Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = inner rotor optimization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2120 KB  
Article
An Analytical Thermal Model for Coaxial Magnetic Gears Considering Eddy Current Losses
by Panteleimon Tzouganakis, Vasilios Gakos, Christos Papalexis, Christos Kalligeros, Antonios Tsolakis and Vasilios Spitas
Modelling 2025, 6(4), 114; https://doi.org/10.3390/modelling6040114 - 25 Sep 2025
Abstract
This work presents an analytical 2D model for estimating eddy current losses in the permanent magnets (PMs) of a coaxial magnetic gear (CMG), with a focus on loss minimization through magnet segmentation. The model is applied under various operating conditions, including different rotational [...] Read more.
This work presents an analytical 2D model for estimating eddy current losses in the permanent magnets (PMs) of a coaxial magnetic gear (CMG), with a focus on loss minimization through magnet segmentation. The model is applied under various operating conditions, including different rotational speeds, load levels, and segmentation configurations, to derive empirical expressions for eddy current losses in both the inner and outer rotors. A 1D lumped-parameter thermal model is then used to predict the steady-state temperature of the PMs, incorporating empirical correlations for the thermal convection coefficient. Both models are validated against finite element analysis (FEA) simulations. The analytical eddy current loss model exhibits excellent agreement, with a maximum error of 2%, while the thermal model shows good consistency, with a maximum temperature deviation of 5%. The results confirm that eddy current losses increase with rotational speed but can be significantly reduced through magnet segmentation. However, achieving an acceptable thermal performance at high speeds may require a large number of segments, particularly in the outer rotor, which could influence the manufacturing cost and complexity. The proposed models offer a fast and accurate tool for the design and thermal analysis of CMGs, enabling early-stage optimization with minimal computational effort. Full article
Show Figures

Figure 1

13 pages, 3632 KB  
Article
Design and Analysis of Torque Ripple Reduction in Low-Pole Axial Flux Motor
by Si-Woo Song and Won-Ho Kim
Processes 2025, 13(9), 2913; https://doi.org/10.3390/pr13092913 - 12 Sep 2025
Viewed by 289
Abstract
With the growing demand for high-efficiency and high-performance electric motors in applications such as electric vehicles, drones, and industrial drive systems, Axial Flux Motors (AFMs) have gained significant attention due to their high torque density and compact structure. However, low-pole AFMs are prone [...] Read more.
With the growing demand for high-efficiency and high-performance electric motors in applications such as electric vehicles, drones, and industrial drive systems, Axial Flux Motors (AFMs) have gained significant attention due to their high torque density and compact structure. However, low-pole AFMs are prone to performance degradation and noise issues caused by magnetic saturation in the rotor back yoke and increased torque ripple. In this study, a conventional 6-pole, 9-slot Radial Flux Motor (RFM) was redesigned as an AFM within the same external volume. To minimize losses, the stator inner diameter and slot thickness were co-optimized. In addition, tapering techniques were applied to both the stator and magnets to reduce torque ripple, and a parametric analysis of magnet tapering was conducted to identify optimal design conditions. A rolling core fabrication method was adopted to ensure both electromagnetic performance and manufacturability. The final AFM design demonstrated a 1.4 percentage point improvement in efficiency. Additionally, torque ripple was reduced by 69.44%, thereby validating the effectiveness of the AFM redesign and ripple reduction strategy. Full article
Show Figures

