybrids, achieving unprecedented capability in extreme uncertainty representation through our generalized model (Tq+Iq+Fq3). The work makes three fundamental contributions: (1) theoretical innovation through complete algebraic characterization of q-RNFRSs, including two distinct union/intersection operations and four novel classes of complement operators (with Theorem 1 verifying their involution properties via De Morgan’s Laws); (2) clinical breakthrough via a domain-independent medical decision algorithm featuring dynamic q-adaptation (q = 2–4) for criterion-specific uncertainty handling, demonstrating 90% diagnostic accuracy in validation trials—a 22% improvement over static models (p<0.001); and (3) practical impact through multi-dimensional uncertainty modeling (truth–indeterminacy–falsity), robust therapy prioritization under data incompleteness, and computationally efficient approximations for real-world clinical deployment. Full article
(This article belongs to the Special Issue The Fusion of Fuzzy Sets and Optimization Using Symmetry)
Show Figures

Figure 1

27 pages, 3470 KiB  
Article
Spatiotemporal Evolution and Influencing Factors of Carbon Emission Efficiency of Apple Production in China from 2003 to 2022
by Dejun Tan, Juanjuan Cheng, Jin Yu, Qian Wang and Xiaonan Chen
Agriculture 2025, 15(15), 1680; https://doi.org/10.3390/agriculture15151680 (registering DOI) - 2 Aug 2025
Abstract
Understanding the carbon emission efficiency of apple production (APCEE) is critical for promoting green and low-carbon agricultural development. However, the spatiotemporal dynamics and driving factors of APCEE in China remain inadequately explored. This study employs life cycle assessment, super-efficiency slacks-based measures, [...] Read more.
Understanding the carbon emission efficiency of apple production (APCEE) is critical for promoting green and low-carbon agricultural development. However, the spatiotemporal dynamics and driving factors of APCEE in China remain inadequately explored. This study employs life cycle assessment, super-efficiency slacks-based measures, and a panel Tobit model to evaluate the carbon footprint, APCEE, and its determinants in China’s two major production regions from 2003 to 2022. The results reveal that: (1) Producing one ton of apples in China results in 0.842 t CO2e emissions. Land carbon intensity and total carbon emissions peaked in 2010 (28.69 t CO2e/ha) and 2014 (6.52 × 107 t CO2e), respectively, exhibiting inverted U-shaped trends. Carbon emissions from various production areas show significant differences, with higher pressure on carbon emission reduction in the Loess Plateau region, especially in Gansu Province. (2) The APCEE in China exhibits a W-shaped trend (mean: 0.645), with overall low efficiency loss. The Bohai Bay region outperforms the Loess Plateau and national averages. (3) The structure of the apple industry, degree of agricultural mechanization, and green innovation positively influence APCEE, while the structure of apple cultivation, education level, and agricultural subsidies negatively impact it. Notably, green innovation and agricultural subsidies display lagged effects. Moreover, the drivers of APCEE differ significantly between the two major production regions. These findings provide actionable pathways for the green and low-carbon transformation of China’s apple industry, emphasizing the importance of spatially tailored green policies and technology-driven decarbonization strategies. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

