Immunosenescence and the Geriatric Giants: Molecular Insights into Aging and Healthspan
Abstract
1. Introduction
2. Immunosenescence and Aging-Related Immune Dysregulation
2.1. Decline in Adaptive Immunity
2.1.1. Thymic Involution
2.1.2. Naïve T-Cell Reduction
2.1.3. T-Cell Exhaustion
2.1.4. Impaired Immunoglobulin Class Switch Recombination in Aging
2.1.5. Generation of Autoreactive Antibodies in Aging
2.1.6. Diminished Vaccine Responsiveness in Aging
2.2. Alterations in Innate Immunity
2.2.1. Macrophage Dysfunction in Aging
2.2.2. Reduced Neutrophil Activity in Aging
2.2.3. Impaired NK Cell Function in Aging
2.3. Chronic Low-Grade Inflammation
3. Molecular Pathways in Age-Related Immune Dysfunction
3.1. Central Role of NF-κB, mTOR, and Inflammasomes in Immune Aging
3.2. Impacts of Oxidative Stress and Mitochondrial Dysfunction on Immune Cells
3.3. Epigenetic Modifications Influencing Immune Responses
4. Immune Contributions to Specific Geriatric Giants
4.1. Frailty and Sarcopenia
4.2. Cognitive Impairment and Neuroinflammation
4.3. Falls and Impaired Wound Healing
4.4. Incontinence and Mucosal Immunity
5. Potential Immunomodulatory Interventions
5.1. Anti-Inflammatory and Senolytic Therapies
5.2. Immunonutrition and Microbiome-Targeted Interventions
5.3. Exercise and Lifestyle Modifications
6. Current Challenges and Future Directions
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Duque, G. Osteosarcopenia: A Geriatric Giant of the XXI Century. J. Nutr. Health Aging 2021, 25, 716–719. [Google Scholar] [CrossRef]
- Morley, J.E. The New Geriatric Giants. Clin. Geriatr. Med. 2017, 33, xi–xii. [Google Scholar] [CrossRef]
- Rasheedy, D.; EL-Kawaly, W.H. The Cumulative Impact of Sarcopenia, Frailty, Malnutrition, and Cachexia on Other Geriatric Syndromes in Hospitalized Elderly. Electron. J. Gen Med. 2021, 18, em277. [Google Scholar] [CrossRef]
- Dodds, R.; Sayer, A.A. Sarcopenia and Frailty: New Challenges for Clinical Practice. Clin. Med. 2016, 16, 455–458. [Google Scholar] [CrossRef]
- Dost, F.S.; GökdeniZ Yildirim, A.; Ateş Bulut, E.; Aydin, A.E.; Işik, A.T. The Relationship Between Urinary Incontinence and Sarcopenia in Patients with Dementia. Cukurova Anestezi Cerrah-Bilim. Derg. 2022, 5, 107–115. [Google Scholar] [CrossRef]
- Peng, T.-C.; Chen, W.-L.; Wu, L.-W.; Chang, Y.-W.; Kao, T.-W. Sarcopenia and Cognitive Impairment: A Systematic Review and Meta-Analysis. Clin. Nutr. 2020, 39, 2695–2701. [Google Scholar] [CrossRef] [PubMed]
- Ajoolabady, A.; Pratico, D.; Tang, D.; Zhou, S.; Franceschi, C.; Ren, J. Immunosenescence and Inflammaging: Mechanisms and Role in Diseases. Ageing Res. Rev. 2024, 101, 102540. [Google Scholar] [CrossRef] [PubMed]
- Jurcău, M.C.; Andronie-Cioara, F.L.; Jurcău, A.; Marcu, F.; Ţiț, D.M.; Pașcalău, N.; Nistor-Cseppentö, D.C. The Link between Oxidative Stress, Mitochondrial Dysfunction and Neuroinflammation in the Pathophysiology of Alzheimer’s Disease: Therapeutic Implications and Future Perspectives. Antioxidants 2022, 11, 2167. [Google Scholar] [CrossRef]
- Giorgi, C.; Marchi, S.; Simoes, I.C.M.; Ren, Z.; Morciano, G.; Perrone, M.; Patalas-Krawczyk, P.; Borchard, S.; Jȩdrak, P.; Pierzynowska, K.; et al. Mitochondria and Reactive Oxygen Species in Aging and Age-Related Diseases. Int. Rev. Cell Mol. Biol. 2018, 340, 209–344. [Google Scholar] [CrossRef]
- Guo, J.; Huang, X.; Dou, L.; Yan, M.; Shen, T.; Tang, W.; Li, J. Aging and Aging-Related Diseases: From Molecular Mechanisms to Interventions and Treatments. Signal Transduct. Target. Ther. 2022, 7, 391. [Google Scholar] [CrossRef]
- Thomas, R.; Wang, W.; Su, D.-M. Contributions of Age-Related Thymic Involution to Immunosenescence and Inflammaging. Immun. Ageing 2020, 17, 2. [Google Scholar] [CrossRef]
- Liang, Z.; Dong, X.; Zhang, Z.; Zhang, Q.; Zhao, Y. Age-related Thymic Involution: Mechanisms and Functional Impact. Aging Cell 2022, 21, e13671. [Google Scholar] [CrossRef]
- Hakim, F.T. Thymic Involution and Thymic Renewal. In Handbook on Immunosenescence; Fulop, T., Franceschi, C., Hirokawa, K., Pawelec, G., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 865–889. ISBN 978-1-4020-9062-2. [Google Scholar]
- Mitchell, W.A.; Aspinall, R. Immunosenescence, Thymic Involution and Autoimmunity. In Immunosenescence; Springer: New York, NY, USA, 2007; pp. 68–79. ISBN 978-0-387-76840-3. [Google Scholar]
- Tong, Q.-Y.; Zhang, J.-C.; Guo, J.-L.; Li, Y.; Yao, L.-Y.; Wang, X.; Yang, Y.-G.; Sun, L.-G. Human Thymic Involution and Aging in Humanized Mice. Front. Immunol. 2020, 11, 1399. [Google Scholar] [CrossRef] [PubMed]
- Cepeda, S.; Cantu, C.; Orozco, S.; Xiao, Y.; Brown, Z.; Semwal, M.K.; Venables, T.; Anderson, M.S.; Griffith, A.V. Age-Associated Decline in Thymic B Cell Expression of Aire and Aire-Dependent Self-Antigens. Cell Rep. 2018, 22, 1276–1287. [Google Scholar] [CrossRef] [PubMed]
- Conteduca, G.; Indiveri, F.; Filaci, G.; Negrini, S. Beyond APECED: An Update on the Role of the Autoimmune Regulator Gene (AIRE) in Physiology and Disease. Autoimmun. Rev. 2018, 17, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Coder, B.; Su, D.-M. Thymic Involution beyond T-Cell Insufficiency. Oncotarget 2015, 6, 21777–21778. [Google Scholar] [CrossRef]
- Chu, Y.-W.; Schmitz, S.; Choudhury, B.; Telford, W.; Kapoor, V.; Garfield, S.; Howe, D.; Gress, R.E. Exogenous Insulin-like Growth Factor 1 Enhances Thymopoiesis Predominantly through Thymic Epithelial Cell Expansion. Blood 2008, 112, 2836–2846. [Google Scholar] [CrossRef]
- Papadopoulou, A.S.; Dooley, J.; Linterman, M.A.; Pierson, W.; Ucar, O.; Kyewski, B.; Zuklys, S.; Hollander, G.A.; Matthys, P.; Gray, D.H.D.; et al. The Thymic Epithelial microRNA Network Elevates the Threshold for Infection-Associated Thymic Involution via miR-29a Mediated Suppression of the IFN-α Receptor. Nat. Immunol. 2012, 13, 181–187. [Google Scholar] [CrossRef]
- Li, B.; Li, W.; Liu, W.; Xing, J.; Wu, Y.; Ma, Y.; Xu, D.; Li, Y. Comprehensive Analysis of lncRNAs, miRNAs and mRNAs Related to Thymic Development and Involution in Goose. Genomics 2021, 113, 1176–1188. [Google Scholar] [CrossRef]
- Thomas, R.; Su, D.-M. Age-Related Thymic Atrophy: Mechanisms and Outcomes. In Thymus; Rezaei, N., Ed.; IntechOpen: London, UK, 2020; ISBN 978-1-78985-133-5. [Google Scholar]
- Dooley, J.; Liston, A. Molecular Control over Thymic Involution: From Cytokines and Micro RNA to Aging and Adipose Tissue. Eur. J. Immunol. 2012, 42, 1073–1079. [Google Scholar] [CrossRef]
- Palmer, D.B. The Effect of Age on Thymic Function. Front. Immunol. 2013, 4, 316. [Google Scholar] [CrossRef] [PubMed]
- Barbouti, A.; Vasileiou, P.V.S.; Evangelou, K.; Vlasis, K.G.; Papoudou-Bai, A.; Gorgoulis, V.G.; Kanavaros, P. Implications of Oxidative Stress and Cellular Senescence in Age-Related Thymus Involution. Oxidative Med. Cell. Longev. 2020, 2020, 7986071. [Google Scholar] [CrossRef] [PubMed]
- Yajima, N. Age-Related Thymic Involution Is Mediated by Fas on Thymic Epithelial Cells. Int. Immunol. 2004, 16, 1027–1035. [Google Scholar] [CrossRef]
- Hsu, H.-C.; Li, L.; Zhang, H.-G.; Mountz, J.D. Genetic Regulation of Thymic Involution. Mech. Ageing Dev. 2005, 126, 87–97. [Google Scholar] [CrossRef]
- Hu, C.; Zhang, K.; Jiang, F.; Wang, H.; Shao, Q. Epigenetic Modifications in Thymic Epithelial Cells: An Evolutionary Perspective for Thymus Atrophy. Clin. Epigenet. 2021, 13, 210. [Google Scholar] [CrossRef] [PubMed]
- Goronzy, J.J.; Fang, F.; Cavanagh, M.M.; Qi, Q.; Weyand, C.M. Naive T Cell Maintenance and Function in Human Aging. J. Immunol. 2015, 194, 4073–4080. [Google Scholar] [CrossRef]
- Van Der Geest, K.S.M.; Brouwer, E.; Abdulahad, W.H.; Boots, A.M.H. Mechanisms of Naive CD4+ T Cell Maintenance in the Elderly and Its Implications for Autoimmunity. In Handbook of Immunosenescence; Fulop, T., Franceschi, C., Hirokawa, K., Pawelec, G., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–23. ISBN 978-3-319-64597-1. [Google Scholar]
- Han, S.; Georgiev, P.; Ringel, A.E.; Sharpe, A.H.; Haigis, M. Age-Associated Remodeling of T Cell Immunity and Metabolism. Cell Metab. 2023, 35, 36–55. [Google Scholar] [CrossRef]
- Ahmed, M.; Lanzer, K.G.; Yager, E.J.; Adams, P.S.; Johnson, L.L.; Blackman, M.A. Clonal Expansions and Loss of Receptor Diversity in the Naive CD8 T Cell Repertoire of Aged Mice. J. Immunol. 2009, 182, 784–792. [Google Scholar] [CrossRef]
- Kökrek, E.; Pir, P. Distinct Deregulation Trends of Transcriptional Protein Complexes in Aging Naive T Cells. J. Leukoc. Biol. 2024, 117, qiae231. [Google Scholar] [CrossRef]
