Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (170)

Search Parameters:
Keywords = innate immune program

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2459 KB  
Review
The Immunoregulatory Mechanisms of Human Cytomegalovirus from Primary Infection to Reactivation
by Xiaodan Liu, Chang Liu and Ting Zhang
Pathogens 2025, 14(10), 998; https://doi.org/10.3390/pathogens14100998 - 2 Oct 2025
Abstract
Human cytomegalovirus (HCMV) establishes lifelong latency following primary infection, residing within myeloid progenitor cells and monocytes. To achieve this, the virus employs multiple immune evasion strategies. It suppresses innate immune signaling by inhibiting Toll-like receptor and cGAS-STING pathways. In addition, the virus suppresses [...] Read more.
Human cytomegalovirus (HCMV) establishes lifelong latency following primary infection, residing within myeloid progenitor cells and monocytes. To achieve this, the virus employs multiple immune evasion strategies. It suppresses innate immune signaling by inhibiting Toll-like receptor and cGAS-STING pathways. In addition, the virus suppresses major histocompatibility complex (MHC)-dependent antigen presentation to evade T cell recognition. As the downregulation of MHC molecules may trigger NK cell activation, the virus compensates for this by expressing proteins such as UL40 and IL-10, which engage inhibitory NK cell receptors and block activating signals, thereby suppressing NK cell immune surveillance. Viral proteins like UL36 and UL37 block host cell apoptosis and necroptosis, allowing HCMV to persist undetected and avoid clearance. In settings of profound immunosuppression, such as after allogeneic hematopoietic stem cell transplantation (allo-HSCT) or solid organ transplantation, slow immune reconstitution creates a window for viral reactivation. Likewise, immunosenescence and chronic low-grade inflammation during aging increases the risk of reactivation. Once reactivated, HCMV triggers programmed cell death, releasing viral PAMPs (pathogen-associated molecular patterns) and host-derived DAMPs (damage-associated molecular patterns). This release fuels a potent inflammatory response, promoting further viral reactivation and exacerbating tissue damage, creating a vicious cycle. This cycle of inflammation and reactivation contributes to both transplant-related complications and the decline of antiviral immunity in the elderly. Therefore, understanding the immune regulatory mechanisms that govern the switch from latency to reactivation is critical, especially within the unique immune landscapes of transplantation and aging. Elucidating these pathways is essential for developing strategies to prevent and treat HCMV-related disease in these high-risk populations. Full article
(This article belongs to the Special Issue Pathogen–Host Interactions: Death, Defense, and Disease)
Show Figures

