Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (577)

Search Parameters:
Keywords = innate immunity neutrophils

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 1138 KiB  
Review
Immunosenescence and the Geriatric Giants: Molecular Insights into Aging and Healthspan
by Deasy Fetarayani, Mega Kahdina, Alief Waitupu, Laras Pratiwi, Mukti Citra Ningtyas, Galih Januar Adytia and Henry Sutanto
Med. Sci. 2025, 13(3), 100; https://doi.org/10.3390/medsci13030100 - 28 Jul 2025
Viewed by 550
Abstract
Aging is associated with complex immune dysfunction that contributes to the onset and progression of the “geriatric giants”, including frailty, sarcopenia, cognitive decline, falls, and incontinence. Central to these conditions is immunosenescence, marked by thymic involution, the loss of naïve T cells, T-cell [...] Read more.
Aging is associated with complex immune dysfunction that contributes to the onset and progression of the “geriatric giants”, including frailty, sarcopenia, cognitive decline, falls, and incontinence. Central to these conditions is immunosenescence, marked by thymic involution, the loss of naïve T cells, T-cell exhaustion, impaired B-cell class switch recombination, and increased autoreactivity. Concurrently, innate immunity deteriorates due to macrophage, neutrophil, and NK cell dysfunction, while chronic low-grade inflammation—or “inflammaging”—amplifies systemic decline. Key molecular pathways such as NF-κB, mTOR, and the NLRP3 inflammasome mediate immune aging, interacting with oxidative stress, mitochondrial dysfunction, and epigenetic modifications. These processes not only impair infection control and vaccine responsiveness but also promote tissue degeneration and multimorbidity. This review explores emerging interventions—ranging from senolytics and immunonutrition to microbiome-targeted therapies and exercise—that may restore immune homeostasis and extend healthspan. Despite advances, challenges remain in translating immunological insights into clinical strategies tailored to older adults. Standardization in microbiome trials and safety optimization in senolytic therapies are critical next steps. Integrating geroscience into clinical care could help to mitigate the burden of aging-related diseases by targeting fundamental drivers of immune dysfunction. Full article
(This article belongs to the Section Immunology and Infectious Diseases)
Show Figures

Figure 1

26 pages, 1300 KiB  
Review
The Human Mycobiome: Composition, Immune Interactions, and Impact on Disease
by Laura Carrillo-Serradell, Jade Liu-Tindall, Violeta Planells-Romeo, Lucía Aragón-Serrano, Marcos Isamat, Toni Gabaldón, Francisco Lozano and María Velasco-de Andrés
Int. J. Mol. Sci. 2025, 26(15), 7281; https://doi.org/10.3390/ijms26157281 - 28 Jul 2025
Viewed by 664
Abstract
The fungal component of microbiota, known as the mycobiome, inhabits different body niches such as the skin and the gastrointestinal, respiratory, and genitourinary tracts. Much information has been gained on the bacterial component of the human microbiota, but the mycobiome has remained somewhat [...] Read more.
The fungal component of microbiota, known as the mycobiome, inhabits different body niches such as the skin and the gastrointestinal, respiratory, and genitourinary tracts. Much information has been gained on the bacterial component of the human microbiota, but the mycobiome has remained somewhat elusive due to its sparsity, variability, susceptibility to environmental factors (e.g., early life colonization, diet, or pharmacological treatments), and the specific in vitro culture challenges. Functionally, the mycobiome is known to play a role in modulating innate and adaptive immune responses by interacting with microorganisms and immune cells. The latter elicits anti-fungal responses via the recognition of specific fungal cell-wall components (e.g., β-1,3-glucan, mannan, and chitin) by immune system receptors. These receptors then regulate the activation and differentiation of many innate and adaptive immune cells including mucocutaneous cell barriers, macrophages, neutrophils, dendritic cells, natural killer cells, innate-like lymphoid cells, and T and B lymphocytes. Mycobiome disruptions have been correlated with various diseases affecting mostly the brain, lungs, liver and pancreas. This work reviews our current knowledge on the mycobiome, focusing on its composition, research challenges, conditioning factors, interactions with the bacteriome and the immune system, and the known mycobiome alterations associated with disease. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