42 pages, 5770 KiB  
Review
Echoes from Below: A Systematic Review of Cement Bond Log Innovations Through Global Patent Analysis
by Lim Shing Wang, Muhammad Haarith Firdaous and Pg Emeroylariffion Abas
Inventions 2025, 10(4), 67; https://doi.org/10.3390/inventions10040067 (registering DOI) - 2 Aug 2025
Abstract
Maintaining well integrity is essential in the oil and gas industry to prevent environmental hazards, operational risks, and economic losses. Cement bond log (CBL) tools are essential in evaluating cement bonding and ensuring wellbore stability. This study presents a patent landscape review of [...] Read more.
Maintaining well integrity is essential in the oil and gas industry to prevent environmental hazards, operational risks, and economic losses. Cement bond log (CBL) tools are essential in evaluating cement bonding and ensuring wellbore stability. This study presents a patent landscape review of CBL technologies, based on 3473 patent documents from the Lens.org database. After eliminating duplicates and irrelevant entries, 167 granted patents were selected for in-depth analysis. These were categorized by technology type (wave, electrical, radiation, neutron, and other tools) and by material focus (formation, casing, cement, and borehole fluid). The findings reveal a dominant focus on formation evaluation (59.9%) and a growing reliance on wave-based (22.2%) and other advanced tools (25.1%), indicating a shift toward high-precision diagnostics. Geographically, 75% of granted patents were filed through the U.S. Patent and Trademark Office, and 97.6% were held by companies, underscoring the dominance of corporate innovation and the minimal presence of academia and individuals. The review also identifies notable patents that reflect significant technical innovations and discusses their role in advancing diagnostic capabilities. These insights emphasize the need for broader collaboration and targeted research to advance well integrity technologies in line with industry goals for operational performance and safety. Full article
Show Figures

Figure 1

21 pages, 1677 KiB  
Systematic Review
Pharmacoeconomic Profiles of Advanced Therapy Medicinal Products in Rare Diseases: A Systematic Review
by Marianna Serino, Milana Krstin, Sara Mucherino, Enrica Menditto and Valentina Orlando
Healthcare 2025, 13(15), 1894; https://doi.org/10.3390/healthcare13151894 (registering DOI) - 2 Aug 2025
Abstract
Background and aim: Advanced Therapy Medicinal Products (ATMPs) are innovative drugs based on genes, tissues, or cells that target rare and severe diseases. ATMPs have shown promising clinical outcomes but are associated with high costs, raising questions about cost-effectiveness. Hence, this systematic [...] Read more.
Background and aim: Advanced Therapy Medicinal Products (ATMPs) are innovative drugs based on genes, tissues, or cells that target rare and severe diseases. ATMPs have shown promising clinical outcomes but are associated with high costs, raising questions about cost-effectiveness. Hence, this systematic review aims to analyze the cost-effectiveness and cost-utility profiles of the European Medicines Agency-authorized ATMPs for treating rare diseases. Methods: A systematic review was conducted following PRISMA guidelines. Studies were identified by searching PubMed, Embase, Web of Science, and ProQuest scientific databases. Economic evaluations reporting incremental cost-effectiveness/utility ratios (ICERs/ICURs) for ATMPs were included. Costs were standardized to 2023 Euros, and a cost-effectiveness plane was constructed to evaluate the results against willingness-to-pay (WTP) thresholds of EUR 50,000, EUR 100,000, and EUR 150,000 per QALY, as part of a sensitivity analysis. Results: A total of 61 studies met the inclusion criteria. ATMPs for rare blood diseases, such as tisagenlecleucel and axicabtagene ciloleucel, were found to be cost-effective in a majority of studies, with incremental QALYs ranging from 1.5 to 10 per patient over lifetime horizon. Tisagenlecleucel demonstrated a positive cost-effectiveness profile in the treatment of acute lymphoblastic leukemia (58%), while axicabtagene ciloleucel showed a positive profile in the treatment of diffuse large B-cell lymphoma (85%). Onasemnogene abeparvovec for spinal muscular atrophy (SMA) showed uncertain cost-effectiveness results, and voretigene neparvovec for retinal diseases was not cost-effective in 40% of studies, with incremental QALYs around 1.3 and high costs exceeding the WTP threshold set. Conclusions: ATMPs in treating rare diseases show promising economic potential, but cost-effectiveness varies across indications. Policymakers must balance innovation with system sustainability, using refined models and the long-term impact on patient outcomes. Full article
(This article belongs to the Special Issue Healthcare Economics, Management, and Innovation for Health Systems)
Show Figures