Figure 1

14 pages, 283 KB  
Review
Immune Dysregulation in Sepsis. A Narrative Review for the Clinicians
by Asimina Valsamaki, Vasileios Vazgiourakis, Konstantinos Mantzarlis, Efstratios Manoulakas and Demosthenes Makris
Biomedicines 2025, 13(10), 2386; https://doi.org/10.3390/biomedicines13102386 - 29 Sep 2025
Abstract
Immune dysregulation presents a significant clinical challenge due to its rapid progression and complex interplay between hyperinflammatory and immunosuppressive responses. Different responses from the innate and adaptive immune systems can result in diseases such as immunoparalysis, cytokine storms, and secondary infections. Current diagnostic [...] Read more.
Immune dysregulation presents a significant clinical challenge due to its rapid progression and complex interplay between hyperinflammatory and immunosuppressive responses. Different responses from the innate and adaptive immune systems can result in diseases such as immunoparalysis, cytokine storms, and secondary infections. Current diagnostic methods remain non-specific and time-consuming, delaying targeted interventions. A compartmentalized approach to immune monitoring, distinguishing innate and acquired immune response functional differentiation, is essential for distinguishing between hyperactivation and suppression. Key biomarkers, including cytokines, Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF), and CD4/CD8 counts, as well as Programmed Death Ligand-1 (PDL-1) and V-type immunoglobulin domain-containing suppressor of T cell activation (VISTA) regulators, can guide personalized treatment strategies. Although they need more clinical validation, novel therapeutic methods such as cytokine inhibitors, immunological stimulants, and immunomodulators have demonstrated promise. Early diagnosis and precision medicine developments could lead to better patient outcomes. Advances in non-coding RNAs have led to specific diagnostic panels based on microRNA (MiRNA) levels. A deeper understanding of immune imbalance in sepsis is critical for optimizing treatment and reducing mortality rates. This review highlights emerging diagnostic and therapeutic strategies to address the multifaceted nature of sepsis-related immune dysregulation. Full article
(This article belongs to the Section Immunology and Immunotherapy)
17 pages, 299 KB  
Review
Indications and Mechanisms of Action of the Main Treatment Modalities for Non-Melanoma Skin Cancer
by Marcio F. Chedid, Aline C. Tregnago, Floriano Riva, Lucas Prediger, Anisha Agarwal and Jane Mattei
Life 2025, 15(9), 1447; https://doi.org/10.3390/life15091447 - 16 Sep 2025
Viewed by 423
Abstract
Skin cancer is the most common cancer worldwide. The incidence of skin cancer has been increasing worldwide. Nearly 75% of all skin cancers are basal cell carcinomas (BCC), cutaneous squamous cell carcinoma (cSCC) represents approximately 20%, and those remaining are melanomas (4%) or [...] Read more.
Skin cancer is the most common cancer worldwide. The incidence of skin cancer has been increasing worldwide. Nearly 75% of all skin cancers are basal cell carcinomas (BCC), cutaneous squamous cell carcinoma (cSCC) represents approximately 20%, and those remaining are melanomas (4%) or other rare tumors (1%). Given the high cure rates and the ability to histologically confirm tumor clearance, surgical therapy is the gold standard for the treatment of skin cancer. Conventional surgery is the most employed technique for the removal of non-melanoma skin cancer (NMSCs). Mohs Micrographic Surgery (MMS) is the most precise surgical method for the treatment of non-melanoma skin cancer, allowing for 100% margin evaluation, being the gold-standard method for surgical treatment of non-melanoma skin cancer. Whenever it is possible to obtain wide margins (4 to 6 mm), cure rates vary from 70% to 99%. Imiquimod, a synthetic imidazoquinolinone amine, is a topical immune response modifier approved by the U.S. Food and Drug Administration (FDA) for the treatment of external anogenital warts, actinic keratosis (AK), and superficial basal cell carcinoma (sBCC). The efficacy of imiquimod is primarily attributed to its ability to modulate both innate and adaptive immune responses, as well as its direct effects on cancer cells. Imiquimod exerts its immunomodulatory effects by activating Toll-like receptors 7 and 8 (TLR7/8) on various immune cells, including dendritic cells, macrophages, and natural killer (NK) cells. Upon binding to these receptors, imiquimod triggers the MyD88-dependent signaling pathway, leading to the activation of nuclear factor kappa B (NF-κB) and interferon regulatory factors (IRFs). This cascade leads to the production of pro-inflammatory cytokines, including interferon-alpha (IFN-α), tumor necrosis factor-alpha (TNF-α), interleukin-12 (IL-12), and interleukin-6 (IL-6). These cytokines enhance local inflammation, recruit additional immune cells to the tumor site, and stimulate antigen presentation, thereby promoting an anti-tumor immune response. Radiation therapy (RTh) may be employed as a primary treatment to BCC. It may also be employed as an adjuvant treatment to surgery for SCC and aggressive subtypes of BCC. RTh triggers both direct and indirect DNA damage on cancer cells and generates reactive oxygen species (ROS) within cells. ROS trigger oxidative damage to DNA, proteins, and lipids, exacerbating the cellular stress and contributing to tumor cell death. Recently, immunotherapy emerged as a revolutionary treatment for all stages of SCC. Cemiplimab is a human programmed cell death 1 (PD-1)-blocking antibody that triggers a response to over 50% of patients with locally advanced and metastatic SCC. A randomized clinical trial (RCT) published in 2022 revealed that cemiplimab was highly effective in the neoadjuvant treatment of large SCCs. The drug promoted a significant tumor size decrease, enabling organ-sparing operations and a much better cosmetic effect. A few months ago, a RCT of cemiplimab on adjuvant therapy for locally aggressive SCC was published. Interestingly, cemiplimab was administered to patients with local or regional cutaneous squamous cell carcinoma after surgical resection and postoperative radiotherapy, at high risk for recurrence owing to nodal features, revealed that cemiplimab led to much lower risks both of locoregional recurrence and distant recurrence. Full article
19 pages, 8289 KB  
Article
Machine Learning Integration of Bulk and Single-Cell RNA-Seq Data Reveals Cathepsin B as a Central PANoptosis Regulator in Influenza
by Bin Liu, Lin Zhu, Caijuan Zhang, Dunfang Wang, Haifan Liu, Jianyao Liu, Jingwei Sun, Xue Feng and Weipeng Yang
Int. J. Mol. Sci. 2025, 26(17), 8533; https://doi.org/10.3390/ijms26178533 - 2 Sep 2025
Viewed by 623
Abstract
Influenza A virus (IAV) infection triggers excessive activation of PANoptosis—a coordinated form of programmed cell death integrating pyroptosis, apoptosis, and necroptosis—which contributes to severe immunopathology and acute lung injury. However, the molecular regulators that drive PANoptosis during IAV infection remain poorly understood. In [...] Read more.
Influenza A virus (IAV) infection triggers excessive activation of PANoptosis—a coordinated form of programmed cell death integrating pyroptosis, apoptosis, and necroptosis—which contributes to severe immunopathology and acute lung injury. However, the molecular regulators that drive PANoptosis during IAV infection remain poorly understood. In this study, we integrated bulk and single-cell RNA sequencing (scRNA-seq) datasets to dissect the cellular heterogeneity and transcriptional dynamics of PANoptosis in the influenza-infected lung. PANoptosis-related gene activity was quantified using the AUCell, ssGSEA, and AddModuleScore algorithms. Machine learning approaches, including Support Vector Machine (SVM), Random Forest (RF), and Least Absolute Shrinkage and Selection Operator (LASSO) regression, were employed to identify key regulatory genes. scRNA-seq analysis revealed that PANoptosis activity was primarily enriched in macrophages and neutrophils. Integration of transcriptomic and computational data identified cathepsin B (CTSB) as a central regulator of PANoptosis. In vivo validation in an IAV-infected mouse model confirmed elevated expression of PANoptosis markers and upregulation of CTSB. Mechanistically, CTSB may facilitate NLRP3 inflammasome activation and promote lysosomal dysfunction-associated inflammatory cell death. These findings identify CTSB as a critical mediatoCTSBr linking lysosomal integrity to innate immune-driven lung injury and suggest that targeting CTSB could represent a promising therapeutic strategy to alleviate influenza-associated immunopathology. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Graphical abstract