15 pages, 3635 KiB  
Article
The Calprotectin Fragment, CPa9-HNE, Is a Plasma Biomarker of Mild Chronic Obstructive Pulmonary Disease
by Mugdha M. Joglekar, Jannie M. B. Sand, Theo Borghuis, Diana J. Leeming, Morten Karsdal, Frank Klont, Russell P. Bowler, Barbro N. Melgert, Janette K. Burgess and Simon D. Pouwels
Cells 2025, 14(15), 1155; https://doi.org/10.3390/cells14151155 - 26 Jul 2025
Viewed by 272
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease predominantly of the small airways and parenchyma. COPD lungs exhibit an influx of circulating innate immune cells, which, when isolated, display impaired functions, including imbalanced protease secretion. In addition to immune cells, the [...] Read more.
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease predominantly of the small airways and parenchyma. COPD lungs exhibit an influx of circulating innate immune cells, which, when isolated, display impaired functions, including imbalanced protease secretion. In addition to immune cells, the extracellular matrix (ECM) plays a crucial role in COPD pathology. Remodeling of the ECM can generate ECM fragments, which can be released into circulation and subsequently induce pro-inflammatory responses. COPD is a heterogeneous disease, and serological biomarkers can be used to sub-categorize COPD patients for targeted treatments and optimal recruitment in clinical trials. This study evaluated fragments of calprotectin, collagen type VI, and versican, generated by neutrophil elastase and matrix metalloproteinases (MMP-) 2 and 12, respectively, as potential biomarkers of COPD disease, severity, and endotypes. Lower plasma levels of a neoepitope marker of calprotectin, indicative of activated neutrophils (nordicCPa9-HNETM), were detected in COPD donors compared to controls. CPa9-HNE was associated with milder disease, higher degree of air-trapping, and higher serum levels of MMP-2. Deposition of CPa9-HNE levels in lung tissue revealed no differences between groups. Taken together, CPa9-HNE was found to be a potential marker of mild COPD, but further studies are warranted to validate our findings. Full article
Show Figures

Graphical abstract

17 pages, 5140 KiB  
Article
Comparative Analysis of Chitosan, Lipid Nanoparticles, and Alum Adjuvants in Recombinant SARS-CoV-2 Vaccine: An Evaluation of Their Immunogenicity and Serological Efficacy
by Majed Ghattas, Garima Dwivedi, Anik Chevrier, Trevor Scobey, Rakan El-Mayta, Melissa D. Mattocks, Dong Wang, Marc Lavertu and Mohamad-Gabriel Alameh
Vaccines 2025, 13(8), 788; https://doi.org/10.3390/vaccines13080788 - 24 Jul 2025
Viewed by 457
Abstract
Background: Chitosan, a family of polysaccharides composed of glucosamine and N-acetyl glucosamine, is a promising adjuvant candidate for eliciting potent immune response. Methods: This study compared the adjuvant effects of chitosan to those of empty lipid nanoparticles (eLNPs) and aluminum hydroxide (alum) following [...] Read more.
Background: Chitosan, a family of polysaccharides composed of glucosamine and N-acetyl glucosamine, is a promising adjuvant candidate for eliciting potent immune response. Methods: This study compared the adjuvant effects of chitosan to those of empty lipid nanoparticles (eLNPs) and aluminum hydroxide (alum) following administration of recombinant SARS-CoV-2 spike immunogen in adult mice. Mice received the adjuvanted recombinant protein vaccine in a prime-boost regimen with four weeks interval. Subsequent analyses included serological assessment of antibody responses, evaluation of T cell activity, immune cell recruitment and cytokine profiles at injection site. Results: Compared to alum, chitosan induced a more balanced Th1/Th2 response, akin to that observed with eLNPs, demonstrating its ability to modulate both the humoral and cellular immune pathways. Chitosan induced a different proinflammatory cytokine (e.g., IL-1⍺, IL-2, IL-6, and IL-7) and chemokine (e.g., Eotaxin, IP-10, MIP-1a) profile compared to eLNPs and alum at the injection site and in the draining lymph nodes. Moreover, chitosan potentiated the recruitment of innate immune cells, with neutrophils accounting for about 40% of the infiltrating cells in the muscle, representing a ~10-fold increase compared to alum and a comparable level to eLNPs. Conclusions: These findings collectively indicate that chitosan has the potential to serve as an effective adjuvant, offering comparable, and potentially superior, properties to those of currently approved adjuvants. Full article
(This article belongs to the Special Issue Advances in Vaccine Adjuvants)
Show Figures