Figure 1

20 pages, 8212 KB  
Article
High-Torque-Density Composite-Cooled Axial Flux Electrically Excited Synchronous Motor
by Shumei Cui, Yuqi Zhang, Beibei Song, Kexin Xu, Can Feng and Shaoshuan Qi
Energies 2025, 18(17), 4585; https://doi.org/10.3390/en18174585 - 29 Aug 2025
Viewed by 580
Abstract
Axial flux motors, characterized by compact axial dimensions and high torque density, are well-suited for space-constrained applications such as in-wheel drives and flying vehicles. However, conventional axial flux permanent magnet synchronous motors (AFPMSMs) face challenges such as high-temperature demagnetization, reduced efficiency at high [...] Read more.
Axial flux motors, characterized by compact axial dimensions and high torque density, are well-suited for space-constrained applications such as in-wheel drives and flying vehicles. However, conventional axial flux permanent magnet synchronous motors (AFPMSMs) face challenges such as high-temperature demagnetization, reduced efficiency at high speeds, and elevated manufacturing costs. Electrically excited synchronous motors (EESMs) offer a promising alternative, providing high-temperature reliability and superior high-speed capability while maintaining high torque density. In this paper, a novel composite-cooled axial flux electrically excited synchronous motor (AFEESM) is proposed. From an electromagnetic design perspective, the effects of key parameters such as shaft-to-outer-diameter ratio, inner-to-outer-diameter ratio, slot depth, and yoke thickness on output performance are systematically investigated, and a dedicated design procedure is established. Through multi-objective optimization, the motor’s torque output is increased by 19.6%. Comparative simulations are conducted to evaluate differences in torque density, efficiency, and cost between the proposed AFEESM, a conventional radial flux EESM, and an AFPMSM. To address the cooling requirements of double-sided windings on both the stator and rotor, a dual-channel composite cooling structure is developed, integrating internal–external double-loop water cooling for the stator and axial through-hole air cooling for the rotor, reducing the peak temperature by over 36%. Finally, a prototype is manufactured, and no-load characteristics and load efficiency validate the effectiveness of the electromagnetic design and the structural reliability of the motor. Full article
(This article belongs to the Special Issue Advances in Control of Electrical Drives and Power Electronics)
Show Figures

Figure 1

21 pages, 3945 KB  
Article
Improvement of Modified Rotor on Aerodynamic Performance of Hybrid Vertical Axis Wind Turbine
by Shaohua Chen, Chenguang Song, Zhong Qian, Aihua Wu, Yixian Zhu, Jianping Xia, Jian Wang, Yuan Yang, Xiang Chen, Yongfei Yuan, Chao Chen and Yang Cao
Energies 2025, 18(13), 3357; https://doi.org/10.3390/en18133357 - 26 Jun 2025
Cited by 2 | Viewed by 493
Abstract
In this paper, the aerodynamic performance of an improved hybrid vertical-axis wind turbine is investigated, and the performance of the hybrid turbine at high tip–speed ratios is significantly enhanced by adding a spoiler at the end of the inner rotor. The improved design [...] Read more.
In this paper, the aerodynamic performance of an improved hybrid vertical-axis wind turbine is investigated, and the performance of the hybrid turbine at high tip–speed ratios is significantly enhanced by adding a spoiler at the end of the inner rotor. The improved design increases the average torque coefficient by 7.4% and the peak power coefficient by 32.4%, which effectively solves the problem of power loss due to the negative torque of the inner rotor in the conventional hybrid turbine at high TSR; the spoiler improves the performance of the outer rotor in the wake region by optimizing the airflow distribution, reducing the counter-pressure differential, lowering the inner rotor drag and at the same time attenuating the wake turbulence intensity. The study verifies the validity of the design through 2D CFD simulation, and provides a new idea for the optimization of hybrid wind turbines, which is especially suitable for low wind speed and complex terrain environments, and is of great significance for the promotion of renewable energy technology development. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