15 pages, 3491 KB  
Article
PARP Inhibition Shifts Murine Myeloid Cells Toward a More Tolerogenic Profile In Vivo
by Jose R. Pittaluga-Villarreal, Casey M. Daniels, Tara Capece, Pauline R. Kaplan, Martin Meier-Schellersheim and Aleksandra Nita-Lazar
Biomolecules 2025, 15(8), 1149; https://doi.org/10.3390/biom15081149 - 9 Aug 2025
Viewed by 725
Abstract
The human Poly ADP-ribose Polymerase (PARP) family comprises 17 enzymes responsible for the transfer of ADP-ribose to proteins, forming poly- or mono-ADP-ribosylation. This post-translational modification regulates DNA repair and programmed cell death, processes affecting cancer biology. PARP inhibitors, including the FDA-approved olaparib, are [...] Read more.
The human Poly ADP-ribose Polymerase (PARP) family comprises 17 enzymes responsible for the transfer of ADP-ribose to proteins, forming poly- or mono-ADP-ribosylation. This post-translational modification regulates DNA repair and programmed cell death, processes affecting cancer biology. PARP inhibitors, including the FDA-approved olaparib, are used to treat BRCA-dependent breast and ovarian cancers. Although therapies with use of PARP inhibitors are showing clinical success, their effects on the immune system remain understudied. Prior work has shown that PARP inhibition can modulate inflammatory responses and alter innate immunity. In this study, we evaluated the immunomodulatory effects of olaparib on myeloid cells in vivo, focusing on bone marrow and spleen. Olaparib treatment altered the composition and activation state of dendritic cells, neutrophils, and macrophages. In the bone marrow, olaparib increased the proportion of cDC2 population, mature neutrophils and inflammatory macrophages expressing CD80. In contrast, splenic myeloid cells exhibited enhanced expression of markers associated with tolerogenic phenotypes, including CD206 and CD124 in neutrophils and macrophages. The spleen also showed an increase in immature monocyte-derived dendritic cells (CD206+) and a bias toward the cDC2 subset. These findings indicate that PARP inhibition can induce short-term phenotypic remodeling of myeloid cell populations, promoting a more immunoregulatory profile, especially in the spleen. These changes may contribute to an altered immune landscape with implications for anti-tumor immunity. Full article
(This article belongs to the Special Issue PARPs in Cell Death and PARP Inhibitors in Cancers: 2nd Edition)
Show Figures