Figure 1

37 pages, 4312 KiB  
Review
Neutrophils and NETs in Pathophysiology and Treatment of Inflammatory Bowel Disease
by Marina Ortega-Zapero, Raquel Gomez-Bris, Ines Pascual-Laguna, Angela Saez and Jose M. Gonzalez-Granado
Int. J. Mol. Sci. 2025, 26(15), 7098; https://doi.org/10.3390/ijms26157098 - 23 Jul 2025
Viewed by 482
Abstract
Inflammatory Bowel Disease (IBD), which includes ulcerative colitis (UC) and Crohn’s disease (CD), results from dysregulated immune responses that drive chronic intestinal inflammation. Neutrophils, as key effectors of the innate immune system, contribute to IBD through multiple mechanisms, including the release of reactive [...] Read more.
Inflammatory Bowel Disease (IBD), which includes ulcerative colitis (UC) and Crohn’s disease (CD), results from dysregulated immune responses that drive chronic intestinal inflammation. Neutrophils, as key effectors of the innate immune system, contribute to IBD through multiple mechanisms, including the release of reactive oxygen species (ROS), pro-inflammatory cytokines, and neutrophil extracellular traps (NETs). NETs are web-like structures composed of DNA, histones, and associated proteins including proteolytic enzymes and antimicrobial peptides. NET formation is increased in IBD and has a context-dependent role; under controlled conditions, NETs support antimicrobial defense and tissue repair, whereas excessive or dysregulated NETosis contributes to epithelial injury, barrier disruption, microbial imbalance, and thrombotic risk. This review examines the roles of neutrophils and NETs in IBD. We summarize recent single-cell and spatial-omics studies that reveal extensive neutrophil heterogeneity in the inflamed gut. We then address the dual role of neutrophils in promoting tissue damage—through cytokine release, immune cell recruitment, ROS production, and NET formation—and in supporting microbial clearance and mucosal healing. We also analyze the molecular mechanisms regulating NETosis, as well as the pathways involved in NET degradation and clearance. Focus is given to the ways in which NETs disrupt the epithelial barrier, remodel the extracellular matrix, contribute to thrombosis, and influence the gut microbiota. Finally, we discuss emerging therapeutic strategies aimed at restoring NET homeostasis—such as PAD4 inhibitors, NADPH oxidase and ROS pathway modulators, and DNase I—while emphasizing the need to preserve antimicrobial host defenses. Understanding neutrophil heterogeneity and NET-related functions may facilitate the development of new therapies and biomarkers for IBD, requiring improved detection tools and integrated multi-omics and clinical data. Full article
Show Figures