- Grolleau-Julius, A.; Ray, D.; Yung, R.L. The Role of Epigenetics in Aging and Autoimmunity. Autoimmunity 2008, 41, 329–335. [Google Scholar] [CrossRef]
- Jasiulionis, M.G. Abnormal Epigenetic Regulation of Immune System during Aging. Front. Immunol. 2018, 9, 197. [Google Scholar] [CrossRef]
- Callender, L.A.; Carroll, E.C.; Garrod-Ketchley, C.; Schroth, J.; Bystrom, J.; Berryman, V.; Pattrick, M.; Campbell-Richards, D.; Hood, G.A.; Hitman, G.A.; et al. Altered Nutrient Uptake Causes Mitochondrial Dysfunction in Senescent CD8+ EMRA T Cells During Type 2 Diabetes. Front. Aging 2021, 2, 681428. [Google Scholar] [CrossRef]
- Nga, H.T.; Nguyen, T.L.; Yi, H.-S. T-Cell Senescence in Human Metabolic Diseases. Diabetes Metab. J. 2024, 48, 864–881. [Google Scholar] [CrossRef] [PubMed]
- Donnini, A.; Re, F.; Bollettini, M.; Moresi, R.; Tesei, S.; Bernardini, G.; Provinciali, M. Age-Related Susceptibility of Naive and Memory CD4 T Cells to Apoptosis Induced by IL-2 Deprivation or PHA Addition. Biogerontology 2005, 6, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Verdon, D.J.; Mulazzani, M.; Jenkins, M.R. Cellular and Molecular Mechanisms of CD8+ T Cell Differentiation, Dysfunction and Exhaustion. Int. J. Mol. Sci. 2020, 21, 7357. [Google Scholar] [CrossRef] [PubMed]
- Wherry, E.J.; Kurachi, M. Molecular and Cellular Insights into T Cell Exhaustion. Nat. Rev. Immunol. 2015, 15, 486–499. [Google Scholar] [CrossRef]
- Wherry, E.J. Molecular Basis of T-Cell Exhaustion. Blood 2013, 122, SCI-38. [Google Scholar] [CrossRef]
- Saka, D.; Gökalp, M.; Piyade, B.; Cevik, N.C.; Arik Sever, E.; Unutmaz, D.; Ceyhan, G.O.; Demir, I.E.; Asimgil, H. Mechanisms of T-Cell Exhaustion in Pancreatic Cancer. Cancers 2020, 12, 2274. [Google Scholar] [CrossRef]
- Balkhi, M.Y. Receptor Signaling, Transcriptional, and Metabolic Regulation of T Cell Exhaustion. OncoImmunology 2020, 9, 1747349. [Google Scholar] [CrossRef]
- Wu, J.; Shi, H. Unlocking the Epigenetic Code of T Cell Exhaustion. Transl. Cancer Res. 2017, 6, S384–S387. [Google Scholar] [CrossRef]
- Wong, G.C.L.; Ng, T.K.S.; Lee, J.L.; Lim, P.Y.; Chua, S.K.J.; Tan, C.; Chua, M.; Tan, J.; Lee, S.; Sia, A.; et al. Horticultural Therapy Reduces Biomarkers of Immunosenescence and Inflammaging in Community-Dwelling Older Adults: A Feasibility Pilot Randomized Controlled Trial. J. Gerontol. Ser. A 2021, 76, 307–317. [Google Scholar] [CrossRef]
- Asami, T.; Endo, K.; Matsui, R.; Sawa, T.; Tanaka, Y.; Saiki, T.; Tanba, N.; Haga, H.; Tanaka, S. Long-Term Caloric Restriction Ameliorates T Cell Immunosenescence in Mice. Mech. Ageing Dev. 2022, 206, 111710. [Google Scholar] [CrossRef]
- Sim, B.C.; Kang, Y.E.; You, S.K.; Lee, S.E.; Nga, H.T.; Lee, H.Y.; Nguyen, T.L.; Moon, J.S.; Tian, J.; Jang, H.J.; et al. Hepatic T-Cell Senescence and Exhaustion Are Implicated in the Progression of Fatty Liver Disease in Patients with Type 2 Diabetes and Mouse Model with Nonalcoholic Steatohepatitis. Cell Death Dis. 2023, 14, 618. [Google Scholar] [CrossRef] [PubMed]
- Suen, H.; Brown, R.; Yang, S.; Weatherburn, C.; Ho, P.J.; Woodland, N.; Nassif, N.; Barbaro, P.; Bryant, C.; Hart, D.; et al. Multiple Myeloma Causes Clonal T-Cell Immunosenescence: Identification of Potential Novel Targets for Promoting Tumour Immunity and Implications for Checkpoint Blockade. Leukemia 2016, 30, 1716–1724. [Google Scholar] [CrossRef] [PubMed]
- Wherry, E.J. Abstract IA06: Molecular Basis of T Cell Exhaustion: Insights for Immunotherapy. Cancer Immunol. Res. 2016, 4, IA06. [Google Scholar] [CrossRef]
- Slaets, H.; Veeningen, N.; De Keizer, P.L.J.; Hellings, N.; Hendrix, S. Are Immunosenescent T Cells Really Senescent? Aging Cell 2024, 23, e14300. [Google Scholar] [CrossRef]
- Wherry, E. Abstract IA17: Molecular Mechanisms of T-Cell Exhaustion and Implications for Immunotherapy. Cancer Immunol. Res. 2020, 8, IA17. [Google Scholar] [CrossRef]
- Ferrando-Martinez, S.; Ruiz-Mateos, E.; Romero-Sanchez, M.C.; Munoz-Fernandez, M.A.; Viciana, P.; Genebat, M.; Leal, M. HIV Infection-Related Premature Immunosenescence: High Rates of Immune Exhaustion After Short Time of Infection. Curr. HIV Res. 2011, 9, 289–294. [Google Scholar] [CrossRef]
- Kurachi, M. CD8+ T Cell Exhaustion. Semin. Immunopathol. 2019, 41, 327–337. [Google Scholar] [CrossRef]
- Jin, H.-T.; Jeong, Y.-H.; Park, H.-J.; Ha, S.-J. Mechanism of T Cell Exhaustion in a Chronic Environment. BMB Rep. 2011, 44, 217–231. [Google Scholar] [CrossRef]
- Kagoya, Y. Molecular Profiles of Exhausted T Cells and Their Impact on Response to Immune Checkpoint Blockade. Gan Kagaku Ryoho. Cancer Chemother. 2022, 49, 609–614. [Google Scholar]
- Palatella, M.; Guillaume, S.M.; Linterman, M.A.; Huehn, J. The Dark Side of Tregs during Aging. Front. Immunol. 2022, 13, 940705. [Google Scholar] [CrossRef]
- Frasca, D.; Landin, A.M.; Lechner, S.C.; Ryan, J.G.; Schwartz, R.; Riley, R.L.; Blomberg, B.B. Aging Down-Regulates the Transcription Factor E2A, Activation-Induced Cytidine Deaminase, and Ig Class Switch in Human B Cells. J. Immunol. 2008, 180, 5283–5290. [Google Scholar] [CrossRef] [PubMed]
- Blomberg, B.B.; Landin, A.M.; Riley, R.L.; Lechner, S.C.; Ryan, J.G.; Schwartz, R.; Frasca, D. Decreases in E2A, AID, and Ig Class Switch Show Intrinsic Defects in Human B Cells with Age (85.14). J. Immunol. 2007, 178, S120–S121. [Google Scholar] [CrossRef]
- Frasca, D.; Riley, R.L.; Blomberg, B.B. Humoral Immune Response and B-Cell Functions Including Immunoglobulin Class Switch Are Downregulated in Aged Mice and Humans. Semin. Immunol. 2005, 17, 378–384. [Google Scholar] [CrossRef] [PubMed]
- Blomberg, B.B.; Romero, M.; Landin, A.M.; Diaz, A.; Riley, R.L.; Frasca, D. Reduced Response to Influenza Vaccine Associates with Reduced AID in Aged Human B Lymphocytes (34.5). J. Immunol. 2009, 182, 34.5. [Google Scholar] [CrossRef]
- Aït-Azzouzene, D.; Kono, D.H.; Gonzalez-Quintial, R.; McHeyzer-Williams, L.J.; Lim, M.; Wickramarachchi, D.; Gerdes, T.; Gavin, A.L.; Skog, P.; McHeyzer-Williams, M.G.; et al. Deletion of IgG-Switched Autoreactive B Cells and Defects in Faslpr Lupus Mice. J. Immunol. 2010, 185, 1015–1027. [Google Scholar] [CrossRef]
- Dunn-Walters, D.K.; Stewart, A.T.; Sinclair, E.L.; Serangeli, I. Age-Related Changes in B Cells Relevant to Vaccine Responses. In Interdisciplinary Topics in Gerontology and Geriatrics; Weinberger, B., Ed.; S. Karger AG: Basel, Switzerland, 2020; Volume 43, pp. 56–72. ISBN 978-3-318-06677-7. [Google Scholar]
- Prigent, J.; Lorin, V.; Kök, A.; Hieu, T.; Bourgeau, S.; Mouquet, H. Scarcity of Autoreactive Human Blood IgA+ Memory B Cells. Eur. J. Immunol. 2016, 46, 2340–2351. [Google Scholar] [CrossRef]
- Choi, S.-C.; Li, W.; Zhang, X.; Teng, X.; Morel, L. Autoreactive B Cells Have a Specific Metabolic Response during Humoral Responses. J. Immunol. 2020, 204, 218.3. [Google Scholar] [CrossRef]
- Crooke, S.N.; Ovsyannikova, I.G.; Poland, G.A.; Kennedy, R.B. Immunosenescence and Human Vaccine Immune Responses. Immun. Ageing 2019, 16, 25. [Google Scholar] [CrossRef]
- Ademokun, A.; Wu, Y.-C.; Dunn-Walters, D. The Ageing B Cell Population: Composition and Function. Biogerontology 2010, 11, 125–137. [Google Scholar] [CrossRef]
- Wu, Y.-C.; Kipling, D.; Leong, H.S.; Martin, V.; Ademokun, A.A.; Dunn-Walters, D.K. High-Throughput Immunoglobulin Repertoire Analysis Distinguishes between Human IgM Memory and Switched Memory B-Cell Populations. Blood 2010, 116, 1070–1078. [Google Scholar] [CrossRef]
- Shaw, A.C.; Joshi, S.; Greenwood, H.; Panda, A.; Lord, J.M. Aging of the Innate Immune System. Curr. Opin. Immunol. 2010, 22, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Santeford, A.; Lee, A.Y.; Sene, A.; Hassman, L.M.; Sergushichev, A.A.; Loginicheva, E.; Artyomov, M.N.; Ruzycki, P.A.; Apte, R.S. Loss of Mir146b with Aging Contributes to Inflammation and Mitochondrial Dysfunction in Thioglycollate-Elicited Peritoneal Macrophages. eLife 2021, 10, e66703. [Google Scholar] [CrossRef] [PubMed]
- Moss, C.E.; Johnston, S.A.; Kimble, J.V.; Clements, M.; Codd, V.; Hamby, S.; Goodall, A.H.; Deshmukh, S.; Sudbery, I.; Coca, D.; et al. Aging-Related Defects in Macrophage Function Are Driven by MYC and USF1 Transcriptional Programs. Cell Rep. 2024, 43, 114073. [Google Scholar] [CrossRef] [PubMed]
- Maurmann, R.M.; Schmitt, B.L.; Mosalmanzadeh, N.; Pence, B.D. Mitochondrial Dysfunction at the Cornerstone of Inflammatory Exacerbation in Aged Macrophages. Explor. Immunol. 2023, 3, 442–452. [Google Scholar] [CrossRef]