Figure 1

15 pages, 319 KB  
Review
Toxoplasma gondii at the Host Interface: Immune Modulation and Translational Strategies for Infection Control
by Billy J. Erazo Flores and Laura J. Knoll
Vaccines 2025, 13(8), 819; https://doi.org/10.3390/vaccines13080819 - 31 Jul 2025
Viewed by 1036
Abstract
Toxoplasma gondii is an intracellular protozoan found worldwide that is capable of infecting nearly all warm-blooded animals, including humans. Its parasitic success lies in its capacity to create chronic infections while avoiding immune detection, altering host immune responses, and disrupting programmed cell death [...] Read more.
Toxoplasma gondii is an intracellular protozoan found worldwide that is capable of infecting nearly all warm-blooded animals, including humans. Its parasitic success lies in its capacity to create chronic infections while avoiding immune detection, altering host immune responses, and disrupting programmed cell death pathways. This review examines the complex relationship between T. gondii and host immunity, focusing on how the parasite influences innate and adaptive immune responses to survive in immune-privileged tissues. We present recent findings on the immune modulation specific to various parasite strains, the immunopathology caused by imbalanced inflammation, and how the parasite undermines host cell death mechanisms such as apoptosis, necroptosis, and pyroptosis. These immune evasion tactics enable prolonged intracellular survival and pose significant challenges for treatment and vaccine development. We also review advancements in therapeutic strategies, including host-directed approaches, nanoparticle drug delivery, and CRISPR-based technologies, along with progress in vaccine development from subunit and DNA vaccines to live-attenuated candidates. This review emphasizes the importance of T. gondii as a model for chronic infections and points out potential avenues for developing innovative therapies and vaccines aimed at toxoplasmosis and similar intracellular pathogens. Full article
(This article belongs to the Special Issue Intracellular Parasites: Immunology, Resistance, and Therapeutics)
12 pages, 1307 KB  
Article
Protection Against Transplacental Transmission of a Highly Virulent Classical Swine Fever Virus Two Weeks After Single-Dose FlagT4G Vaccination in Pregnant Sows
by Liani Coronado, Àlex Cobos, Adriana Muñoz-Aguilera, Sara Puente-Marin, Gemma Guevara, Cristina Riquelme, Saray Heredia, Manuel V. Borca and Llilianne Ganges
Vaccines 2025, 13(8), 803; https://doi.org/10.3390/vaccines13080803 - 28 Jul 2025
Viewed by 615
Abstract
Background/Objectives: Classical swine fever (CSF) continues to challenge global eradication efforts, particularly in endemic regions, where pregnant sows face heightened risks of vertical transmission following exposure to CSFV. Methods: This study evaluates the early protective efficacy of FlagT4G, a novel live attenuated DIVA-compatible [...] Read more.
Background/Objectives: Classical swine fever (CSF) continues to challenge global eradication efforts, particularly in endemic regions, where pregnant sows face heightened risks of vertical transmission following exposure to CSFV. Methods: This study evaluates the early protective efficacy of FlagT4G, a novel live attenuated DIVA-compatible vaccine. Pregnant sows were vaccinated at mid-gestation and challenged 14 days later with a highly virulent CSFV strain. Results: FlagT4G conferred complete clinical protection, preventing both maternal viremia and transplacental transmission. No CSFV RNA, specific antibodies, or IFN-α were detected in fetal samples from vaccinated animals. In contrast, unvaccinated sows exhibited clinical signs, high viral loads, and widespread fetal infection. Interestingly, early protection was observed even in the absence of strong humoral responses in some vaccinated sows, suggesting a potential role for innate or T-cell-mediated immunity in conferring rapid protection. Conclusions: The demonstrated efficacy of FlagT4G within two weeks of vaccination underscores its feasibility for integration into emergency vaccination programs. Its DIVA compatibility and ability to induce early fetal protection against highly virulent CSFV strains position it as a promising tool for CSF control and eradication strategies. Full article
(This article belongs to the Special Issue Vaccines for Porcine Viruses)
Show Figures