24 pages, 4655 KB  
Article
Effect of Bearing Support Parameters on the Radial and Angular Deformation of Rotor Shaft Gear Based on CRDRS Support Configuration with Intermediate Bearing Support
by Xiaojie Yuan, Xiaoyu Che, Rupeng Zhu and Weifang Chen
Machines 2025, 13(6), 513; https://doi.org/10.3390/machines13060513 - 12 Jun 2025
Viewed by 1376
Abstract
The rotor shaft is a critical component responsible for transmitting engine power to the helicopter’s rotor. Deformation of the rotor shaft can affect the meshing performance of the output stage gears in the main gearbox, thereby affecting load transfer efficiency. By adjusting the [...] Read more.
The rotor shaft is a critical component responsible for transmitting engine power to the helicopter’s rotor. Deformation of the rotor shaft can affect the meshing performance of the output stage gears in the main gearbox, thereby affecting load transfer efficiency. By adjusting the support parameters of the rotor shaft, deformation at critical positions can be minimized, and the meshing performance of the output stage gears can be improved. Therefore, it is imperative to investigate the influence of rotor shaft support parameters on the deformation of the rotor shaft. This paper takes coaxial reversing dual rotor shaft (CRDRS) support configuration with intermediate bearing support as object. Utilizing Timoshenko beam theory, a rotor shaft model is developed, and static equations are derived based on the Lagrange equations. The relaxation iteration method is employed for a two-level iterative solution, and the effects of bearing support positions and support stiffness on the radial and angular deformations of rotor shaft gears under two support configurations, simply supported outer rotor shaft–cantilever-supported inner rotor shaft, and simply supported outer rotor shaft–simply supported inner rotor shaft, are analyzed. The findings indicate that the radial and angular deformations of gear s1 are consistently smaller than those of gear s2 in the CRDRS system. This difference is particularly pronounced in the selection of support configuration. The bearing support position plays a dominant role in gear deformation, exhibiting a monotonic linear relationship. In contrast, although adjustments in bearing support stiffness also follow a linear pattern in influencing deformation, their impact is relatively limited. Overall, optimal design should prioritize the adjustment of bearing positions, particularly the layout of b3 relative to s2, while complementing it with coordinated modifications to the stiffness of bearings b2, b3, and b4 to effectively enhance the static characteristics of the dual-rotor shaft gears. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

19 pages, 2822 KB  
Article
Aero-Structural Design Optimization of a Transonic Fan Rotor Using an Adaptive POD-Based Hybrid Surrogate Model
by Jiaqi Luo, Zhen Fu and Jiaxing Li
Aerospace 2025, 12(6), 504; https://doi.org/10.3390/aerospace12060504 - 2 Jun 2025
Cited by 2 | Viewed by 570
Abstract
In this study, an optimization framework for turbomachinery blades using a hybrid surrogate model assisted by proper orthogonal decomposition (POD) is introduced and then applied to the aero-structural multidisciplinary design optimization of a transonic fan rotor, NASA Rotor 67. The rotor blade is [...] Read more.
In this study, an optimization framework for turbomachinery blades using a hybrid surrogate model assisted by proper orthogonal decomposition (POD) is introduced and then applied to the aero-structural multidisciplinary design optimization of a transonic fan rotor, NASA Rotor 67. The rotor blade is optimized through blade sweeping controlled by Gaussian radial basis functions. Calculations of aerodynamic and structural performance are achieved through computational fluid dynamics and computational structural mechanics. With a number of performance snapshots, singular value decomposition is employed to extract the basis modes, which are then used as the kernel functions in training the POD-based hybrid model. The inverse multi-quadratic radial basis function is adopted to construct the response surfaces for the coefficients of kernel functions. Aerodynamic design optimization is first investigated to preliminarily explore the impact of blade sweeping. In the aero-structural optimization, the aerodynamic performance, and von Mises stress are considered equally important and incorporated into one single objective function with different weight coefficients. The results are given and compared in detail, demonstrating that the average stress is dependent on the aerodynamic loading, and the configuration with forward sweeping on inner spans and backward sweeping on outer spans is the most effective for increasing the adiabatic efficiency while decreasing the average stress when the total pressure ratio is constrained. Through this study, the optimization framework is validated and a practical configuration for reducing the stress in a transonic fan rotor is provided. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