- Yarbro, J.R.; Emmons, R.S.; Pence, B.D. Macrophage Immunometabolism and Inflammaging: Roles of Mitochondrial Dysfunction, Cellular Senescence, CD38, and NAD. Immunometabolism 2020, 2, e200026. [Google Scholar] [CrossRef]
- Lin, J.B.; Moolani, H.V.; Sene, A.; Sidhu, R.; Kell, P.; Lin, J.B.; Dong, Z.; Ban, N.; Ory, D.S.; Apte, R.S. Macrophage microRNA-150 Promotes Pathological Angiogenesis as Seen in Age-Related Macular Degeneration. J. Clin. Investig. 2018, 3, e120157. [Google Scholar] [CrossRef]
- Blacher, E.; Tsai, C.; Litichevskiy, L.; Shipony, Z.; Iweka, C.A.; Schneider, K.M.; Chuluun, B.; Heller, H.C.; Menon, V.; Thaiss, C.A.; et al. Aging Disrupts Circadian Gene Regulation and Function in Macrophages. Nat. Immunol. 2022, 23, 229–236. [Google Scholar] [CrossRef]
- Bordon, Y. A Broken Immune Clock in Old Macrophages. Nat. Rev. Immunol. 2022, 22, 74–75. [Google Scholar] [CrossRef]
- Stranks, A.J.; Hansen, A.L.; Panse, I.; Mortensen, M.; Ferguson, D.J.P.; Puleston, D.J.; Shenderov, K.; Watson, A.S.; Veldhoen, M.; Phadwal, K.; et al. Autophagy Controls Acquisition of Aging Features in Macrophages. J. Innate Immun. 2015, 7, 375–391. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Kaida, K.; Suenaga, Y.; Ishigami, A.; Kobayashi, Y.; Nagata, K. Age-Related Dysfunction of P53-Regulated Phagocytic Activity in Macrophages. Biochem. Biophys. Res. Commun. 2020, 529, 462–466. [Google Scholar] [CrossRef]
- Panda, A.; Arjona, A.; Sapey, E.; Bai, F.; Fikrig, E.; Montgomery, R.R.; Lord, J.M.; Shaw, A.C. Human Innate Immunosenescence: Causes and Consequences for Immunity in Old Age. Trends Immunol. 2009, 30, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Sebastián, C.; Lloberas, J.; Celada, A. Molecular and Cellular Aspects of Macrophage Aging. In Handbook on Immunosenescence; Fulop, T., Franceschi, C., Hirokawa, K., Pawelec, G., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 919–945. ISBN 978-1-4020-9062-2. [Google Scholar]
- Becker, L.; Nguyen, L.; Gill, J.; Kulkarni, S.; Pasricha, P.J.; Habtezion, A. Age-Dependent Shift in Macrophage Polarization Causes Inflammation Mediated Degeneration of Enteric Nervous System. Gut 2018, 67, 827–836. [Google Scholar] [CrossRef] [PubMed]
- Plackett, T.P.; Boehmer, E.D.; Faunce, D.E.; Kovacs, E.J. Aging and Innate Immune Cells. J. Leukoc. Biol. 2004, 76, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Butcher, S.; Chahel, H.; Lord, J.M. Ageing and the Neutrophil: No Appetite for Killing? Immunology 2000, 100, 411–416. [Google Scholar] [CrossRef]
- Richer, B.C.; Salei, N.; Laskay, T.; Seeger, K. Changes in Neutrophil Metabolism upon Activation and Aging. Inflammation 2018, 41, 710–721. [Google Scholar] [CrossRef]
- Adrover, J.M.; Nicolás-Ávila, J.A.; Hidalgo, A. Aging: A Temporal Dimension for Neutrophils. Trends Immunol. 2016, 37, 334–345. [Google Scholar] [CrossRef]
- Butcher, S.; Chahal, H.; Savey, E.; Killampalli, V.V.; Alpar, E.K.; Lord, J.M. Functional Decline in Human Neutrophils with Age. Sci. World J. 2001, 1, 67. [Google Scholar] [CrossRef]
- Ito, Y.; Toyama, K. Effects of age on activation of human neutrophils. J. Jpn. Soc. Reticuloendothel. Syst. 1996, 36, 245–250. [Google Scholar] [CrossRef]
- Ito, Y.; Kajkenova, O.; Feuers, R.J.; Udupa, K.B.; Desai, V.G.; Epstein, J.; Hart, R.W.; Lipschitz, D.A. Impaired Glutathione Peroxidase Activity Accounts for the Age-Related Accumulation of Hydrogen Peroxide in Activated Human Neutrophils. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 1998, 53A, M169–M175. [Google Scholar] [CrossRef]
- Noseykina, E.M.; Schepetkin, I.A.; Atochin, D.N. Molecular Mechanisms for Regulationof Neutrophil Apoptosis under Normal and Pathological Conditions. J. Evol. Biochem. Phys. 2021, 57, 429–450. [Google Scholar] [CrossRef]
- Tseng, C.W.; Liu, G.Y. Expanding Roles of Neutrophils in Aging Hosts. Curr. Opin. Immunol. 2014, 29, 43–48. [Google Scholar] [CrossRef]
- Zhou, Y.-Y.; Sun, B.-W. Recent Advances in Neutrophil Chemotaxis Abnormalities during Sepsis. Chin. J. Traumatol. 2022, 25, 317–324. [Google Scholar] [CrossRef]
- Stervbo, U.; Meier, S.; Mälzer, J.N.; Baron, U.; Bozzetti, C.; Jürchott, K.; Nienen, M.; Olek, S.; Rachwalik, D.; Schulz, A.R.; et al. Effects of Aging on Human Leukocytes (Part I): Immunophenotyping of Innate Immune Cells. Age 2015, 37, 92. [Google Scholar] [CrossRef] [PubMed]
- Fulop, T. The Innate Immune System and Aging: What Is the Contribution to Immunosenescence ? Open Longev. Sci. 2012, 6, 121–132. [Google Scholar] [CrossRef]
- Grifoni, A.; Alonzi, T.; Alter, G.; Noonan, D.M.; Landay, A.L.; Albini, A.; Goletti, D. Impact of Aging on Immunity in the Context of COVID-19, HIV, and Tuberculosis. Front. Immunol. 2023, 14, 1146704. [Google Scholar] [CrossRef] [PubMed]
- Camous, X.; Pera, A.; Solana, R.; Larbi, A. NK Cells in Healthy Aging and Age-Associated Diseases. J. Biomed. Biotechnol. 2012, 2012, 195956. [Google Scholar] [CrossRef]
- Hsueh, C.-M.; Chen, S.-F.; Ghanta, V.K.; Hiramoto, R.N. Involvement of Cytokine Gene Expression in the Age-Dependent Decline of NK Cell Response. Cell. Immunol. 1996, 173, 221–229. [Google Scholar] [CrossRef]
- Chiu, B.-C.; Martin, B.E.; Stolberg, V.R.; Chensue, S.W. The Host Environment Is Responsible for Aging-Related Functional NK Cell Deficiency. J. Immunol. 2013, 191, 4688–4698. [Google Scholar] [CrossRef]
- Chen, Y.-J.; Liao, H.-F. NK/NKT Cells and Aging. Int. J. Gerontol. 2007, 1, 65–76. [Google Scholar] [CrossRef]
- Solana, R.; Campos, C.; Pera, A.; Tarazona, R. Shaping of NK Cell Subsets by Aging. Curr. Opin. Immunol. 2014, 29, 56–61. [Google Scholar] [CrossRef]
- Gounder, S.S.; Abdullah, B.J.J.; Radzuanb, N.E.I.B.M.; Zain, F.D.B.M.; Sait, N.B.M.; Chua, C.; Subramani, B. Effect of Aging on NK Cell Population and Their Proliferation at Ex Vivo Culture Condition. Anal. Cell. Pathol. 2018, 2018, 7871814. [Google Scholar] [CrossRef]
- Brauning, A.; Rae, M.; Zhu, G.; Fulton, E.; Admasu, T.D.; Stolzing, A.; Sharma, A. Aging of the Immune System: Focus on Natural Killer Cells Phenotype and Functions. Cells 2022, 11, 1017. [Google Scholar] [CrossRef] [PubMed]
- Davalli, P.; Mitic, T.; Caporali, A.; Lauriola, A.; D’Arca, D. ROS, Cell Senescence, and Novel Molecular Mechanisms in Aging and Age-Related Diseases. Oxidative Med. Cell Longev. 2016, 2016, 3565127. [Google Scholar] [CrossRef] [PubMed]
- Müller-Durovic, B.; Lanna, A.; Covre, L.P.; Mills, R.S.; Henson, S.M.; Akbar, A.N. Killer Cell Lectin-like Receptor G1 Inhibits NK Cell Function through Activation of Adenosine 5′-Monophosphate-Activated Protein Kinase. J. Immunol. 2016, 197, 2891–2899. [Google Scholar] [CrossRef] [PubMed]
- Mocchegiani, E.; Malavolta, M. NK and NKT Cell Functions in Immunosenescence. Aging Cell 2004, 3, 177–184. [Google Scholar] [CrossRef]
- Solana, R.; Tarazona, R.; Gayoso, I.; Lesur, O.; Dupuis, G.; Fulop, T. Innate Immunosenescence: Effect of Aging on Cells and Receptors of the Innate Immune System in Humans. Semin. Immunol. 2012, 24, 331–341. [Google Scholar] [CrossRef]
- Björkström, N.K.; Strunz, B.; Ljunggren, H.-G. Natural Killer Cells in Antiviral Immunity. Nat. Rev. Immunol. 2022, 22, 112–123. [Google Scholar] [CrossRef]
- Pereira, B.I.; Akbar, A.N. Convergence of Innate and Adaptive Immunity during Human Aging. Front. Immunol. 2016, 7, 445. [Google Scholar] [CrossRef]
- Artemyeva, O.V.; Gankovskaya, L.V. Inflammaging as the Basis of Age-Associated Diseases. Med. Immunol. 2020, 22, 419–432. [Google Scholar] [CrossRef]
- Ferrucci, L.; Fabbri, E. Inflammageing: Chronic Inflammation in Ageing, Cardiovascular Disease, and Frailty. Nat. Rev. Cardiol. 2018, 15, 505–522. [Google Scholar] [CrossRef]
- Franceschi, C.; Garagnani, P.; Parini, P.; Giuliani, C.; Santoro, A. Inflammaging: A New Immune–Metabolic Viewpoint for Age-Related Diseases. Nat. Rev. Endocrinol. 2018, 14, 576–590. [Google Scholar] [CrossRef]
- Rea, I.M.; Gibson, D.S.; McGilligan, V.; McNerlan, S.E.; Alexander, H.D.; Ross, O.A. Age and Age-Related Diseases: Role of Inflammation Triggers and Cytokines. Front. Immunol. 2018, 9, 586. [Google Scholar] [CrossRef]
- Walker, K.A.; Basisty, N.; Wilson, D.M.; Ferrucci, L. Connecting Aging Biology and Inflammation in the Omics Era. J. Clin. Investig. 2022, 132, e158448. [Google Scholar] [CrossRef] [PubMed]
- Grabowska, K.; Nowacka-Chmielewska, M.; Barski, J.; Liskiewicz, D. Zapalenie Starcze—Mechanizmy i Szlaki Sygnałowe. Postep. Biochem. 2021, 67, 177–192. [Google Scholar] [CrossRef] [PubMed]
- García-Domínguez, M. Pathological and Inflammatory Consequences of Aging. Biomolecules 2025, 15, 404. [Google Scholar] [CrossRef] [PubMed]