Figure 1

21 pages, 1433 KB  
Review
The Role of Viruses in the Glioma Tumor Microenvironment: Immunosuppressors or Primers for Anti-Tumor Immunity?
by Anna J. Hudson, Jay Chandar, Muhammet Enes Gurses, Thomas Malek and Ashish H. Shah
Cancers 2025, 17(12), 1984; https://doi.org/10.3390/cancers17121984 - 14 Jun 2025
Viewed by 1100
Abstract
The WHO estimates that nearly 10–15% of cancers have a known viral etiology, although this number is likely an underestimate. In glioblastoma (GBM), the most common primary brain malignancy, viral associations have been proposed and investigated without a definitive etiology. Viral–host interactions are [...] Read more.
The WHO estimates that nearly 10–15% of cancers have a known viral etiology, although this number is likely an underestimate. In glioblastoma (GBM), the most common primary brain malignancy, viral associations have been proposed and investigated without a definitive etiology. Viral–host interactions are known to alter cellular growth and stem cell programming, as well as modulate innate immune signaling. However, in GBM, the multifaceted role of endogenous or exogenous viral expression remains unclear. Here, we provide a review of common viral associations in GBM and discuss how these viruses modulate intrinsic cellular processes to enhance anti-viral immune response or suppress anti-tumor immunity. Full article
(This article belongs to the Special Issue Emerging Research on Primary Brain Tumors)
Show Figures

Figure 1

19 pages, 868 KB  
Review
Metabolism and Immune Suppressive Response in Liver Cancer
by Patrizio Caini and Vinicio Carloni
Biomedicines 2025, 13(6), 1461; https://doi.org/10.3390/biomedicines13061461 - 13 Jun 2025
Cited by 2 | Viewed by 1377
Abstract
Hepatocellular carcinoma (HCC) constitutes more than 90% of the primary tumor of the liver. Metabolic reprogramming is decisive in promoting HCC development. The new metabolic program drives the surrounding immune cells to an immune suppressive commitment, enabling tumor survival. The enhanced metabolic activity [...] Read more.
Hepatocellular carcinoma (HCC) constitutes more than 90% of the primary tumor of the liver. Metabolic reprogramming is decisive in promoting HCC development. The new metabolic program drives the surrounding immune cells to an immune suppressive commitment, enabling tumor survival. The enhanced metabolic activity of cancer cells leads to competition for essential nutrients, depriving non-malignant cells of critical resources. Simultaneously, the accumulation of metabolic byproducts within the tumor microenvironment (TME) selectively favors innate immune responses while impairing adaptive immunity. Recent advances in cancer immunotherapy underscore the importance of targeting both immune cell function and metabolic pathways. In this context, reprogramming the metabolism of effector and regulatory immune cells represents a promising therapeutic avenue. This review focuses on a relatively underexplored aspect of liver cancer immunology, the immunosuppressive role of tumor-associated macrophages (TAMs) and regulatory T cells (Tregs) driven by metabolic alterations and how these mechanisms contribute to the suppression of effective anti-tumor immune responses. Full article
(This article belongs to the Special Issue Hepatocellular Carcinoma Pathogenesis and Therapy)
Show Figures