Figure 1

73 pages, 19750 KiB  
Article
Transcriptomic Profiling of the Immune Response in Orthotopic Pancreatic Tumours Exposed to Combined Boiling Histotripsy and Oncolytic Reovirus Treatment
by Petros Mouratidis, Ricardo C. Ferreira, Selvakumar Anbalagan, Ritika Chauhan, Ian Rivens and Gail ter Haar
Pharmaceutics 2025, 17(8), 949; https://doi.org/10.3390/pharmaceutics17080949 - 22 Jul 2025
Viewed by 303
Abstract
Background: Boiling histotripsy (BH) uses high-amplitude, short-pulse focused ultrasound to disrupt tissue mechanically. Oncolytic virotherapy using reovirus has shown modest clinical benefit in pancreatic cancer patients. Here, reovirus and BH were used to treat pancreatic tumours, and their effects on the immune [...] Read more.
Background: Boiling histotripsy (BH) uses high-amplitude, short-pulse focused ultrasound to disrupt tissue mechanically. Oncolytic virotherapy using reovirus has shown modest clinical benefit in pancreatic cancer patients. Here, reovirus and BH were used to treat pancreatic tumours, and their effects on the immune transcriptome of these tumours were characterised. Methods: Orthotopic syngeneic murine pancreatic KPC tumours grown in immune-competent subjects, were allocated to control, reovirus, BH and combined BH and reovirus treatment groups. Acoustic cavitation was monitored using a passive broadband cavitation sensor. Treatment effects were assessed histologically with hematoxylin and eosin staining. Single-cell multi-omics combining whole-transcriptome analysis with the expression of surface-expressed immune proteins was used to assess the effects of treatments on tumoural leukocytes. Results: Acoustic cavitation was detected in all subjects exposed to BH, causing cellular disruption in tumours 6 h after treatment. Distinct cell clusters were identified in the pancreatic tumours 24 h post-treatment. These included neutrophils and cytotoxic T cells overexpressing genes associated with an N2-like and an exhaustion phenotype, respectively. Reovirus decreased macrophages, and BH decreased regulatory T cells compared to controls. The combined treatments increased neutrophils and the ratio of various immune cells to Treg. All treatments overexpressed genes associated with an innate immune response, while ultrasound treatments downregulated genes associated with the transporter associated with antigen processing (TAP) complex. Conclusions: Our results show that the combined BH and reovirus treatments maximise the overexpression of genes associated with the innate immune response compared to that seen with each individual treatment, and illustrate the anti-immune phenotype of key immune cells in the pancreatic tumour microenvironment. Full article
Show Figures

Figure 1

18 pages, 1275 KiB  
Review
A Simple Ratio in a Complex Disease: Exploring the Neutrophil-to-Lymphocyte Ratio in Idiopathic Pulmonary Fibrosis
by Giorgio Monteleone, Luca Passantino, Jacopo Simonetti, Bruno Iovene, Francesco Varone, Paolo Cameli, Giacomo Sgalla and Luca Richeldi
J. Clin. Med. 2025, 14(14), 5100; https://doi.org/10.3390/jcm14145100 - 18 Jul 2025
Viewed by 517
Abstract
The neutrophil-to-lymphocyte ratio (NLR) is a simple, inexpensive and easily accessible inflammatory biomarker that reflects the balance between innate and adaptive immunity. In recent years, NLR has emerged as a potential prognostic and disease severity marker for different diseases, including idiopathic pulmonary fibrosis [...] Read more.
The neutrophil-to-lymphocyte ratio (NLR) is a simple, inexpensive and easily accessible inflammatory biomarker that reflects the balance between innate and adaptive immunity. In recent years, NLR has emerged as a potential prognostic and disease severity marker for different diseases, including idiopathic pulmonary fibrosis (IPF), a progressive and fatal interstitial lung disease with a highly variable course and poor prognosis. Several studies have highlighted that NLR can be associated with several clinical outcomes such as lung function decline, increased risk of hospitalization, acute exacerbation of IPF, and mortality over time. It might also correlate with overall survival in the course of antifibrotic therapy and validated prognostic score as a gender–age–physiology score. Despite these findings, the clinical use of NLR remains limited due to its non-specific nature, the lack of standardized cut-off values, and high variability related to demographic factors, comorbidities and medications. Hence, NLR may display the underlying immune dysregulation in IPF and could be exploited as a non-invasive tool for risk stratification and disease monitoring. Further studies are needed to confirm and validate its use in IPF and to establish reliable cut-off values in clinical applications. Full article
Show Figures