- Prattichizzo, F.; De Nigris, V.; La Sala, L.; Procopio, A.D.; Olivieri, F.; Ceriello, A. “Inflammaging” as a Druggable Target: A Senescence-Associated Secretory Phenotype—Centered View of Type 2 Diabetes. Oxidative Med. Cell. Longev. 2016, 2016, 1810327. [Google Scholar] [CrossRef]
- Ohtani, N. Deciphering the Mechanism for Induction of Senescence-Associated Secretory Phenotype (SASP) and Its Role in Ageing and Cancer Development. J. Biochem. 2019, 166, 289–295. [Google Scholar] [CrossRef]
- Tanaka, Y.; Takahashi, A. Senescence-Associated Extracellular Vesicle Release Plays a Role in Senescence-Associated Secretory Phenotype (SASP) in Age-Associated Diseases. J. Biochem. 2021, 169, 147–153. [Google Scholar] [CrossRef]
- Sebastian-Valverde, M.; Pasinetti, G.M. The NLRP3 Inflammasome as a Critical Actor in the Inflammaging Process. Cells 2020, 9, 1552. [Google Scholar] [CrossRef] [PubMed]
- Waitupu, A.; Ningtyas, M.C.; Sutanto, H. Cholesterol Crystal Embolism: Unraveling Its Impact on Atherosclerotic Cardiovascular Diseases. J. Med. Surg. Public Health 2024, 3, 100102. [Google Scholar] [CrossRef]
- Abbas, G.; Salman, A.; Rahman, S.U.; Ateeq, M.K.; Usman, M.; Sajid, S.; Zaheer, Z.; Younas, T. Aging Mechanisms: Linking Oxidative Stress, Obesity and Inflammation. Matrix Sci. Medica 2017, 1, 30–33. [Google Scholar] [CrossRef]
- Li, X.; Li, C.; Zhang, W.; Wang, Y.; Qian, P.; Huang, H. Inflammation and Aging: Signaling Pathways and Intervention Therapies. Signal Transduct. Target. Ther. 2023, 8, 239. [Google Scholar] [CrossRef]
- Salminen, A.; Huuskonen, J.; Ojala, J.; Kauppinen, A.; Kaarniranta, K.; Suuronen, T. Activation of Innate Immunity System during Aging: NF-kB Signaling Is the Molecular Culprit of Inflamm-Aging. Ageing Res. Rev. 2008, 7, 83–105. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Y.; Wang, Y.; Chao, Y.; Zhang, J.; Jia, Y.; Tie, J.; Hu, D. Regulation of SIRT1 and Its Roles in Inflammation. Front. Immunol. 2022, 13, 831168. [Google Scholar] [CrossRef]
- Olivieri, F.; Rippo, M.R.; Monsurrò, V.; Salvioli, S.; Capri, M.; Procopio, A.D.; Franceschi, C. MicroRNAs Linking Inflamm-Aging, Cellular Senescence and Cancer. Ageing Res. Rev. 2013, 12, 1056–1068. [Google Scholar] [CrossRef]
- Kriete, A.; Mayo, K.L. Atypical Pathways of NF-kappaB Activation and Aging. Exp. Gerontol. 2009, 44, 250–255. [Google Scholar] [CrossRef]
- Kim, M.E.; Lee, J.S. Immune Diseases Associated with Aging: Molecular Mechanisms and Treatment Strategies. Int. J. Mol. Sci. 2023, 24, 15584. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X.; Pan, Y.; Shi, G.; Ren, J.; Fan, H.; Dou, H.; Hou, Y. mTOR Regulates NLRP3 Inflammasome Activation via Reactive Oxygen Species in Murine Lupus. Acta Biochim. Biophys. Sin. 2018, 50, 888–896. [Google Scholar] [CrossRef]
- Dai, J.; Jiang, C.; Chen, H.; Chai, Y. Rapamycin Attenuates High Glucose-Induced Inflammation Through Modulation of mTOR/NF-κB Pathways in Macrophages. Front. Pharmacol. 2019, 10, 1292. [Google Scholar] [CrossRef]
- Song, F.; Ma, Y.; Bai, X.-Y.; Chen, X. The Expression Changes of Inflammasomes in the Aging Rat Kidneys. J. Gerontol. Ser. A 2016, 71, 747–756. [Google Scholar] [CrossRef]
- Salminen, A.; Ojala, J.; Kaarniranta, K.; Kauppinen, A. Mitochondrial Dysfunction and Oxidative Stress Activate Inflammasomes: Impact on the Aging Process and Age-Related Diseases. Cell. Mol. Life Sci. 2012, 69, 2999–3013. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Trabucco, S.E.; Zhang, H. Oxidative Stress, Mitochondrial Dysfunction and the Mitochondria Theory of Aging. In Interdisciplinary Topics in Gerontology and Geriatrics; Robert, L., Fulop, T., Eds.; S. Karger AG: Basel, Switzerland, 2014; Volume 39, pp. 86–107. ISBN 978-3-318-02652-8. [Google Scholar]
- Hiona, A.; Leeuwenburgh, C. The Role of Mitochondrial DNA Mutations in Aging and Sarcopenia: Implications for the Mitochondrial Vicious Cycle Theory of Aging. Exp. Gerontol. 2008, 43, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Marcinek, D.J. Mitochondrial Oxidative Stress in Skeletal Muscle and Cardiac Aging. Free. Radic. Biol. Med. 2015, 86, S14. [Google Scholar] [CrossRef]
- Vardhana, S.A.; Hwee, M.A.; Berisa, M.; Wells, D.K.; Yost, K.E.; King, B.; Smith, M.; Herrera, P.S.; Chang, H.Y.; Satpathy, A.T.; et al. Impaired Mitochondrial Oxidative Phosphorylation Limits the Self-Renewal of T Cells Exposed to Persistent Antigen. Nat. Immunol. 2020, 21, 1022–1033. [Google Scholar] [CrossRef]
- Elfawy, H.A.; Das, B. Crosstalk between Mitochondrial Dysfunction, Oxidative Stress, and Age Related Neurodegenerative Disease: Etiologies and Therapeutic Strategies. Life Sci. 2019, 218, 165–184. [Google Scholar] [CrossRef]
- Zhong, W.; Rao, Z.; Xu, J.; Sun, Y.; Hu, H.; Wang, P.; Xia, Y.; Pan, X.; Tang, W.; Chen, Z.; et al. Defective Mitophagy in Aged Macrophages Promotes Mitochondrial DNA Cytosolic Leakage to Activate STING Signaling during Liver Sterile Inflammation. Aging Cell 2022, 21, e13622. [Google Scholar] [CrossRef]
- De Gaetano, A.; Gibellini, L.; Zanini, G.; Nasi, M.; Cossarizza, A.; Pinti, M. Mitophagy and Oxidative Stress: The Role of Aging. Antioxidants 2021, 10, 794. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Munshi, S.; Banerjee, K.; Thakurta, I.G.; Sinha, M.; Bagh, M.B. Mitochondrial Dysfunction during Brain Aging: Role of Oxidative Stress and Modulation by Antioxidant Supplementation. Aging Dis 2011, 2, 242–256. [Google Scholar]
- Braakhuis, A.J.; Nagulan, R.; Somerville, V. The Effect of MitoQ on Aging-Related Biomarkers: A Systematic Review and Meta-Analysis. Oxidative Med. Cell Longev. 2018, 2018, 8575263. [Google Scholar] [CrossRef] [PubMed]
- Aitbaev, K.A.; Murkamilov, I.T.; Murkamilova, Z.A.; Kudaibergenova, I.O.; Yusupov, F.A. Regulation of the Immune System in Aging: Focus on Epigenetic Mechanisms. Arh. Vnutr. Med. 2022, 12, 35–44. [Google Scholar] [CrossRef]
- Martinez-Ruíz, G.U.; Morales-Sánchez, A.; Bhandoola, A. Transcriptional and Epigenetic Regulation in Thymic Epithelial Cells. Immunol. Rev. 2022, 305, 43–58. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Chen, Z.; Shen, W.; Huang, G.; Sedivy, J.M.; Wang, H.; Ju, Z. Inflammation, Epigenetics, and Metabolism Converge to Cell Senescence and Ageing: The Regulation and Intervention. Signal Transduct. Target. Ther. 2021, 6, 245. [Google Scholar] [CrossRef]
- Monroy-Jaramillo, N.; Vázquez-Martínez, E.R. Epigenetics and Ageing. In Clinical Genetics and Genomics of Aging; Gomez-Verjan, J.C., Rivero-Segura, N.A., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 141–166. ISBN 978-3-030-40955-5. [Google Scholar]
- Pan, M.-R.; Hsu, M.-C.; Chen, L.-T.; Hung, W.-C. Orchestration of H3K27 Methylation: Mechanisms and Therapeutic Implication. Cell. Mol. Life Sci. 2017, 75, 209–223. [Google Scholar] [CrossRef]
- Park, J.H.; Yoo, Y.; Park, Y.J. Epigenetics: Linking Nutrition to Molecular Mechanisms in Aging. Prev. Nutr. Food Sci. 2017, 22, 81–89. [Google Scholar] [CrossRef]
- Baechle, J.J.; Chen, N.; Makhijani, P.; Winer, S.; Furman, D.; Winer, D.A. Chronic Inflammation and the Hallmarks of Aging. Mol. Metab. 2023, 74, 101755. [Google Scholar] [CrossRef]
- Killick, J.W.; Bennett, S.J.; Dias, I.H.K.; Dunston, C.R.; Griffiths, H.R. A Role for Epigenetic Modulation of the Innate Immune Response During Aging. In Immunology of Aging; Massoud, A., Rezaei, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 37–45. ISBN 978-3-642-39494-2. [Google Scholar]
- He, J.; Tu, C.; Liu, Y. Role of lncRNAs in Aging and Age-related Diseases. Aging Med. 2018, 1, 158–175. [Google Scholar] [CrossRef]
- Bhat, S.A.; Sureshbabu, S.K.; Philip, C.S.; Chiplunkar, S. Impact of Epigenetic Modifiers on the Immune System. In Epigenetics of the Immune System; Elsevier: Amsterdam, The Netherlands, 2020; pp. 315–352. ISBN 978-0-12-817964-2. [Google Scholar]
- Perlmutter, A.; Bland, J.S.; Chandra, A.; Malani, S.S.; Smith, R.; Mendez, T.L.; Dwaraka, V.B. The Impact of a Polyphenol-Rich Supplement on Epigenetic and Cellular Markers of Immune Age: A Pilot Clinical Study. Front. Nutr. 2024, 11, 1474597. [Google Scholar] [CrossRef]
- Fan, J.; Kou, X.; Yang, Y.; Chen, N. MicroRNA-Regulated Proinflammatory Cytokines in Sarcopenia. Mediat. Inflamm. 2016, 2016, 1438686. [Google Scholar] [CrossRef]
- Merchant, R.A.; Chan, Y.H.; Anbarasan, D.; Vellas, B. Association of Intrinsic Capacity with Functional Ability, Sarcopenia and Systemic Inflammation in Pre-Frail Older Adults. Front. Med. 2024, 11, 1374197. [Google Scholar] [CrossRef] [PubMed]