Figure 1

37 pages, 477 KB  
Review
Recombinant Mycobacterium bovis BCG-Based HIV Vaccine: Failures and Promising Approaches for a Successful Vaccine Strategy
by Joan Joseph-Munné, Milena Maya-Hoyos, Narcís Saubi, Santiago Perez, Miguel Angel Martinez Lopez, Eder Baron and Carlos Yesid Soto
Vaccines 2025, 13(6), 606; https://doi.org/10.3390/vaccines13060606 - 3 Jun 2025
Cited by 1 | Viewed by 849
Abstract
During 2022, AIDS claimed a life every minute and about 9.2 million HIV-infected people were not on treatment. In addition, a person living with HIV is estimated to be 20–30 times more susceptible to developing active tuberculosis. Every year, 130,000 infants are newly [...] Read more.
During 2022, AIDS claimed a life every minute and about 9.2 million HIV-infected people were not on treatment. In addition, a person living with HIV is estimated to be 20–30 times more susceptible to developing active tuberculosis. Every year, 130,000 infants are newly infected, with vertical transmission being the main cause of pediatric HIV infection. Thus, the development of an effective, safe, and accessible vaccine for neonates and/or adults is an urgent need to prevent or control HIV infection or progression to AIDS. An effective HIV vaccine should induce long-lasting mucosal immunity, broadly neutralizing antibodies, innate immunity, and robust stimulation of CD4+ and CD8+ T-cell responses. Recombinant BCG is a promising live-attenuated bacterial vaccine vector because of its capacity to stimulate T-cell immunity. As a slow-growing microorganism, it provides prolonged low-level antigenic exposure upon infecting macrophages and APCs, potentially stimulating both effector and memory T-cell responses. BCG is considered safe and is currently administered to 80% of infants in countries where it is part of the national immunization program. Additionally, BCG offers several benefits as a live vaccine vehicle since it is cost-effective, easy to mass-produce, and heat stable. It is also well-suited for newborns, as maternal antibodies do not interfere with its efficacy. Furthermore, BCG has a strong safety profile, having been administered to over three billion people as a TB vaccine. In this review, we provide an extensive summary of the literature relating to immunogenicity studies in animal models performed since 2011. Moreover, we provide a comprehensive analysis of the key factors influencing the design of recombinant BCG as a live vaccine vehicle: (i) expression vectors; (ii) selection of HIV immunogen; (iii) promoters to regulate gene expression; (iv) BCG strain and BCG codon optimization; (v) genetic plasmid stability; (vi) influence of preexisting immunity, route, and dose immunization; and (vii) safety profile. Full article
(This article belongs to the Special Issue The Development of HIV Vaccines: Advances and Challenges)
13 pages, 3816 KB  
Review
Petosemtamab, a Bispecific Antibody Targeting Epidermal Growth Factor Receptor (EGFR) and Leucine-Rich G Repeat-Containing Protein-Coupled Receptor (LGR5) Designed for Broad Clinical Applications
by Ante S. Lundberg, Cecile A. W. Geuijen, Sally Hill, Jeroen J. Lammerts van Bueren, Arianna Fumagalli, John de Kruif, Peter B. Silverman and Josep Tabernero
Cancers 2025, 17(10), 1665; https://doi.org/10.3390/cancers17101665 - 14 May 2025
Cited by 1 | Viewed by 4388
Abstract
Disease progression and treatment resistance in colorectal and other cancers are driven by a subset of cells within the tumor that have stem-cell-like properties and long-term tumorigenic potential. These stem-cell-like cells express the leucine-rich G repeat-containing protein-coupled receptor 5 (LGR5) and have characteristics [...] Read more.
Disease progression and treatment resistance in colorectal and other cancers are driven by a subset of cells within the tumor that have stem-cell-like properties and long-term tumorigenic potential. These stem-cell-like cells express the leucine-rich G repeat-containing protein-coupled receptor 5 (LGR5) and have characteristics similar to tissue-resident stem cells in normal adult tissues such as the colon. Organoid models of murine and human colorectal and other cancers contain LGR5-expressing (LGR5+) stem-cell-like cells and can be used to investigate the underlying mechanisms of cancer development, progression, therapy vulnerability, and resistance. A large biobank of organoids derived from colorectal cancer or adjacent normal tissue was developed. We performed a large-scale unbiased functional screen to identify bispecific antibodies (BsAbs) that preferentially inhibit the growth of colon tumor-derived, as compared to normal tissue-derived, organoids. We identified the most potent BsAb in the screen as petosemtamab, a Biclonics® BsAb targeting both LGR5 and the epidermal growth factor receptor (EGFR). Petosemtamab employs three distinct mechanisms of action: EGFR ligand blocking, EGFR receptor internalization and degradation in LGR5+ cells, and Fc-mediated activation of the innate immune system by antibody-dependent cellular phagocytosis (ADCP) and enhanced antibody-dependent cellular cytotoxicity (ADCC) (see graphical abstract). Petosemtamab has demonstrated substantial clinical activity in recurrent/metastatic head and neck squamous cell carcinoma (r/m HNSCC). The safety profile is generally favorable, with low rates of skin and gastrointestinal toxicity. Phase 3 trials are ongoing in both first-line programmed death-ligand 1-positive (PD-L1+) and second/third-line r/m HNSCC. Full article
(This article belongs to the Section Cancer Drug Development)
Show Figures