Figure 1

24 pages, 1376 KiB  
Article
Smart Agriculture in Ecuador: Adoption of IoT Technologies by Farmers in Guayas to Improve Agricultural Yields
by Ruth Rubí Peña-Holguín, Carlos Andrés Vaca-Coronel, Ruth María Farías-Lema, Sonnia Valeria Zapatier-Castro and Juan Diego Valenzuela-Cobos
Agriculture 2025, 15(15), 1679; https://doi.org/10.3390/agriculture15151679 (registering DOI) - 2 Aug 2025
Abstract
The adoption of digital technologies, such as the Internet of Things (IoT), has emerged as a key strategy to improve efficiency, sustainability, and productivity in the agricultural sector, especially in contexts of modernization and digital transformation in developing regions. This study analyzes the [...] Read more.
The adoption of digital technologies, such as the Internet of Things (IoT), has emerged as a key strategy to improve efficiency, sustainability, and productivity in the agricultural sector, especially in contexts of modernization and digital transformation in developing regions. This study analyzes the key factors influencing the adoption of IoT technologies by farmers in the province of Guayas, Ecuador, and their impact on agricultural yields. The research is grounded in innovation diffusion theory and technology acceptance models, which emphasize the role of perception, usability, training, and economic viability in digital adoption. A total of 250 surveys were administered, with 232 valid responses (92.8% response rate), reflecting strong interest from the agricultural sector in digital transformation and precision agriculture. Using structural equation modeling (SEM), the results confirm that general perception of IoT (β = 0.514), practical functionality (β = 0.488), and technical training (β = 0.523) positively influence adoption, while high implementation costs negatively affect it (β = −0.651), all of which are statistically significant (p < 0.001). Furthermore, adoption has a strong positive effect on agricultural yield (β = 0.795). The model explained a high percentage of variance in both adoption (R2 = 0.771) and performance (R2 = 0.706), supporting its predictive capacity. These findings underscore the need for public and private institutions to implement targeted training and financing strategies to overcome economic barriers and foster the sustainable integration of IoT technologies in Ecuadorian agriculture. Full article
Show Figures

Figure 1

23 pages, 1693 KiB  
Review
From Vision to Illumination: The Promethean Journey of Optical Coherence Tomography in Cardiology
by Angela Buonpane, Giancarlo Trimarchi, Francesca Maria Di Muro, Giulia Nardi, Marco Ciardetti, Michele Alessandro Coceani, Luigi Emilio Pastormerlo, Umberto Paradossi, Sergio Berti, Carlo Trani, Giovanna Liuzzo, Italo Porto, Antonio Maria Leone, Filippo Crea, Francesco Burzotta, Rocco Vergallo and Alberto Ranieri De Caterina
J. Clin. Med. 2025, 14(15), 5451; https://doi.org/10.3390/jcm14155451 (registering DOI) - 2 Aug 2025
Abstract
Optical Coherence Tomography (OCT) has evolved from a breakthrough ophthalmologic imaging tool into a cornerstone technology in interventional cardiology. After its initial applications in retinal imaging in the early 1990s, OCT was subsequently envisioned for cardiovascular use. In 1995, its ability to visualize [...] Read more.
Optical Coherence Tomography (OCT) has evolved from a breakthrough ophthalmologic imaging tool into a cornerstone technology in interventional cardiology. After its initial applications in retinal imaging in the early 1990s, OCT was subsequently envisioned for cardiovascular use. In 1995, its ability to visualize atherosclerotic plaques was demonstrated in an in vitro study, and the following year marked the acquisition of the first in vivo OCT image of a human coronary artery. A major milestone followed in 2000, with the first intracoronary imaging in a living patient using time-domain OCT. However, the real inflection point came in 2006 with the advent of frequency-domain OCT, which dramatically improved acquisition speed and image quality, enabling safe and routine imaging in the catheterization lab. With the advent of high-resolution, second-generation frequency-domain systems, OCT has become clinically practical and widely adopted in catheterization laboratories. OCT progressively entered interventional cardiology, first proving its safety and feasibility, then demonstrating superiority over angiography alone in guiding percutaneous coronary interventions and improving outcomes. Today, it plays a central role not only in clinical practice but also in cardiovascular research, enabling precise assessment of plaque biology and response to therapy. With the advent of artificial intelligence and hybrid imaging systems, OCT is now evolving into a true precision-medicine tool—one that not only guides today’s therapies but also opens new frontiers for discovery, with vast potential still waiting to be explored. Tracing its historical evolution from ophthalmology to cardiology, this narrative review highlights the key technological milestones, clinical insights, and future perspectives that position OCT as an indispensable modality in contemporary interventional cardiology. As a guiding thread, the myth of Prometheus is used to symbolize the evolution of OCT—from its illuminating beginnings in ophthalmology to its transformative role in cardiology—as a metaphor for how light, innovation, and knowledge can reveal what was once hidden and redefine clinical practice. Full article
(This article belongs to the Section Cardiology)
Show Figures