Figure 1

17 pages, 3305 KiB  
Article
Evolution of Blood Innate Immune Cell Phenotypes Following SARS-CoV-2 Infection in Hospitalized Patients with COVID-19
by Arnaud Dendooven, Stephane Esnault, Marie Jacob, Jacques Trauet, Emeline Delaunay, Thomas Guerrier, Amali E. Samarasinghe, Floriane Mirgot, Fanny Vuotto, Karine Faure, Julien Poissy, Marc Lambert, Myriam Labalette, Guillaume Lefèvre and Julie Demaret
Cells 2025, 14(14), 1093; https://doi.org/10.3390/cells14141093 - 17 Jul 2025
Viewed by 536
Abstract
Innate immune cells appear to have an important implication in the resolution and/or the aggravation of the COVID-19 pathogenesis after infection with SARS-CoV-2. To better appreciate the role of these cells during COVID-19, changes in blood eosinophil, the neutrophil and monocyte count, and [...] Read more.
Innate immune cells appear to have an important implication in the resolution and/or the aggravation of the COVID-19 pathogenesis after infection with SARS-CoV-2. To better appreciate the role of these cells during COVID-19, changes in blood eosinophil, the neutrophil and monocyte count, and levels of surface protein markers have been reported. However, analyses at several timepoints of multiple surface markers on granulocytes and monocytes over a period of one month after a SARS-CoV-2 infection are missing. Therefore, in this study, we performed blood eosinophil, neutrophil, and monocyte phenotyping using a list of surface proteins and flow cytometry during a period of 30 days after the hospitalization of patients with severe SARS-CoV-2 infections. Blood cell counts were reported at seven different timepoints over the 30-day period as well as measures of multiple mediators in serum using a targeted multiplex assay approach. Our results indicate a 95% drop in the blood eosinophil count by D1, with eosinophils displaying a phenotype defined as CD69/CD63/CD125high and CCR3/CD44low during the early phases of hospitalization. Conversely, by D7 the neutrophil count increased significantly and displayed an immature, activated, and immunosuppressive phenotype (i.e., 3% of CD10/CD16low and CD10lowCD177high, 6.7% of CD11bhighCD62Llow, and 1.6% of CD16highCD62Llow), corroborated by enhanced serum proteins that are markers of neutrophil activation. Finally, our results suggest a rapid recruitment of non-classical monocytes leaving CD163/CD64high and CD32low monocytes in circulation during the very early phase. In conclusion, our study reveals potential very early roles for eosinophils and monocytes in the pathogenesis of COVID-19 with a likely reprogramming of eosinophils in the bone marrow. The exact roles of the pro-inflammatory neutrophils and the functions of the eosinophils and the monocytes, as well as these innate immune cell types, interplays need to be further investigated. Full article
(This article belongs to the Special Issue Eosinophils and Their Role in Allergy and Related Diseases)
Show Figures

Graphical abstract

17 pages, 2335 KiB  
Article
Transcriptomic Profiling Reveals Distinct Immune Dysregulation in Early-Stage Sepsis Patients
by Safa Taha, Khaled Bindayna, Muna Aljishi, Ameera Sultan and Nourah Almansour
Int. J. Mol. Sci. 2025, 26(14), 6647; https://doi.org/10.3390/ijms26146647 - 11 Jul 2025
Viewed by 294
Abstract
Sepsis is a life-threatening condition characterized by dysregulated immune responses to infection. To elucidate early transcriptional changes in sepsis, we conducted a case–control study profiling gene expression in whole blood from 20 early-stage sepsis patients and 9 healthy controls. Using Affymetrix Clariom D [...] Read more.
Sepsis is a life-threatening condition characterized by dysregulated immune responses to infection. To elucidate early transcriptional changes in sepsis, we conducted a case–control study profiling gene expression in whole blood from 20 early-stage sepsis patients and 9 healthy controls. Using Affymetrix Clariom D Human Arrays and robust preprocessing, we identified differentially expressed genes (DEGs) using standard bioinformatic pipelines. A total of 344 genes were significantly upregulated, while 9703 were significantly downregulated in sepsis patients (|log2FC| > 1, adjusted p < 0.05). Pathway enrichment and Gene Ontology analysis revealed activation of innate immune pathways, neutrophil degranulation, and cytokine signaling, alongside suppression of lymphocyte differentiation and antigen presentation. These results suggest a shift toward an innately driven inflammatory state in early sepsis. Our findings provide transcriptomic insights that may support the development of early diagnostic biomarkers and therapeutic targets. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Pathophysiology of Sepsis)
Show Figures