Graphical abstract

14 pages, 3517 KB  
Article
In Utero Exposure to 2,3,7,8-Tetrachlorodibenzo-p-dioxin Impairs the Ability of Mice to Clear a Pseudomonas aeruginosa Infection in Adulthood
by Victoria R. Stephens, Julia K. Bohannon, Kaylon L. Bruner-Tran, Xenia D. Davis, Mary A. Oliver, Margaret A. McBride, Sharareh Ameli, Jelonia T. Rumph, Jennifer A. Gaddy, Edward R. Sherwood and Kevin G. Osteen
Microbiol. Res. 2025, 16(5), 91; https://doi.org/10.3390/microbiolres16050091 - 26 Apr 2025
Viewed by 887
Abstract
Exposure to endocrine-disrupting chemicals (EDCs) has been linked to several pathologies in human health, especially those involving the immune system. The vast majority of studies have focused on cells and functions of the adaptive immune system with little investigation of the impact of [...] Read more.
Exposure to endocrine-disrupting chemicals (EDCs) has been linked to several pathologies in human health, especially those involving the immune system. The vast majority of studies have focused on cells and functions of the adaptive immune system with little investigation of the impact of EDCs on innate immunity. While EDC exposure remains a threat throughout the lifetime of an individual, the most detrimental effects on human health occur during critical stages of development, such as in utero. Fetal development is not only associated with growth and tissue remodeling but also with the establishment of key processes, including those of the immune system. Unfortunately, due to fetal plasticity, developmental exposure to certain EDCs, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), can affect mammalian health well into adulthood by altering fetal programming. Herein, we hypothesize that in utero exposure to TCDD induces developmental reprogramming of the innate immune system that subsequently impacts the adult response to infection. To interrogate our hypothesis, we challenged adult mice with and without a history of in utero TCDD exposure with 1 × 108 CFU Pseudomonas aeruginosa via intraperitoneal injection. Results revealed a significant decrease in the number of innate leukocytes at the site of infection six hours after inoculation in toxicant-exposed mice compared to unexposed mice. The reduction in the number of phagocytes correlated with a reduction in bacterial clearance in toxicant-exposed mice. We also noted a decreased ability of peritoneal immune cells from toxicant-exposed mice to produce chemokines necessary for immune cell recruitment. Taken together, our results indicate that in utero EDC exposure impairs the innate immune response to a bacterial infection in adult offspring, particularly in males. Full article
Show Figures