26 pages, 17108 KB  
Article
Impact of Passive Modifications on the Efficiency of Darrieus Vertical Axis Wind Turbines Utilizing the Kline-Fogleman Blade Design at the Trailing Edge
by Farzad Ghafoorian and Hui Wan
Energies 2025, 18(11), 2718; https://doi.org/10.3390/en18112718 - 23 May 2025
Cited by 1 | Viewed by 830
Abstract
As the utilization of wind energy continues to expand as a prominent renewable energy source, the application of Darrieus Vertical Axis Wind Turbine (VAWT) technology has expanded significantly. Various passive modification methods have been developed to enhance efficiency and optimize the aerodynamic performance [...] Read more.
As the utilization of wind energy continues to expand as a prominent renewable energy source, the application of Darrieus Vertical Axis Wind Turbine (VAWT) technology has expanded significantly. Various passive modification methods have been developed to enhance efficiency and optimize the aerodynamic performance of the rotor through blade modifications. This study presents passive modification method utilizing Kline–Fogleman (KF) blades which incorporate step-like horizontal slats along the trailing edge. Through Computational Fluid Dynamics (CFD) simulations, this study evaluates ten distinct KF blade configurations, varying in step length and depth, with steps positioned on the inner side, outer side, and both sides of the airfoil. The results indicate that the KF blade with a shorter step on inner side, 20%c in length and 2%c in depth, enhances the average power coefficient (Cp) by 19% compared to the rotor with a clean blade. However, when horizontal slats are incorporated on both sides of the blade, with dimensions of 50%c in length and 5%c in depth, Cp decreases by 33% compared to the clean blade. This reduction occurs across both low and high tip speed ratio (TSR) ranges. It has been observed that the presence of a high-pressure zone of 200 Pa at the trailing edge disrupts the aerodynamic performance when the KF blade is in the upwind region between the azimuth angles of 45° and 135°. Full article
Show Figures

Figure 1

16 pages, 31375 KB  
Article
Aerodynamic Analysis of a Hexacopter with an Inner Tilted-Rotor Configuration During Hovering
by Yao Lei and Chunfeng Luan
Aerospace 2025, 12(4), 317; https://doi.org/10.3390/aerospace12040317 - 8 Apr 2025
Viewed by 988
Abstract
The present work is aimed at investigating the arrangement design of an inner tilted-rotor hexacopter to optimize aerodynamic performance with different rotor spacing ratios (s/D) and dihedral angles (β). Both experiments and numerical simulations were applied for [...] Read more.
The present work is aimed at investigating the arrangement design of an inner tilted-rotor hexacopter to optimize aerodynamic performance with different rotor spacing ratios (s/D) and dihedral angles (β). Both experiments and numerical simulations were applied for different rotor arrangements, and the better rotor agreement was related to both higher thrust and lower power consumption. The results show that hovering efficiency is mainly affected by rotor spacing ratios and dihedral angles. Appropriate rotor spacing with moderate rotor interference from the blade tip vortices, as well as downwash flow, reduce vortex distortion and fragmentation. The results show that a hexacopter with inner tilted-rotors obtains a larger thrust and smaller power with a high factor of merit (FM) at s/D = 1.6 and β = 40°, and this is considered to be the optimal arrangement for a hexacopter with excellent aerodynamic characteristics. Full article
(This article belongs to the Special Issue Aircraft Design and System Optimization)
Show Figures

Figure 1

16 pages, 5146 KB  
Article
Comparative Study of Dual-Stator Permanent Magnet Machines with Different PM Arrangements and Rotor Topologies for Aviation Electric Propulsion
by Minchen Zhu, Lijian Wu, Dongliang Liu, Yiming Shen, Rongdeng Li and Hui Wen
Machines 2025, 13(4), 273; https://doi.org/10.3390/machines13040273 - 26 Mar 2025
Viewed by 902
Abstract
The dual-stator permanent magnet (DSPM) machine has proved to have high space utilization and a redundant structure, which can be beneficial to improving the fault tolerance and torque density performance. In this paper, three types of DSPM machines are proposed and compared, where [...] Read more.
The dual-stator permanent magnet (DSPM) machine has proved to have high space utilization and a redundant structure, which can be beneficial to improving the fault tolerance and torque density performance. In this paper, three types of DSPM machines are proposed and compared, where two sets of armature windings are wound in both inner/outer stators, producing more than one torque component compared with single-stator PM machines. The machine topology and operating principle of three DSPM machines are analyzed first. Next, feasible stator/rotor-pole number combinations are compared and determined. Furthermore, based on the finite-element (FE) method, both the electromagnetic performances of three DSPM machines under open-circuit and rated-load conditions after optimization are compared, aimed at generating maximum torque at fixed copper loss. The FE analyses indicate that the dual-stator consequent-pole permanent magnet (DSCPPM) machine generates maximum torque per PM volume, together with relatively high efficiency, which makes it a potentially hopeful candidate for low-speed and high-torque applications. In addition, a thermal analysis is carried out to confirm the validity of the design scheme. Finally, in order to verify the FE predictions, a prototype DSCPPM machine is manufactured and experimentally tested. Full article
Show Figures