- Wilson, D.; Jackson, T.; Sapey, E.; Lord, J.M. Frailty and Sarcopenia: The Potential Role of an Aged Immune System. Ageing Res. Rev. 2017, 36, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xiang, Y.; Wu, L.; Zhang, C.; Han, B.; Cheng, Y.; Tong, Y.; Yan, D.; Wang, L. The Association between Inflammatory Cytokines and Sarcopenia-Related Traits: A Bi-Directional Mendelian Randomization Study. Eur. J. Clin. Nutr. 2024, 78, 1032–1040. [Google Scholar] [CrossRef] [PubMed]
- Schaap, L.A.; Pluijm, S.M.F.; Deeg, D.J.H.; Visser, M. Inflammatory Markers and Loss of Muscle Mass (Sarcopenia) and Strength. Am. J. Med. 2006, 119, 526.e9–526.e17. [Google Scholar] [CrossRef]
- Saul, D.; Schilling, A.; Kosinsky, R. Why Age Matters: Inflammation, Cancer and Hormones in the Development of Sarcopenia. J. Osteopor. Phys. Act. 2017, 5, 191. [Google Scholar] [CrossRef]
- Sciorati, C.; Gamberale, R.; Monno, A.; Citterio, L.; Lanzani, C.; De Lorenzo, R.; Ramirez, G.A.; Esposito, A.; Manunta, P.; Manfredi, A.A.; et al. Pharmacological Blockade of TNFα Prevents Sarcopenia and Prolongs Survival in Aging Mice. Aging 2020, 12, 23497–23508. [Google Scholar] [CrossRef]
- White, T.A.; Zhu, Y.; Giorgadze, N.; Tchkonia, T.; Kirkland, J.L.; LeBrasseur, N.K. Aging, Inflammation and Skeletal Muscle. FASEB J. 2012, 26, 1143.7. [Google Scholar] [CrossRef]
- Bermejo, I.; Carnicero, J.A.; Garcia, F.J.; Pérez-Baos, S.; Mateos, M.; Medina, J.P.; Mediero, A.; Rodríguez, L.; Largo, R.; Herrero-Beaumont, G. POS1446 Creatine Kinase Could be a Marker of Chronic Inflammation-Induced Sarcopenia in Frail Patients. Ann. Rheum. Dis. 2022, 81, 1067–1068. [Google Scholar] [CrossRef]
- Cui, C.-Y.; Ferrucci, L.; Gorospe, M. Macrophage Involvement in Aging-Associated Skeletal Muscle Regeneration. Cells 2023, 12, 1214. [Google Scholar] [CrossRef]
- Ryu, J.Y.; Choi, H.M.; Yang, H.-I.; Kim, K.S. Dysregulated Autophagy Mediates Sarcopenic Obesity and Its Complications via AMPK and PGC1α Signaling Pathways: Potential Involvement of Gut Dysbiosis as a Pathological Link. Int. J. Mol. Sci. 2020, 21, 6887. [Google Scholar] [CrossRef]
- Ayyubova, G. Dysfunctional Microglia and Tau Pathology in Alzheimer’s Disease. Rev. Neurosci. 2023, 34, 443–458. [Google Scholar] [CrossRef]
- Gold, A.; Kaye, S.; Gao, J.; Zhu, J. Propionate Decreases Microglial Activation but Impairs Phagocytic Capacity in Response to Aggregated Fibrillar Amyloid Beta Protein. ACS Chem. Neurosci. 2024, 15, 4010–4020. [Google Scholar] [CrossRef]
- Vogt, N.M.; Kerby, R.L.; Dill-McFarland, K.A.; Harding, S.J.; Merluzzi, A.P.; Johnson, S.C.; Carlsson, C.M.; Asthana, S.; Zetterberg, H.; Blennow, K.; et al. Gut Microbiome Alterations in Alzheimer’s Disease. Sci. Rep. 2017, 7, 13537. [Google Scholar] [CrossRef]
- De Amorim, J.S.C.; Torres, K.C.L.; Carvalho, A.T.; Martins-Filho, O.A.; Lima-Costa, M.F.; Peixoto, S.V. Inflammatory Markers Associated with Fall Recurrence and Severity: The Bambuí Cohort Study of Aging. Exp. Gerontol. 2020, 132, 110837. [Google Scholar] [CrossRef]
- Sugahara, H.; Okai, S.; Odamaki, T.; Wong, C.B.; Kato, K.; Mitsuyama, E.; Xiao, J.-Z.; Shinkura, R. Decreased Taxon-Specific IgA Response in Relation to the Changes of Gut Microbiota Composition in the Elderly. Front. Microbiol. 2017, 8, 1757. [Google Scholar] [CrossRef] [PubMed]
- Whelan, S.; Lucey, B.; Finn, K. Uropathogenic Escherichia Coli (UPEC)-Associated Urinary Tract Infections: The Molecular Basis for Challenges to Effective Treatment. Microorganisms 2023, 11, 2169. [Google Scholar] [CrossRef] [PubMed]
- Branca, J.J.V.; Gulisano, M.; Nicoletti, C. Intestinal Epithelial Barrier Functions in Ageing. Ageing Res. Rev. 2019, 54, 100938. [Google Scholar] [CrossRef] [PubMed]
- Okello, A.; Edison, P.; Archer, H.A.; Turkheimer, F.E.; Kennedy, J.; Bullock, R.; Walker, Z.; Kennedy, A.; Fox, N.; Rossor, M.; et al. Microglial Activation and Amyloid Deposition in Mild Cognitive Impairment: A PET Study. Neurology 2009, 72, 56–62. [Google Scholar] [CrossRef]
- Hwang, D.W.; Sohn, D.; Ki, Y.W.; Kim, S.; Choi, Y.; Ko, M.K.; Lee, S.C. Natural Killer Cells Improve Cognitive Function and Support to Induce Amyloid Beta Clearance by Functional Recovery of Impaired Microglia in Natural Killer Cell-treated Alzheimer’s Diseases Mouse Model. Alzheimer’s Dement. 2022, 18, e061720. [Google Scholar] [CrossRef]
- Cai, Y.; Liu, J.; Wang, B.; Sun, M.; Yang, H. Microglia in the Neuroinflammatory Pathogenesis of Alzheimer’s Disease and Related Therapeutic Targets. Front. Immunol. 2022, 13, 856376. [Google Scholar] [CrossRef]
- Tejera, D.; Mercan, D.; Sanchez-Caro, J.M.; Hanan, M.; Greenberg, D.; Soreq, H.; Latz, E.; Golenbock, D.; Heneka, M.T. Systemic Inflammation Impairs Microglial Aβ Clearance through NLRP3 Inflammasome. EMBO J. 2019, 38, e101064. [Google Scholar] [CrossRef]
- Knezevic, D.; Mizrahi, R. Molecular Imaging of Neuroinflammation in Alzheimer’s Disease and Mild Cognitive Impairment. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2018, 80, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Ayyubova, G. TREM2 Signalling as a Multifaceted Player in Brain Homoeostasis and a Potential Target for Alzheimer’s Disease Treatment. Eur. J. Neurosci. 2023, 57, 718–733. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Huang, J.; Huang, N.; Luo, Y. The Role of TREM2 in Alzheimer’s Disease: From the Perspective of Tau. Front. Cell Dev. Biol. 2023, 11, 1280257. [Google Scholar] [CrossRef] [PubMed]
- Loh, J.S.; Mak, W.Q.; Tan, L.K.S.; Ng, C.X.; Chan, H.H.; Yeow, S.H.; Foo, J.B.; Ong, Y.S.; How, C.W.; Khaw, K.Y. Microbiota–Gut–Brain Axis and Its Therapeutic Applications in Neurodegenerative Diseases. Signal Transduct. Target. Ther. 2024, 9, 37. [Google Scholar] [CrossRef]
- Yang, J.; Liang, J.; Hu, N.; He, N.; Liu, B.; Liu, G.; Qin, Y. The Gut Microbiota Modulates Neuroinflammation in Alzheimer’s Disease: Elucidating Crucial Factors and Mechanistic Underpinnings. CNS Neurosci. Ther. 2024, 30, e70091. [Google Scholar] [CrossRef]
- Altintas, I.; Andersen, O.; Nehlin, J.O. Chapter Five—Role of Immunosenescence in Impaired Wound Healing with Age. In Advances in Biogerontology; Redox Signaling in Wound Healing in Elderly Populations: Theoretical Basis, Part 1; Atayik, M.C., Çakatay, U., Eds.; Academic Press: Cambridge, MA, USA, 2024; Volume 2, pp. 117–167. [Google Scholar]
- Brubaker, A.L.; Rendon, J.L.; Ramirez, L.; Choudhry, M.A.; Kovacs, E.J. Reduced Neutrophil Chemotaxis and Infiltration Contributes to Delayed Resolution of Cutaneous Wound Infection with Advanced Age. J. Immunol. 2013, 190, 1746–1757. [Google Scholar] [CrossRef]
- Schäffer, M.; Becker, H.D. Immune regulation of wound healing. Der Chir. 1999, 70, 897–908. [Google Scholar] [CrossRef]
- Ferrante, C.J.; Leibovich, S.J. Regulation of Macrophage Polarization and Wound Healing. Adv. Wound Care 2012, 1, 10–16. [Google Scholar] [CrossRef]
- Brubaker, A.L.; Mahbub, S.; Deburghgrave, C.; Kovacs, E.J. Impact of Aging on Dermal Wound Healing. FASEB J. 2010, 24, 181.3. [Google Scholar] [CrossRef]
- Zille de Queiroz, B.; de Britto Rosa, N.M.; Pereira, D.S.; Lopes, R.A.; Leopoldino, A.A.O.; Thomasini, R.L.; Felício, D.C.; Lustosa, L.P.; Pereira, L.S.M. Inflammatory Mediators and the Risk of Falls among Older Women with Acute Low Back Pain: Data from Back Complaints in the Elders (BACE)—Brazil. Eur. Spine J. 2020, 29, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Walrath, T.; Dyamenahalli, K.U.; Hulsebus, H.J.; McCullough, R.L.; Idrovo, J.-P.; Boe, D.M.; McMahan, R.H.; Kovacs, E.J. Age-Related Changes in Intestinal Immunity and the Microbiome. J. Leukoc. Biol. 2021, 109, 1045–1061. [Google Scholar] [CrossRef] [PubMed]
- Hohman, L.S.; Osborne, L.C. A Gut-Centric View of Aging: Do Intestinal Epithelial Cells Contribute to Age-Associated Microbiota Changes, Inflammaging, and Immunosenescence? Aging Cell 2022, 21, e13700. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Zhang, C.; Wang, Q.; Feng, S.; Fang, Y.; Zhang, S. The Impact of Aging on Intestinal Mucosal Immune Function and Clinical Applications. Front. Immunol. 2022, 13, 1029948. [Google Scholar] [CrossRef]
- Ruța, F.; Pribac, M.; Mardale, E.; Suciu, S.; Maior, R.; Bogdan, S.; Avram, C. Associations between Gut Microbiota Dysbiosis and Other Risk Factors in Women with a History of Urinary Tract Infections. Nutrients 2024, 16, 1753. [Google Scholar] [CrossRef]
- Iqbal, Z.S.; Halkjær, S.I.; Ghathian, K.S.A.; Heintz, J.E.; Petersen, A.M. The Role of the Gut Microbiome in Urinary Tract Infections: A Narrative Review. Nutrients 2024, 16, 3615. [Google Scholar] [CrossRef]