Figure 1

19 pages, 1766 KiB  
Review
A Critical Role of Neutrophil-Driven Amplification of Chronic Microinflammation in the Biocompatibility of Hemodialysis
by Masaaki Nakayama, Hiroyuki Miyakawa, Kazuya Ohama and Hirokazu Kimura
Int. J. Mol. Sci. 2025, 26(13), 6472; https://doi.org/10.3390/ijms26136472 - 4 Jul 2025
Viewed by 350
Abstract
This review highlights recent insights into the pathophysiology and therapeutic strategies for improving biocompatibility in hemodialysis. Hemodialysis activates the innate immune system, particularly the complement cascade and neutrophils, leading to acute microinflammation. Interleukin-8 (IL-8), which increases during dialysis, promotes neutrophil chemotaxis and neutrophil [...] Read more.
This review highlights recent insights into the pathophysiology and therapeutic strategies for improving biocompatibility in hemodialysis. Hemodialysis activates the innate immune system, particularly the complement cascade and neutrophils, leading to acute microinflammation. Interleukin-8 (IL-8), which increases during dialysis, promotes neutrophil chemotaxis and neutrophil extracellular trap (NET) formation, triggering myeloperoxidase (MPO) release and oxidative stress. Neutrophil accumulation in atherosclerotic plaques exacerbates vascular inflammation through IL-6 upregulation. Elevated levels of IL-8, MPO, and NET-related biomarkers are associated with increased all-cause and cardiovascular mortality in dialysis patients. Strategies to mitigate these effects include the use of advanced membrane materials (e.g., AN69, vitamin E-coated, polymethyl methacrylate), novel dialysis modalities (e.g., high-volume online hemodiafiltration, cool dialysate, hydrogen-enriched dialysate), and citrate-based anticoagulation. These approaches aim to suppress complement activation, reduce oxidative stress, and limit neutrophil-induced damage. Enhancing biocompatibility is crucial for reducing cardiovascular complications and improving outcomes in dialysis patients. Suppressing the innate immune response during dialysis may become a future cornerstone in extracorporeal blood purification therapy. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

12 pages, 2466 KiB  
Article
Investigation of HLA-B –21 M/T Dimorphism and Its Potential Role in COVID-19
by David Martín-Rodríguez, Juan Francisco Gutiérrez-Bautista, Mónica Bernal, Antonio Rodriguez-Nicolas, José Ramón Vílchez, Ana Marín-Sánchez, Antonio Rosales-Castillo, Juan Sainz, Antonio José Cabrera-Serrano, Jorge Ceron-Hernandez, Miguel Ángel López-Nevot, Francisco Ruiz-Cabello and Pilar Jiménez
Int. J. Mol. Sci. 2025, 26(13), 6419; https://doi.org/10.3390/ijms26136419 - 3 Jul 2025
Viewed by 419
Abstract
Natural killer (NK) cells play a key role in the innate immune response against viral infections. Their activity is regulated by a balance of activating and inhibitory signals, which are modulated by interactions with HLA class I molecules, including HLA-E. The HLA-B 21M/T [...] Read more.
Natural killer (NK) cells play a key role in the innate immune response against viral infections. Their activity is regulated by a balance of activating and inhibitory signals, which are modulated by interactions with HLA class I molecules, including HLA-E. The HLA-B 21M/T dimorphism influences the availability of HLA-B leader peptides that stabilize HLA-E expression and modulate NK cell function via the NKG2A/CD94 receptor. To investigate the association between the HLA-B –21M/T dimorphism and the clinical severity of COVID-19, we analyzed a cohort of hospitalized patients with primary SARS-CoV-2 infection, who were genotyped for the HLA-B –21M/T dimorphism. Clinical data, lymphocyte counts, the neutrophil-to-lymphocyte ratio (NLR), and inflammatory markers were compared across genotypes. Contrary to previous studies suggesting a protective effect of the M/M genotype, we found no significant association between the HLA-B –21M/T dimorphism and COVID-19 severity, lymphocyte parameters, or inflammatory biomarkers. Our findings do not support a role for the HLA-B –21M/T dimorphism in modulating COVID-19 outcomes. These results underscore the complexity of NK cell regulation and highlight the need for integrative studies combining genetic, immunological, and functional data to better understand host factors influencing disease progression. Full article
(This article belongs to the Special Issue Molecular Genetics of Human Leucocyte Antigen in Diseases)
Show Figures