Figure 1

22 pages, 11626 KB  
Article
A Novel Process for the Design, Analysis, and Control of a Dual-Phase Motors with Independent Drive for a High Power Density
by Hyung-Sub Han, Si-Woo Song, Seung-Heon Lee, Su-Bin Jeon and Won-Ho Kim
Processes 2025, 13(4), 930; https://doi.org/10.3390/pr13040930 - 21 Mar 2025
Viewed by 492
Abstract
This paper proposes a design and control process for a dual-phase motors (DPM) aimed at independent drive. To achieve independent drive, different pole numbers are used for the inner rotor and outer rotor of the dual-rotor motors (DRM). Additionally, a special winding method [...] Read more.
This paper proposes a design and control process for a dual-phase motors (DPM) aimed at independent drive. To achieve independent drive, different pole numbers are used for the inner rotor and outer rotor of the dual-rotor motors (DRM). Additionally, a special winding method is selected to allow the inner rotor and outer rotor to operate independently on a single stator. Through this winding method, only the rotor linked to the current is driven. The motor uses a combined current synthesized from 3-phase and 6-phase currents, and so the current ratio and period based on electrical frequency are determined. By selecting the current ratio, a current similar to the phase voltage waveform is formed to find the optimal output point, which is then formalized. Furthermore, by redefining the period, the inner rotor and outer rotor are analyzed separately within the complex waveform. Subsequently, the motor’s T-N curve characteristics are analyzed through voltage/current limit circles, and the control method is explained to present the overall process of the DPM. Full article
(This article belongs to the Section Automation Control Systems)
Show Figures

Graphical abstract

25 pages, 9780 KB  
Article
Efficiency Optimization of PMSM-Type Elevator Machine: An Industrial Comparison
by Mucahit Soyaslan, Osman Eldogan, Ahmet Fenercioglu, Yusuf Avsar, Nurdogan Ceylan and Muhammed Salih Sarıkaya
Machines 2025, 13(3), 173; https://doi.org/10.3390/machines13030173 - 21 Feb 2025
Viewed by 1520
Abstract
This study presents the design, modeling, and prototyping of an external rotor permanent magnet synchronous motor (ER-PMSM) specifically for elevator traction systems. The external rotor design aims to surpass the efficiency of conventional inner rotor gearless elevator traction motors. A commercially available 4 [...] Read more.
This study presents the design, modeling, and prototyping of an external rotor permanent magnet synchronous motor (ER-PMSM) specifically for elevator traction systems. The external rotor design aims to surpass the efficiency of conventional inner rotor gearless elevator traction motors. A commercially available 4 kW inner rotor permanent magnet synchronous motor (IR-PMSM) was selected for comparative analysis. Critical parameters, including stator tooth tip thickness, slot tip radius, slot height, stator yoke height, stator tooth thickness, and the number of turns per phase, were optimized to enhance efficiency. The artificial bee colony (ABC) algorithm was utilized for the first time to determine the optimal configuration of an external rotor PMSM. The prototype was fabricated and subjected to rigorous testing using a dedicated electrical motor test setup. Comparative results demonstrated a significant improvement in efficiency for the ER-PMSM over the IR-PMSM, with the efficiency increasing from 72.5% to 84.67% at nominal operating conditions. Full article
Show Figures