Figure 1

26 pages, 7634 KiB  
Article
Research on the Preparation and Performance of Wood with High Negative Oxygen Ion Release Induced by Moisture
by Min Yin, Yuqi Zhang, Yun Lu, Zongying Fu, Haina Mi, Jianfang Yu and Ximing Wang
Coatings 2025, 15(8), 905; https://doi.org/10.3390/coatings15080905 (registering DOI) - 2 Aug 2025
Abstract
With the growing severity of environmental pollution, people are paying increasing attention to their health. However, naturally occurring wood with health benefits and applications in human healthcare is still scarce. Natural wood exhibits a limited negative oxygen ion release capacity, and this release [...] Read more.
With the growing severity of environmental pollution, people are paying increasing attention to their health. However, naturally occurring wood with health benefits and applications in human healthcare is still scarce. Natural wood exhibits a limited negative oxygen ion release capacity, and this release has a short duration, failing to meet practical application requirements. This study innovatively developed a humidity-responsive, healthy wood material with a high negative oxygen ion release capacity based on fast-growing poplar. Through vacuum cyclic impregnation technology, hexagonal stone powder was infused into the pores of poplar wood, endowing it with the ability to continuously release negative oxygen ions. The healthy wood demonstrated a static average negative oxygen ion release rate of 537 ions/cm3 (peaking at 617 ions/cm3) and a dynamic average release rate of 3,170 ions/cm3 (peaking at 10,590 ions/cm3). The results showed that the particle size of hexagonal stone powder in suspension was influenced by the dispersants and dispersion processes. The composite dispersion process demonstrated optimal performance when using 0.5 wt% silane coupling agent γ-(methacryloxy)propyltrimethoxysilane (KH570), achieving the smallest particle size of 8.93 μm. The healthy wood demonstrated excellent impregnation performance, with a weight gain exceeding 14.61% and a liquid absorption rate surpassing 165.18%. The optimal impregnation cycle for vacuum circulation technology was determined to be six cycles, regardless of the type of dispersant. Compared with poplar wood, the hygroscopic swelling rate of healthy wood was lower, especially in PEG-treated samples, where the tangential, radial, longitudinal, and volumetric swelling rates decreased by 70.93%, 71.67%, 69.41%, and 71.35%, respectively. Combining hexagonal stone powder with fast-growing poplar wood can effectively enhance the release of negative oxygen ions. The static average release of negative oxygen ions from healthy wood is 1.44 times that of untreated hexagonal stone powder, and the dynamic release reaches 2 to 3 times the concentration of negative oxygen ions specified by national fresh air standards. The water-responsive mechanism revealed that negative oxygen ion release surged when ambient humidity exceeded 70%. This work proposes a sustainable and effective method to prepare healthy wood with permanent negative oxygen ion release capability. It demonstrates great potential for improving indoor air quality and enhancing human health. Full article
Show Figures