- Ma, J.; Piao, X.; Mahfuz, S.; Long, S.; Wang, J. The Interaction among Gut Microbes, the Intestinal Barrier and Short Chain Fatty Acids. Anim. Nutr. 2022, 9, 159–174. [Google Scholar] [CrossRef]
- Pasricha, T.; Staller, K. Fecal Incontinence in the Elderly. Clin. Geriatr. Med. 2021, 37, 71–83. [Google Scholar] [CrossRef]
- Du, P.Y.; Gandhi, A.; Bawa, M.; Gromala, J. The Ageing Immune System as a Potential Target of Senolytics. Oxf. Open Immunol. 2023, 4, iqad004. [Google Scholar] [CrossRef]
- Ribeiro, H.; Rodrigues, I.; Napoleão, L.; Lira, L.; Marques, D.; Veríssimo, M.; Andrade, J.P.; Dourado, M. Non-Steroidal Anti-Inflammatory Drugs (NSAIDs), Pain and Aging: Adjusting Prescription to Patient Features. Biomed. Pharmacother. 2022, 150, 112958. [Google Scholar] [CrossRef]
- Sorrenti, V.; Benedetti, F.; Buriani, A.; Fortinguerra, S.; Caudullo, G.; Davinelli, S.; Zella, D.; Scapagnini, G. Immunomodulatory and Antiaging Mechanisms of Resveratrol, Rapamycin, and Metformin: Focus on mTOR and AMPK Signaling Networks. Pharmaceuticals 2022, 15, 912. [Google Scholar] [CrossRef]
- Amor, C.; Fernández-Maestre, I.; Chowdhury, S.; Ho, Y.-J.; Nadella, S.; Graham, C.; Carrasco, S.E.; Nnuji-John, E.; Feucht, J.; Hinterleitner, C.; et al. Prophylactic and Long-Lasting Efficacy of Senolytic CAR T Cells against Age-Related Metabolic Dysfunction. Nat. Aging 2024, 4, 336–349. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.T.; Tuday, E.; Allen, S.; Kim, J.; Trott, D.W.; Holland, W.L.; Donato, A.J.; Lesniewski, L.A. Senolytic Drugs, Dasatinib and Quercetin, Attenuate Adipose Tissue Inflammation, and Ameliorate Metabolic Function in Old Age. Aging Cell 2023, 22, e13767. [Google Scholar] [CrossRef] [PubMed]
- Masternak, M. Senescent Cells as New Pharmacological Targets for Age-Related Diseases and Anti-Aging Therapy. J. Med. Sci. 2023, 92, e907. [Google Scholar] [CrossRef]
- Kirkland, J.L.; Tchkonia, T. Senolytic Drugs: From Discovery to Translation. J. Intern. Med. 2020, 288, 518–536. [Google Scholar] [CrossRef]
- Robbins, P.D.; Jurk, D.; Khosla, S.; Kirkland, J.L.; LeBrasseur, N.K.; Miller, J.D.; Passos, J.F.; Pignolo, R.J.; Tchkonia, T.; Niedernhofer, L.J. Senolytic Drugs: Reducing Senescent Cell Viability to Extend Health Span. Annu. Rev. Pharmacol. Toxicol. 2021, 61, 779–803. [Google Scholar] [CrossRef]
- Nambiar, A.; Kellogg, D.; Justice, J.; Goros, M.; Gelfond, J.; Pascual, R.; Hashmi, S.; Masternak, M.; Prata, L.; LeBrasseur, N.; et al. Senolytics Dasatinib and Quercetin in Idiopathic Pulmonary Fibrosis: Results of a Phase I, Single-Blind, Single-Center, Randomized, Placebo-Controlled Pilot Trial on Feasibility and Tolerability. eBioMedicine 2023, 90, 104481. [Google Scholar] [CrossRef]
- Yousefzadeh, M.J.; Zhu, Y.; McGowan, S.J.; Angelini, L.; Fuhrmann-Stroissnigg, H.; Xu, M.; Ling, Y.Y.; Melos, K.I.; Pirtskhalava, T.; Inman, C.L.; et al. Fisetin Is a Senotherapeutic That Extends Health and Lifespan. EBioMedicine 2018, 36, 18–28. [Google Scholar] [CrossRef]
- Tavenier, J.; Nehlin, J.O.; Houlind, M.B.; Rasmussen, L.J.; Tchkonia, T.; Kirkland, J.L.; Andersen, O.; Rasmussen, L.J.H. Fisetin as a Senotherapeutic Agent: Evidence and Perspectives for Age-Related Diseases. Mech. Ageing Dev. 2024, 222, 111995. [Google Scholar] [CrossRef]
- Zhu, Y.; Tchkonia, T.; Fuhrmann-Stroissnigg, H.; Dai, H.M.; Ling, Y.Y.; Stout, M.B.; Pirtskhalava, T.; Giorgadze, N.; Johnson, K.O.; Giles, C.B.; et al. Identification of a Novel Senolytic Agent, Navitoclax, Targeting the Bcl-2 Family of Anti-Apoptotic Factors. Aging Cell 2016, 15, 428–435. [Google Scholar] [CrossRef]
- Sharma, A.K.; Roberts, R.L.; Benson, R.D.; Pierce, J.L.; Yu, K.; Hamrick, M.W.; McGee-Lawrence, M.E. The Senolytic Drug Navitoclax (ABT-263) Causes Trabecular Bone Loss and Impaired Osteoprogenitor Function in Aged Mice. Front. Cell Dev. Biol. 2020, 8, 354. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, V.J.; Saleh, T.; Gewirtz, D.A. Senolytics for Cancer Therapy: Is All That Glitters Really Gold? Cancers 2021, 13, 723. [Google Scholar] [CrossRef] [PubMed]
- Katsuumi, G.; Shimizu, I.; Suda, M.; Yoshida, Y.; Hayashi, Y.; Nakao, M.; Furuuchi, R.; Hsiao, Y.T.; Minamino, T. A Novel Senolytic Drug, Seno-7284 Ameliorates Aging Phenotype and Age-Related Cardiometabolic Diseases. Eur. Heart J. 2020, 41, ehaa946.3746. [Google Scholar] [CrossRef]
- Hassan, J.W.; Bhatwadekar, A.D. Senolytics in the Treatment of Diabetic Retinopathy. Front. Pharmacol. 2022, 13, 896907. [Google Scholar] [CrossRef]
- Smer-Barreto, V.; Quintanilla, A.; Elliott, R.J.R.; Dawson, J.C.; Sun, J.; Campa, V.M.; Lorente-Macías, Á.; Unciti-Broceta, A.; Carragher, N.O.; Acosta, J.C.; et al. Discovery of Senolytics Using Machine Learning. Nat. Commun. 2023, 14, 3445. [Google Scholar] [CrossRef]
- Lorenzo, E.C.; Torrance, B.L.; Haynes, L. Impact of Senolytic Treatment on Immunity, Aging, and Disease. Front. Aging 2023, 4, 1161799. [Google Scholar] [CrossRef]
- Greenberg, E.F.; Voorbach, M.J.; Smith, A.; Reuter, D.R.; Zhuang, Y.; Wang, J.-Q.; Wooten, D.W.; Asque, E.; Hu, M.; Hoft, C.; et al. Navitoclax Safety, Tolerability, and Effect on Biomarkers of Senescence and Neurodegeneration in Aged Nonhuman Primates. Heliyon 2024, 10, e36483. [Google Scholar] [CrossRef]
- L’Hôte, V.; Mann, C.; Thuret, J.-Y. From the Divergence of Senescent Cell Fates to Mechanisms and Selectivity of Senolytic Drugs. Open Biol. 2022, 12, 220171. [Google Scholar] [CrossRef]
- Fielder, E.; Wan, T.; Alimohammadiha, G.; Ishaq, A.; Low, E.; Weigand, B.M.; Kelly, G.; Parker, C.; Griffin, B.; Jurk, D.; et al. Short Senolytic or Senostatic Interventions Rescue Progression of Radiation-Induced Frailty and Premature Ageing in Mice. eLife 2022, 11, e75492. [Google Scholar] [CrossRef]
- Murray, K.O.; Mahoney, S.A.; Ludwig, K.R.; Miyamoto-Ditmon, J.H.; VanDongen, N.S.; Banskota, N.; Herman, A.B.; Seals, D.R.; Mankowski, R.T.; Rossman, M.J.; et al. Intermittent Supplementation With Fisetin Improves Physical Function and Decreases Cellular Senescence in Skeletal Muscle With Aging: A Comparison to Genetic Clearance of Senescent Cells and Synthetic Senolytic Approaches. Aging Cell 2025, e70114. [Google Scholar] [CrossRef]
- Ota, H.; Kodama, A. Dasatinib plus Quercetin Attenuates Some Frailty Characteristics in SAMP10 Mice. Sci. Rep. 2022, 12, 2425. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, B.; Hassounah, F.; Price, S.R.; Klein, J.; Mohamed, T.M.A.; Wang, Y.; Park, J.; Cai, H.; Zhang, X.; et al. The Impact of Senescence on Muscle Wasting in Chronic Kidney Disease. J. Cachexia Sarcopenia Muscle 2023, 14, 126–141. [Google Scholar] [CrossRef]
- Millar, C.L.; Iloputaife, I.; Baldyga, K.; Norling, A.M.; Boulougoura, A.; Vichos, T.; Tchkonia, T.; Deisinger, A.; Pirtskhalava, T.; Kirkland, J.L.; et al. A Pilot Study of Senolytics to Improve Cognition and Mobility in Older Adults at Risk for Alzheimer’s Disease. eBioMedicine 2025, 113, 105612. [Google Scholar] [CrossRef]
- Dou, L.; Peng, Y.; Zhang, B.; Yang, H.; Zheng, K. Immune Remodeling during Aging and the Clinical Significance of Immunonutrition in Healthy Aging. Aging Dis. 2023, 15, 1588–1601. [Google Scholar] [CrossRef]
- Wu, D.; Lewis, E.D.; Pae, M.; Meydani, S.N. Nutritional Modulation of Immune Function: Analysis of Evidence, Mechanisms, and Clinical Relevance. Front. Immunol. 2019, 9, 3160. [Google Scholar] [CrossRef] [PubMed]
- Grabarczyk, M.; Justyńska, W.; Czpakowska, J.; Smolińska, E.; Bielenin, A.; Glabinski, A.; Szpakowski, P. Role of Plant Phytochemicals: Resveratrol, Curcumin, Luteolin and Quercetin in Demyelination, Neurodegeneration, and Epilepsy. Antioxidants 2024, 13, 1364. [Google Scholar] [CrossRef] [PubMed]
- Dias, E.; Poojary, D. Senolytics and Dietary Phytochemicals: Exploring Anti-Aging Strategies and Mechanisms in Aging and Disease. Int. J. Multidiscip. Res. 2024, 6, 22349. [Google Scholar] [CrossRef]
- Konijeti, G.G.; Arora, P.; Boylan, M.R.; Song, Y.; Huang, S.; Harrell, F.; Newton-Cheh, C.; O’Neill, D.; Korzenik, J.; Wang, T.J.; et al. Vitamin D Supplementation Modulates T Cell–Mediated Immunity in Humans: Results from a Randomized Control Trial. J. Clin. Endocrinol. Metab. 2016, 101, 533–538. [Google Scholar] [CrossRef]
- Carlberg, C.; Velleuer, E. Vitamin D and Aging: Central Role of Immunocompetence. Nutrients 2024, 16, 398. [Google Scholar] [CrossRef]