Figure 1

25 pages, 10672 KB  
Article
Enhancing Self-Starting Capability and Efficiency of Hybrid Darrieus–Savonius Vertical Axis Wind Turbines with a Dual-Shaft Configuration
by Farzad Ghafoorian, Sina Hosseini Rad and Mahdi Moghimi
Machines 2025, 13(2), 87; https://doi.org/10.3390/machines13020087 - 23 Jan 2025
Cited by 14 | Viewed by 3213
Abstract
Self-starting capability has consistently presented a significant challenge for Darrieus vertical axis wind turbines (VAWTs). One advantageous approach to addressing this problem is the design of a hybrid Darrieus–Savonius VAWT. The hybrid VAWT enhances self-starting capability by increasing the power coefficient ( [...] Read more.
Self-starting capability has consistently presented a significant challenge for Darrieus vertical axis wind turbines (VAWTs). One advantageous approach to addressing this problem is the design of a hybrid Darrieus–Savonius VAWT. The hybrid VAWT enhances self-starting capability by increasing the power coefficient (Cp) within the low tip speed ratio (TSR) range and the torque coefficient (Cm) at initial azimuth angles, when the blades transition from windward to upwind position. A significant challenge associated with conventional hybrid VAWTs, in which both rotors are mounted on a single shaft, is the decline in efficiency at the high-TSR range. This inefficiency is due to the performance limitations of the inner Savonius rotor, which is designed to function at low angular velocities. In the high-TSR range, the vorticity generation around Savonius rotor buckets adversely impacts the Darrieus rotor performance and the hybrid VAWT. A dual-shaft configuration is proposed to mitigate this issue, which utilizes a drivetrain transmission system to prevent the Savonius rotor from exceeding its optimal angular velocity, thus acting as a control mechanism. The findings indicate that implementing the dual-shaft rotor resulted in a 35% improvement in Cp within the low-TSR range and a 25% enhancement in the high-TSR range. This improvement is achieved when the inner rotor’s angular velocity is maintained at 19.79 rad/s, which has been determined to be the optimal value for the inner rotor. Full article
(This article belongs to the Special Issue Modelling, Design and Optimization of Wind Turbines)
Show Figures

Figure 1

13 pages, 2199 KB  
Article
Optimization of Flexible Rotor for Ultrasonic Motor Based on Response Surface and Genetic Algorithm
by Bo Chen, Jiyue Yang, Haoyu Tang, Yahang Wu and Haoran Zhang
Micromachines 2025, 16(1), 54; https://doi.org/10.3390/mi16010054 - 31 Dec 2024
Cited by 3 | Viewed by 1163
Abstract
The flexible rotor, as a crucial component of the traveling wave rotary ultrasonic motor, effectively reduces radial friction. However, issues such as uneven contact between the stator and rotor, as well as rotor-deformation-induced stress, still persist. This paper presents an optimization method that [...] Read more.
The flexible rotor, as a crucial component of the traveling wave rotary ultrasonic motor, effectively reduces radial friction. However, issues such as uneven contact between the stator and rotor, as well as rotor-deformation-induced stress, still persist. This paper presents an optimization method that combines the Kriging response surface model with a multi-objective genetic algorithm (MOGA). Drawing on the existing rotor structure, a novel rotor design is proposed to match the improved TRUM60 stator. During the optimization process, the contact surface between the stator and rotor is taken as the optimization target, and an objective function is established. The Kriging response surface model is constructed using Latin hypercube sampling, and an MOGA is employed to optimize this model, allowing the selection of the optimal balanced solution from multiple candidate designs. Following stator optimization, the objective function value decreased from 0.631 to 0.036, and the maximum contact stress on the rotor inner ring was reduced from 32.77 MPa to 9.96 MPa. Experimental validation confirmed the reliability of this design, significantly improving the overall performance and durability of the motor. Full article
(This article belongs to the Section A:Physics)
Show Figures