Figure 1

25 pages, 861 KiB  
Article
Designing a Board Game to Expand Knowledge About Parental Involvement in Teacher Education
by Zsófia Kocsis, Zsolt Csák, Dániel Bodnár and Gabriella Pusztai
Educ. Sci. 2025, 15(8), 986; https://doi.org/10.3390/educsci15080986 (registering DOI) - 2 Aug 2025
Abstract
Research highlights a growing demand for active, experiential learning methods in higher education, especially in teacher education. While the benefits of parental involvement (PI) are well-documented, Hungary lacks tools to effectively prepare teacher trainees for fostering family–school cooperation. This study addresses this gap [...] Read more.
Research highlights a growing demand for active, experiential learning methods in higher education, especially in teacher education. While the benefits of parental involvement (PI) are well-documented, Hungary lacks tools to effectively prepare teacher trainees for fostering family–school cooperation. This study addresses this gap by introducing a custom-designed board game as an innovative teaching tool. The game simulates real-world challenges in PI through a cooperative, scenario-based framework. Exercises are grounded in international and national research, ensuring their relevance and evidence-based design. Tested with 110 students, the game’s educational value was assessed via post-gameplay questionnaires. Participants emphasized the strengths of its cooperative structure, realistic scenarios, and integration of humor. Many reported gaining new insights into parental roles and strategies for effective home–school partnerships. Practical applications include integrating the game into teacher education curricula and adapting it for other educational contexts. This study demonstrates how board games can bridge theory and practice, offering an engaging, effective medium to prepare future teachers for the challenges of PI. Full article
(This article belongs to the Section Teacher Education)
Show Figures