- Vaiserman, A.M.; Koliada, A.K.; Marotta, F. Gut Microbiota: A Player in Aging and a Target for Anti-Aging Intervention. Ageing Res. Rev. 2017, 35, 36–45. [Google Scholar] [CrossRef]
- Yan, H.; Ren, J.; Liu, G.-H. Fecal Microbiota Transplantation: A New Strategy to Delay Aging. hLife 2023, 1, 8–11. [Google Scholar] [CrossRef]
- Pechkurov, D.V.; Sitkin, S.I. The Effect of Targeted Probiotics on the Microbiota–Gut–Immune System Axis. Clin. Pract. Pediatr. 2023, 18, 107–118. [Google Scholar] [CrossRef]
- Zeng, X.; Li, X.; Li, X.; Wei, C.; Shi, C.; Hu, K.; Kong, D.; Luo, Q.; Xu, Y.; Shan, W.; et al. Fecal Microbiota Transplantation from Young Mice Rejuvenates Aged Hematopoietic Stem Cells by Suppressing Inflammation. Blood 2023, 141, 1691–1707. [Google Scholar] [CrossRef]
- Parker, A.; Romano, S.; Ansorge, R.; Aboelnour, A.; Le Gall, G.; Savva, G.M.; Pontifex, M.G.; Telatin, A.; Baker, D.; Jones, E.; et al. Fecal Microbiota Transfer between Young and Aged Mice Reverses Hallmarks of the Aging Gut, Eye, and Brain. Microbiome 2022, 10, 68. [Google Scholar] [CrossRef]
- Ling, Z.; Liu, X.; Cheng, Y.; Yan, X.; Wu, S. Gut Microbiota and Aging. Crit. Rev. Food Sci. Nutr. 2022, 62, 3509–3534. [Google Scholar] [CrossRef] [PubMed]
- Spielmann, G.; Bigley, A.B.; LaVoy, E.C.; Simpson, R.J. Aging Immunity and the Impact of Physical Exercise. In Immunology of Aging; Massoud, A., Rezaei, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 369–397. ISBN 978-3-642-39494-2. [Google Scholar]
- Simpson, R.J.; Lowder, T.W.; Spielmann, G.; Bigley, A.B.; LaVoy, E.C.; Kunz, H. Exercise and the Aging Immune System. Ageing Res. Rev. 2012, 11, 404–420. [Google Scholar] [CrossRef] [PubMed]
- Pence, B. Targeting Metabolism through Exercise and Nutrition to Rejuvenate an Aging Immune System. Aging Pathobiol. Ther. 2022, 4, 60–62. [Google Scholar] [CrossRef]
- Phillips, A.C.; Burns, V.E.; Lord, J.M. Stress and Exercise: Getting the Balance Right for Aging Immunity. Exerc. Sport Sci. Rev. 2007, 35, 35–39. [Google Scholar] [CrossRef]
- Garbarino, S.; Lanteri, P.; Bragazzi, N.L.; Magnavita, N.; Scoditti, E. Role of Sleep Deprivation in Immune-Related Disease Risk and Outcomes. Commun. Biol. 2021, 4, 1304. [Google Scholar] [CrossRef]
- Yang, P.-Y.; Ho, K.-H.; Chen, H.-C.; Chien, M.-Y. Exercise Training Improves Sleep Quality in Middle-Aged and Older Adults with Sleep Problems: A Systematic Review. J. Physiother. 2012, 58, 157–163. [Google Scholar] [CrossRef]
- Abe, M.; Abe, H. Lifestyle Medicine—An Evidence Based Approach to Nutrition, Sleep, Physical Activity, and Stress Management on Health and Chronic Illness. Pers. Med. Universe 2019, 8, 3–9. [Google Scholar] [CrossRef]
- Yu, Y.; Zheng, S. Research Progress on Immune Aging and Its Mechanisms Affecting Geriatric Diseases. Aging Med. 2019, 2, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Argentieri, M.A.; Amin, N.; Nevado-Holgado, A.J.; Sproviero, W.; Collister, J.A.; Keestra, S.M.; Kuilman, M.M.; Ginos, B.N.R.; Ghanbari, M.; Doherty, A.; et al. Integrating the Environmental and Genetic Architectures of Aging and Mortality. Nat. Med. 2025, 31, 1016–1025. [Google Scholar] [CrossRef] [PubMed]
- Castruita, P.A.; Piña-Escudero, S.D.; Rentería, M.E.; Yokoyama, J.S. Genetic, Social, and Lifestyle Drivers of Healthy Aging and Longevity. Curr. Genet. Med. Rep. 2022, 10, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Kuchel, G. Navigating the Treacherous Waters of Geriatric Complexity and Heterogeneity With the Help of Team Science. Innov. Aging 2020, 4, 802. [Google Scholar] [CrossRef]
- Ciabattini, A.; Nardini, C.; Santoro, F.; Garagnani, P.; Franceschi, C.; Medaglini, D. Vaccination in the Elderly: The Challenge of Immune Changes with Aging. Semin. Immunol. 2018, 40, 83–94. [Google Scholar] [CrossRef]
- Holman, H.R. The Relation of the Chronic Disease Epidemic to the Health Care Crisis. ACR Open Rheumatol. 2020, 2, 167–173. [Google Scholar] [CrossRef]
- Bollheimer, L.C.; Volkert, D.; Bertsch, T.; Bauer, J.; Klucken, J.; Sieber, C.C.; Büttner, R. Translationale Forschung in der Geriatrie? Ein Plädoyer anhand aktueller biomedizinischer Schlüsselpublikationen. Z. Gerontol. Geriatr. 2013, 46, 569–576. [Google Scholar] [CrossRef]
- Sutanto, H. Tackling Polypharmacy in Geriatric Patients: Is Increasing Physicians’ Awareness Adequate? Arch. Gerontol. Geriatr. Plus 2025, 2, 100185. [Google Scholar] [CrossRef]
- Gill, T.M. Translational Geroscience: Challenges and Opportunities for Geriatric Medicine. J. Am. Geriatr. Soc. 2019, 67, 1779–1781. [Google Scholar] [CrossRef]
- Mills, S.; Lane, J.A.; Smith, G.J.; Grimaldi, K.A.; Ross, R.P.; Stanton, C. Precision Nutrition and the Microbiome Part II: Potential Opportunities and Pathways to Commercialisation. Nutrients 2019, 11, 1468. [Google Scholar] [CrossRef] [PubMed]
- Jain, N. The Need for Personalized Approaches to Microbiome Modulation. Front. Public Health 2020, 8, 144. [Google Scholar] [CrossRef] [PubMed]
- Foster, J.A. Decoding Microbiome Research for Clinical Psychiatry. Can. J. Psychiatry 2020, 65, 19–20. [Google Scholar] [CrossRef] [PubMed]
- Chui, Z.S.W.; Chan, L.M.L.; Zhang, E.W.H.; Liang, S.; Choi, E.P.H.; Lok, K.Y.W.; Tun, H.M.; Kwok, J.Y.Y. Effects of Microbiome-Based Interventions on Neurodegenerative Diseases: A Systematic Review and Meta-Analysis. Sci. Rep. 2024, 14, 9558. [Google Scholar] [CrossRef]
- Timmis, J.K.; Roussilhon, D.F.; Van De Burgwal, L.H.M. Innovations for Microbiome Targeting Interventions—A Patent Landscape Analysis Indicating Overall Patenting Activity Decline and Promising Target Disease Areas. Benef. Microbes 2022, 13, 265–282. [Google Scholar] [CrossRef]
- Gonzales, M.M.; Garbarino, V.R.; Marques Zilli, E.; Petersen, R.C.; Kirkland, J.L.; Tchkonia, T.; Musi, N.; Seshadri, S.; Craft, S.; Orr, M.E. Senolytic Therapy to Modulate the Progression of Alzheimer’s Disease (SToMP-AD): A Pilot Clinical Trial. J. Prev. Alzheimer’s Dis. 2022, 9, 22–29. [Google Scholar] [CrossRef]
- Gonzales, M.M.; Garbarino, V.R.; Kautz, T.F.; Palavicini, J.P.; Lopez-Cruzan, M.; Dehkordi, S.K.; Mathews, J.J.; Zare, H.; Xu, P.; Zhang, B.; et al. Senolytic Therapy in Mild Alzheimer’s Disease: A Phase 1 Feasibility Trial. Nat. Med. 2023, 29, 2481–2488. [Google Scholar] [CrossRef]
- Kirkland, J.L.; Tchkonia, T.; Zhu, Y.; Niedernhofer, L.J.; Robbins, P.D. The Clinical Potential of Senolytic Drugs. J. Am. Geriatr. Soc. 2017, 65, 2297–2301. [Google Scholar] [CrossRef]
- Finch, C.E. Senolytics and Cell Senescence: Historical and Evolutionary Perspectives. Evol. Med. Public Health 2024, 12, 82–85. [Google Scholar] [CrossRef]
Component of Geriatric Syndrome | Definition | Included in Geriatric Giants? |
---|---|---|
Frailty | A state of increased vulnerability due to a decline in physiological reserves and function across multiple organ systems, leading to increased risks of falls, hospitalization, and mortality. | Yes |
Sarcopenia | Age-related loss of skeletal muscle mass, strength, and function, contributing to frailty, disability, and increased fall risk. | Yes (related to frailty) |
Cognitive Impairment | Decline in cognitive function, including memory, executive function, and processing speed, often leading to dementia or mild cognitive impairment (MCI). | Yes |
Falls | Unintentional loss of balance leading to collapse, often resulting from muscle weakness, poor coordination, and environmental hazards. | Yes |
Immobility | Reduced ability to move independently due to musculoskeletal decline, neurological conditions, or chronic disease. | Yes (related to frailty and falls) |
Incontinence | Loss of bladder and/or bowel control due to aging-related changes in the urinary system, pelvic floor dysfunction, or neurological conditions. | Yes |
Delirium | Acute and fluctuating disturbance in attention and cognition, often triggered by infections, medications, or metabolic imbalances. | No |
Depression | A common mental health condition in older adults, characterized by persistent sadness, loss of interest, and cognitive slowing. | No |
Malnutrition | Deficiency in essential nutrients due to inadequate dietary intake, poor absorption, or chronic disease, leading to weight loss, muscle wasting, and increased morbidity. | No |
Polypharmacy | The use of multiple medications (often ≥5), increasing the risk of drug interactions, adverse effects, and medication-related complications. | No |
Osteoporosis | Age-related reduction in bone mass and density, increasing the risk of fractures and frailty. | No |
Sleep Disorders | Includes insomnia, sleep apnea, and fragmented sleep patterns, affecting overall health and cognitive function in older adults. | No |