Figure 1

25 pages, 2209 KiB  
Review
Immunothrombosis in Sepsis: Cellular Crosstalk, Molecular Triggers, and Therapeutic Opportunities—A Review
by Addis Aklilu, Michael Siu-Lun Lai, Zhiwei Jiang, Shea Ping Yip and Chien-Ling Huang
Int. J. Mol. Sci. 2025, 26(13), 6114; https://doi.org/10.3390/ijms26136114 - 25 Jun 2025
Viewed by 699
Abstract
Sepsis remains a critical global health challenge characterized by life-threatening organ dysfunction arising from a dysregulated host response to infection. Immunothrombosis refers to the intersection of immune activation and coagulation pathways, particularly relevant in the context of sepsis. A growing body of evidence [...] Read more.
Sepsis remains a critical global health challenge characterized by life-threatening organ dysfunction arising from a dysregulated host response to infection. Immunothrombosis refers to the intersection of immune activation and coagulation pathways, particularly relevant in the context of sepsis. A growing body of evidence identifies immunothrombosis, a tightly interwoven process between innate immunity and coagulation. While immunothrombosis serves as a host defense mechanism under physiological conditions, its aberrant activation in sepsis precipitates microvascular thrombosis, organ ischemia, and progression toward disseminated intravascular coagulation (DIC). This review provides a comprehensive overview of the cellular contributors to immunothrombosis, including neutrophils, monocytes, platelets, and endothelial cells, and elucidates the signaling cascades, such as nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK), and inflammasome activation, that govern their interplay. We further highlight emerging molecular mediators, including extracellular traps, tissue factor expression, and cytokine amplification loops, that collectively promote pathological thromboinflammation. A deeper understanding of these interconnected pathways offers critical insights into the pathogenesis of sepsis and unveils potential targets for timely intervention. Ultimately, this review aims to bridge immunological and hematological perspectives to inform the development of novel therapeutic strategies against sepsis-induced coagulopathy. Full article
Show Figures

Figure 1

21 pages, 744 KiB  
Review
CitH3, a Druggable Biomarker for Human Diseases Associated with Acute NETosis and Chronic Immune Dysfunction
by Yuchen Chen, Zoe Ann Tetz, Xindi Zeng, Sophia Jihye Go, Wenlu Ouyang, Kyung Eun Lee, Tao Dong, Yongqing Li and Jianjie Ma
Pharmaceutics 2025, 17(7), 809; https://doi.org/10.3390/pharmaceutics17070809 - 23 Jun 2025
Viewed by 623
Abstract
Neutrophils are essential components of innate immunity, executing a range of effector functions including phagocytosis, degranulation, and the release of neutrophil extracellular traps (NETs). A key hallmark of NET formation is the presence of citrullinated histone H3 (CitH3), produced by peptidylarginine deiminases (PAD2 [...] Read more.
Neutrophils are essential components of innate immunity, executing a range of effector functions including phagocytosis, degranulation, and the release of neutrophil extracellular traps (NETs). A key hallmark of NET formation is the presence of citrullinated histone H3 (CitH3), produced by peptidylarginine deiminases (PAD2 and PAD4) to facilitate chromatin decondensation. While NETs play critical antimicrobial roles, excessive or dysregulated NET formation, termed NETosis, can drive tissue injury, chronic inflammation, and organ dysfunction across a wide spectrum of diseases. Beyond its structural role within NETs, CitH3 acts as a damage-associated molecular pattern (DAMP), amplifying immune activation and pathological inflammation. Elevated CitH3 levels have been identified as biomarkers in sepsis, viral infections, ischemia–reperfusion injury, organ transplantation, diabetic wounds, autoimmune diseases, and cancer. Despite increasing recognition of CitH3’s pathogenic contributions, its therapeutic potential remains largely untapped. This review summarizes recent advances in understanding the role of CitH3 in NETosis and immune dysfunction, highlights emerging strategies targeting CitH3 therapeutically, and identifies critical knowledge gaps. Collectively, these insights position CitH3 as a promising druggable biomarker for the diagnosis, prognosis, and treatment of acute and chronic inflammatory diseases. Full article
Show Figures