Figure 1

38 pages, 16704 KB  
Article
Fast and Intelligent Proportional–Integral–Derivative (PID) Attitude Control of Quadrotor and Dual-Rotor Coaxial Unmanned Aerial Vehicles (UAVs) Based on All-True Composite Motion
by Zhen Wang, Qi Yuan, Yi Zhu, Yifan Hu, Heng Chen, Xingbo Xie and Wenbin Gu
Drones 2024, 8(12), 747; https://doi.org/10.3390/drones8120747 - 10 Dec 2024
Cited by 3 | Viewed by 2442
Abstract
The construction of a six-degree-of-freedom (6-DOF) model for the composite motion of the actual mechanical structure (defined as an all-true composite motion model) of unmanned aerial vehicles (UAVs) is a prerequisite for achieving stable control of rotorcraft UAVs. Therefore, this paper proposes a [...] Read more.
The construction of a six-degree-of-freedom (6-DOF) model for the composite motion of the actual mechanical structure (defined as an all-true composite motion model) of unmanned aerial vehicles (UAVs) is a prerequisite for achieving stable control of rotorcraft UAVs. Therefore, this paper proposes a construction approach for a nonlinear 6-DOF model of quadrotor and dual-rotor coaxial UAVs based on all-true composite motion. Two types of attitude–altitude control systems for rotorcraft based on a self-optimizing intelligent proportional–integral–derivative (PID) control method are constructed. Three-dimensional geometric models of the two rotorcraft types, incorporating their physical characteristics, are built. The attitude responses to different pulse width modulation (PWM) inputs are tested, thereby verifying the accuracy of the all-true composite model and analyzing the stability of the two types of UAVs. Furthermore, two types of attitude–altitude control inner loop controllers are designed, and the intelligent PID control algorithm is used to optimize the control parameters. Further verification of the robustness of the optimized parameters is carried out, and the designed attitude controllers are verified via experiment using a turntable. The simulation and experimental results show that the proposed all-true composite motion model and controller design method can accurately simulate the dynamic characteristics of the two types of UAVs and maintain stable attitude control, thus providing a valuable reference for the accurate attitude control of rotorcraft UAVs based on all-true composite motion. Full article
Show Figures

Figure 1

14 pages, 12314 KB  
Article
Lubrication Characteristics of a Warhead-Type Irregular Symmetric Texture on the Stator Rubber Surfaces of Screw Pumps
by Xinfu Liu, Yi Sun, Chunhua Liu, Xiangzhi Shi, Xinglong Niu, Gang Zheng, Wei Wei, Songbo Wei and Shouzhi Huang
Lubricants 2024, 12(11), 397; https://doi.org/10.3390/lubricants12110397 - 19 Nov 2024
Cited by 4 | Viewed by 1076
Abstract
A theoretical model for the micro-texture on the inner wall of the stator rubber in screw pumps was developed. The finite element analysis method was employed. The pressure and streamline distributions for warhead-type, concentric circle-type, and multilayer rectangular-type textured surfaces were calculated. The [...] Read more.
A theoretical model for the micro-texture on the inner wall of the stator rubber in screw pumps was developed. The finite element analysis method was employed. The pressure and streamline distributions for warhead-type, concentric circle-type, and multilayer rectangular-type textured surfaces were calculated. The effects of textured morphology, groove depth, groove width, and other parameters on the lubrication field were systematically investigated and analyzed. A nanosecond laser was employed to process the textured rubber surface of the stator in the screw pump. Subsequently, a micro-texture friction performance test was conducted on the rubber surface of the stator in actual complex well fluids from shale oil wells. Given the results of the simulation analysis and experimental tests, the lubrication characteristics of textured rubber surfaces with varying texture morphologies, rotational speeds, and mating loads were revealed. Furthermore, it indicated that the irregular symmetric warhead-type micro-texture exhibited excellent dynamic pressure lubrication performance compared with concentric circle-type and multilayer rectangular-type textures. The irregular symmetry enhanced the dynamic pressure lubrication effect, enhanced the additional net load-bearing capacity of the oil film surface, and reduced friction. As the groove depth increased, the volume and number of vortices within the groove also increased. The fluid kinetic energy was transformed into vortex energy, leading to a reduction in wall stress on the surface of the oil film, thereby affecting its bearing capacity. Initially, the maximum pressure on the wall surface of the oil film increased and then decreased. The optimal dynamic pressure lubrication effect was achieved with a warhead-type texture size of 3 mm, a groove width of 0.2 mm, and a groove depth of 0.1 mm. Well-designed texture morphology and depth parameters significantly enhanced the oil film-bearing capacity of the stator rubber surface, improving the dynamic pressure lubrication effect, and consequently extending the service life of the stator–rotor interface in the screw pump. Full article
(This article belongs to the Special Issue Tribology of Textured Surfaces)
Show Figures

Figure 1

Back to TopTop