Molecule/Factor | Role in Thymic Involution | Source/Target | Supporting Evidence |
---|---|---|---|
FOXN1 | Downregulation of FOXN1 impairs thymic epithelial cell (TEC) maintenance, initiating thymic atrophy. | TECs | [12] |
IL-7 | Essential for T-cell development; reduced IL-7 availability leads to poor thymopoiesis. | TECs, thymocytes | [14] |
IL-6, TNF-α, IL-1 | Pro-inflammatory cytokines increase with age, contributing to thymic inflammation and involution. | Peripheral and thymic immune cells | [18] |
IGF-1 | Decreases with age; IGF-1 supports TEC survival and proliferation. | Systemic | [19] |
miR-29a | Suppresses IFN-α receptor expression; protects thymus from infection-induced involution. | TECs | [20] |
AIRE | Reduced expression impairs negative selection, allowing autoreactive T cells to escape. | mTECs | [18] |
Sex Steroids (e.g., Estrogen, Androgens) | Promote thymic shrinkage; castration or blockade reverses involution. | Systemic | [11] |
Reactive Oxygen Species (ROS) | Accumulation in TECs contributes to senescence and apoptosis. | TECs | [11] |
Fatty Infiltration | Replaces thymic parenchyma, disrupting architecture and function. | Stromal replacement | [13] |
Notch Pathway | Dysregulated Notch signaling affects thymocyte maturation. | TEC–thymocyte interaction | [21] |
Bim (Pro-Apoptotic) | Downregulated in aged Tregs, leading to their accumulation and skewing of the immune balance. | Tregs | [18] |
Category | Molecule/Marker | Function/Role | Cell Type/Context | Supporting Evidence |
---|---|---|---|---|
Inhibitory Receptors | PD-1 | Inhibits TCR signaling; hallmark of exhausted T cells during chronic stimulation | CD8+ T cells | [41] |
CTLA-4 | Competes with CD28 for B7; suppresses early activation signals | CD4+ and CD8+ terminally differentiated effector memory T cells re-expressing CD45RA (TEMRA) | [45] | |
KLRG1 | Marker of terminal differentiation and reduced proliferative capacity | CD8+ T cells | [46] | |
CD57 | Linked to replicative senescence and cytotoxic potential; reduced proliferation | CD8+ memory T cells | [47] | |
CD160 | Suppresses TCR signaling; co-expressed in senescent-like cells | CD8+ clones in multiple myeloma | [48] | |
Transcription Factors | T-bet | Maintains a progenitor exhausted T-cell population; limits terminal exhaustion | CD8+ T cells | [41] |
Eomesodermin (Eomes) | Drives terminal differentiation of exhausted T cells | CD8+ TEX | [49] | |
TOX | Regulates exhaustion-specific transcriptional programs | Exhausted CD8+ T cells | [46] | |
NR4A1 | Involved in establishing tolerance/exhaustion gene expression programs | CD8+ T cells | [46] | |
Phenotypic Markers | CD28−CD57+ | Indicates senescent and exhausted phenotype with impaired proliferation | CD4+/CD8+ T cells | [50] |
CD27−CD28− | Terminally differentiated memory phenotype; prone to exhaustion | Effector memory T cells | [47] | |
Epigenetic Regulators | Exhaustion-specific chromatin | Stable epigenetic changes fix exhaustion phenotype, limiting reversibility | CD8+ exhausted T cells | [51] |
Cytokine Environment | IL-6 | Drives inflammaging; correlated with exhaustion and TEMRA skewing | Systemic/inflamed tissues | [45] |
Chronic antigen load (e.g., HIV) | Induces premature T-cell exhaustion and immunosenescence | All T-cell subsets | [52] |
Geriatric Giant | Associated Immune Dysregulation | Mechanisms of Immune Dysfunction |
---|---|---|
Frailty [108] | Chronic low-grade inflammation (inflammaging) | ↑ IL-6, TNF-α, and CRP promote systemic inflammation and catabolism |
T-cell exhaustion and immunosenescence | ↓ Naïve T cells, ↑ CD8+ memory T cells, impaired adaptive immune response | |
Mitochondrial dysfunction in immune cells | ↑ Reactive oxygen species (ROS) production impairs immune metabolism and tissue repair | |
Sarcopenia [156,159,160] | Pro-inflammatory cytokines drive muscle catabolism | ↑ IL-6, TNF-α, and IFN-γ induce muscle degradation via NF-κB |
Impaired macrophage function | ↓ M2 (anti-inflammatory) macrophages lead to poor muscle regeneration | |
Dysregulated autophagy | ↓ Cellular clearance of damaged organelles impairs muscle repair | |
Cognitive Impairment [161,162,163] | Microglial overactivation and neuroinflammation | ↑ IL-1β, TNF-α, and IL-6 contribute to synaptic dysfunction and neuronal loss |
Impaired amyloid-beta (Aβ) clearance | ↓ Phagocytosis by aged microglia increases Aβ plaque accumulation | |
Gut microbiome dysbiosis | ↑ Pro-inflammatory gut microbes exacerbate neuroinflammation via the gut–brain axis | |
Falls [81,164] | Impaired neutrophil function | ↓ Neutrophil chemotaxis and phagocytosis reduce healing capacity after falls |
Chronic inflammation and sarcopenia | ↑ IL-6, TNF-α cause muscle weakness, increasing fall risk | |
Incontinence [165,166,167] | Decline in mucosal immunity | ↓ Secretory IgA weakens bladder and gut epithelial defense |
Urinary microbiome dysbiosis | ↓ Lactobacillus spp., ↑ uropathogens (E. coli) increase risk of UTIs | |
Gut barrier dysfunction | ↑ Intestinal permeability allows microbial translocation, leading to systemic inflammation |
Senolytic Drug | Mechanism of Action | Indications | Contraindications |
---|---|---|---|
Dasatinib + Quercetin (D + Q) | Dasatinib inhibits BCR-ABL and Src family kinases, promoting senescent cell apoptosis. Quercetin is a flavonoid that inhibits PI3K, AKT, and anti-apoptotic pathways in senescent cells. | Idiopathic pulmonary fibrosis, age-related frailty, cardiovascular diseases, diabetes, osteoarthritis. | Thrombocytopenia, liver disease, bleeding disorders (dasatinib may cause platelet depletion). Avoid in patients on anticoagulants. |
Fisetin | A flavonoid that inhibits mTOR and NF-κB signaling, promotes apoptosis of senescent cells, and reduces the senescence-associated secretory phenotype (SASP). | Neurodegenerative diseases (Alzheimer’s, Parkinson’s), cardiovascular aging, osteoarthritis. | Low bioavailability, high doses required for efficacy. Caution in kidney or liver dysfunction due to potential oxidative stress. |
Navitoclax (ABT-263) | Bcl-2/Bcl-xL inhibitor that induces apoptosis of senescent cells by disrupting anti-apoptotic signaling. | Hematologic malignancies, fibrotic diseases, aging-related neurodegeneration. | Severe thrombocytopenia, gastrointestinal toxicity. Not recommended for use in patients with bleeding risks. Trabecular bone loss and impaired osteoprogenitor function in mice. |
Seno-7284 | Stimulates endogenous senolytic immune responses (NK and CD8+ T cells) via the Cxcl9–Cxcr3 axis, leading to the clearance of senescent cells. | Age-related cardiometabolic disorders, type 2 diabetes, atherosclerosis, progeroid syndromes. | Limited clinical data, potential immune overactivation. Avoid in patients with autoimmune diseases. |
UBX-1325 | Inhibits Bcl-xL, targeting senescent cells in diabetic retinopathy and age-related macular degeneration. | Diabetic macular edema, wet age-related macular degeneration. | Ongoing clinical trials, safety data limited. Avoid in patients with ocular infections. |
Ginkgetin, Oleandrin, Periplocin | Machine learning-identified novel senolytics that disrupt anti-apoptotic pathways in senescent cells. | Aging-related metabolic disorders, cardiovascular disease. | Toxicity profiles not well established, need further validation before clinical use. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fetarayani, D.; Kahdina, M.; Waitupu, A.; Pratiwi, L.; Ningtyas, M.C.; Adytia, G.J.; Sutanto, H. Immunosenescence and the Geriatric Giants: Molecular Insights into Aging and Healthspan. Med. Sci. 2025, 13, 100. https://doi.org/10.3390/medsci13030100
Fetarayani D, Kahdina M, Waitupu A, Pratiwi L, Ningtyas MC, Adytia GJ, Sutanto H. Immunosenescence and the Geriatric Giants: Molecular Insights into Aging and Healthspan. Medical Sciences. 2025; 13(3):100. https://doi.org/10.3390/medsci13030100
Chicago/Turabian StyleFetarayani, Deasy, Mega Kahdina, Alief Waitupu, Laras Pratiwi, Mukti Citra Ningtyas, Galih Januar Adytia, and Henry Sutanto. 2025. "Immunosenescence and the Geriatric Giants: Molecular Insights into Aging and Healthspan" Medical Sciences 13, no. 3: 100. https://doi.org/10.3390/medsci13030100
APA StyleFetarayani, D., Kahdina, M., Waitupu, A., Pratiwi, L., Ningtyas, M. C., Adytia, G. J., & Sutanto, H. (2025). Immunosenescence and the Geriatric Giants: Molecular Insights into Aging and Healthspan. Medical Sciences, 13(3), 100. https://doi.org/10.3390/medsci13030100