Figure 1

15 pages, 5419 KiB  
Article
Exploring the Antimicrobial and Immunomodulatory Potential of Gecko-Derived Cathelicidin Gj-CATH5
by Shasha Cai, Ningyang Gao, Junhan Wang and Jing Li
Biomolecules 2025, 15(7), 908; https://doi.org/10.3390/biom15070908 - 20 Jun 2025
Viewed by 449
Abstract
Regulating the innate immune response against infections, particularly drug-resistant bacteria, is a key focus in anti-infection therapy. Cathelicidins, found in vertebrates, are crucial for pathogen resistance. Few studies have explored gecko cathelicidins’ anti-infection properties. Recently, five new cathelicidins (Gj-CATH1-5) were identified in Gekko [...] Read more.
Regulating the innate immune response against infections, particularly drug-resistant bacteria, is a key focus in anti-infection therapy. Cathelicidins, found in vertebrates, are crucial for pathogen resistance. Few studies have explored gecko cathelicidins’ anti-infection properties. Recently, five new cathelicidins (Gj-CATH1-5) were identified in Gekko japonicus. The peptide Gj-CATH5, from G. japonicus, shows promise against Pseudomonas aeruginosa through various mechanisms. This study examined Gj-CATH5’s protective effects using in vitro and in vivo models, finding that it significantly reduced bacterial load in a mouse infection model when administered before or shortly after infection. Flow cytometry and the plate counting method showed that Gj-CATH5 boosts neutrophil and macrophage activity, enhancing chemotaxis, phagocytosis, and bactericidal functions. Gj-CATH5 increases ROS production, MPO activity, and NET formation, aiding pathogen clearance. Its amphipathic α-helical structure supports broad-spectrum bactericidal activity (MBC: 4–8 μg/mL) against Gram-negative and antibiotic-resistant bacteria. Gj-CATH5 is minimally cytotoxic (<8% hemolysis at 200 μg/mL) and preserves cell viability at therapeutic levels. These results highlight Gj-CATH5’s dual role in pathogen elimination and immune modulation, offering a promising approach to combat multidrug-resistant infections while reducing inflammation. This study enhances the understanding of reptilian cathelicidins and lays the groundwork for peptide-based immune therapies against difficult bacterial infections. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

37 pages, 18599 KiB  
Article
Diclofenac Immune-Mediated Hepatitis: Identification of Innate and Adaptive Immune Responses at Clinically Relevant Doses
by Jürgen Borlak and Reinhard Spanel
Int. J. Mol. Sci. 2025, 26(12), 5899; https://doi.org/10.3390/ijms26125899 - 19 Jun 2025
Viewed by 635
Abstract
Diclofenac is an effective medication for pain and inflammation. However, its use has been linked to hepatitis. To gain insight into diclofenac’s ability to cause hepatitis, we investigated the regulation of major effectors of the immune system following daily treatment of minipigs at [...] Read more.
Diclofenac is an effective medication for pain and inflammation. However, its use has been linked to hepatitis. To gain insight into diclofenac’s ability to cause hepatitis, we investigated the regulation of major effectors of the immune system following daily treatment of minipigs at 3 and 15 mg/kg for 28 days. Histopathology evidenced lobular inflammation, and through a combination of immunogenomics and immunopathology, we detected marked innate and adaptive immune responses. We identified 109 significantly regulated genes linked to neutrophil, monocyte, Kupffer cell, and lymphocyte responses and 32 code for cytokine- and interferon-γ-signaling. In support of wound repair, immunopathology evidenced manifest upregulation of macrophage migration inhibitory factor and CD74. Furthermore, the strong expression of IgG and IgM underscored humoral immune responses. Diclofenac caused an activation of the complement system, especially the C1 inhibitor of the classical pathway and C3 with critical functions in liver regeneration. The marked expression of complement factor B and H of the alternate pathway modulated B-cell responses. Likely, the upregulation of factor H protected hepatocytes from injury by limiting complement-mediated damage of inflamed cells. Additionally, diclofenac treatment elicited marked hepatic expression of lysozyme and KLF6. The latter earmarks M1-polarized Kupffer cells. We observed an extraordinary induction of calprotectin/S100A9 and of the monocyte/macrophage CD163 scavenger receptor, and therefore, we detected innate immune sensing of damaged cells. Lastly, we noted an unprecedented induction of the acute phase reactant SAA1 and DEC-205, which recognize apoptotic and necrotic cells. Together, our results offer mechanistic insights into immune-mediated liver injury patterns following diclofenac treatment. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

Back to TopTop