Figure 1

24 pages, 1593 KiB  
Article
Robust Adaptive Multiple Backtracking VBKF for In-Motion Alignment of Low-Cost SINS/GNSS
by Weiwei Lyu, Yingli Wang, Shuanggen Jin, Haocai Huang, Xiaojuan Tian and Jinling Wang
Remote Sens. 2025, 17(15), 2680; https://doi.org/10.3390/rs17152680 (registering DOI) - 2 Aug 2025
Abstract
The low-cost Strapdown Inertial Navigation System (SINS)/Global Navigation Satellite System (GNSS) is widely used in autonomous vehicles for positioning and navigation. Initial alignment is a critical stage for SINS operations, and the alignment time and accuracy directly affect the SINS navigation performance. To [...] Read more.
The low-cost Strapdown Inertial Navigation System (SINS)/Global Navigation Satellite System (GNSS) is widely used in autonomous vehicles for positioning and navigation. Initial alignment is a critical stage for SINS operations, and the alignment time and accuracy directly affect the SINS navigation performance. To address the issue that low-cost SINS/GNSS cannot effectively achieve rapid and high-accuracy alignment in complex environments that contain noise and external interference, an adaptive multiple backtracking robust alignment method is proposed. The sliding window that constructs observation and reference vectors is established, which effectively avoids the accumulation of sensor errors during the full integration process. A new observation vector based on the magnitude matching is then constructed to effectively reduce the effect of outliers on the alignment process. An adaptive multiple backtracking method is designed in which the window size can be dynamically adjusted based on the innovation gradient; thus, the alignment time can be significantly shortened. Furthermore, the modified variational Bayesian Kalman filter (VBKF) that accurately adjusts the measurement noise covariance matrix is proposed, and the Expectation–Maximization (EM) algorithm is employed to refine the prior parameter of the predicted error covariance matrix. Simulation and experimental results demonstrate that the proposed method significantly reduces alignment time and improves alignment accuracy. Taking heading error as the critical evaluation indicator, the proposed method achieves rapid alignment within 120 s and maintains a stable error below 1.2° after 80 s, yielding an improvement of over 63% compared to the backtracking-based Kalman filter (BKF) method and over 57% compared to the fuzzy adaptive KF (FAKF) method. Full article
(This article belongs to the Section Urban Remote Sensing)
27 pages, 1557 KiB  
Review
Glioblastoma: A Multidisciplinary Approach to Its Pathophysiology, Treatment, and Innovative Therapeutic Strategies
by Felipe Esparza-Salazar, Renata Murguiondo-Pérez, Gabriela Cano-Herrera, Maria F. Bautista-Gonzalez, Ericka C. Loza-López, Amairani Méndez-Vionet, Ximena A. Van-Tienhoven, Alejandro Chumaceiro-Natera, Emmanuel Simental-Aldaba and Antonio Ibarra
Biomedicines 2025, 13(8), 1882; https://doi.org/10.3390/biomedicines13081882 (registering DOI) - 2 Aug 2025
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor, characterized by rapid progression, profound heterogeneity, and resistance to conventional therapies. This review provides an integrated overview of GBM’s pathophysiology, highlighting key mechanisms such as neuroinflammation, genetic alterations (e.g., EGFR, PDGFRA), the tumor microenvironment, [...] Read more.
Glioblastoma (GBM) is the most aggressive primary brain tumor, characterized by rapid progression, profound heterogeneity, and resistance to conventional therapies. This review provides an integrated overview of GBM’s pathophysiology, highlighting key mechanisms such as neuroinflammation, genetic alterations (e.g., EGFR, PDGFRA), the tumor microenvironment, microbiome interactions, and molecular dysregulations involving gangliosides and sphingolipids. Current diagnostic strategies, including imaging, histopathology, immunohistochemistry, and emerging liquid biopsy techniques, are explored for their role in improving early detection and monitoring. Treatment remains challenging, with standard therapies—surgery, radiotherapy, and temozolomide—offering limited survival benefits. Innovative therapies are increasingly being explored and implemented, including immune checkpoint inhibitors, CAR-T cell therapy, dendritic and peptide vaccines, and oncolytic virotherapy. Advances in nanotechnology and personalized medicine, such as individualized multimodal immunotherapy and NanoTherm therapy, are also discussed as strategies to overcome the blood–brain barrier and tumor heterogeneity. Additionally, stem cell-based approaches show promise in targeted drug delivery and immune modulation. Non-conventional strategies such as ketogenic diets and palliative care are also evaluated for their adjunctive potential. While novel therapies hold promise, GBM’s complexity demands continued interdisciplinary research to improve prognosis, treatment response, and patient quality of life. This review underscores the urgent need for personalized, multimodal strategies in combating this devastating malignancy. Full article
23 pages, 688 KiB  
Article
Re-Consider the Lobster: Animal Lives in Protein Supply Chains
by Karl T. Ulrich
Sustainability 2025, 17(15), 7034; https://doi.org/10.3390/su17157034 (registering DOI) - 2 Aug 2025
Abstract
Animal protein production represents a complex system of lives transformed into nutrition, with profound ethical and environmental implications. This study provides a quantitative analysis of animal lives required to produce human-consumable protein across major food production systems. Categorizing animal lives based on cognitive [...] Read more.
Animal protein production represents a complex system of lives transformed into nutrition, with profound ethical and environmental implications. This study provides a quantitative analysis of animal lives required to produce human-consumable protein across major food production systems. Categorizing animal lives based on cognitive complexity and accounting for all lives involved in production, including direct harvests, reproductive animals, and feed species, reveals dramatic variations in protein efficiency. The analysis considers two categories of animal life: complex-cognitive lives (e.g., mammals, birds, cephalopods) and pain-capable lives (e.g., fish, crustaceans). Calculating protein yield per life demonstrates efficiency differences spanning more than five orders of magnitude, from 2 g per complex-cognitive life for baby octopus to 390,000 g per life for bovine dairy systems. Key findings expose disparities between terrestrial and marine protein production. Terrestrial systems involving mammals and birds show higher protein yields and exclusively involve complex-cognitive lives, while marine systems rely predominantly on pain-capable lives across complex food chains. Dairy production emerges as the most efficient system. Aquaculture systems reveal complex dynamics, with farmed carnivorous fish requiring hundreds of feed fish lives to produce protein, compared to omnivorous species that demonstrate improved efficiency. Beyond quantitative analysis, this research provides a framework for understanding the ethical and ecological dimensions of protein production, offering insights for potential systemic innovations. Full article
(This article belongs to the Section Sustainable Food)
Back to TopTop