Figure 1

16 pages, 613 KB  
Review
Triggering Pyroptosis in Cancer
by Daniel E. Johnson and Zhibin Cui
Biomolecules 2025, 15(3), 348; https://doi.org/10.3390/biom15030348 - 28 Feb 2025
Cited by 3 | Viewed by 2134
Abstract
Pyroptosis is an inflammatory programmed cell death recently identified as a crucial cellular process in various diseases, including cancers. Unlike other forms of cell death, canonical pyroptosis involves the specific cleavage of gasdermin by caspase-1, resulting in cell membrane damage and the release [...] Read more.
Pyroptosis is an inflammatory programmed cell death recently identified as a crucial cellular process in various diseases, including cancers. Unlike other forms of cell death, canonical pyroptosis involves the specific cleavage of gasdermin by caspase-1, resulting in cell membrane damage and the release of the pro-inflammatory cytokines IL-1β and IL-18. Initially observed in innate immune cells responding to external pathogens or internal death signals, pyroptotic cell death has now been observed in numerous cell types. Recent studies have extensively explored different ways to trigger pyroptotic cell death in solid tumors, presenting a promising avenue for cancer treatment. This review outlines the mechanisms of both canonical and noncanonical pyroptosis pertinent to cancer and primarily focuses on various biomolecules that can induce pyroptosis in malignancies. This strategy aims not only to eliminate cancer cells but also to promote an improved tumor immune microenvironment. Furthermore, emerging research indicates that targeting pyroptotic pathways may improve the effectiveness of existing cancer treatments, making them more potent against resistant tumor types, offering new hope for overcoming treatment resistance in aggressive malignancies. Full article
Show Figures

Figure 1

28 pages, 2001 KB  
Article
Pharmacogenomic Study of SARS-CoV-2 Treatments: Identifying Polymorphisms Associated with Treatment Response in COVID-19 Patients
by Alexandre Serra-Llovich, Natalia Cullell, Olalla Maroñas, María José Herrero, Raquel Cruz, Berta Almoguera, Carmen Ayuso, Rosario López-Rodríguez, Elena Domínguez-Garrido, Rocio Ortiz-Lopez, María Barreda-Sánchez, Marta Corton, David Dalmau, Esther Calbo, Lucía Boix-Palop, Beatriz Dietl, Anna Sangil, Almudena Gil-Rodriguez, Encarna Guillén-Navarro, Esther Mancebo, Saúl Lira-Albarrán, Pablo Minguez, Estela Paz-Artal, Gladys G. Olivera, Sheila Recarey-Rama, Luis Sendra, Enrique G. Zucchet, Miguel López de Heredia, Carlos Flores, José A. Riancho, Augusto Rojas-Martinez, Pablo Lapunzina, Ángel Carracedo, María J. Arranz and SCOURGE COHORT GROUPadd Show full author list remove Hide full author list
Biomedicines 2025, 13(3), 553; https://doi.org/10.3390/biomedicines13030553 - 21 Feb 2025
Viewed by 3424
Abstract
Background/Objectives: The COVID-19 pandemic resulted in 675 million cases and 6.9 million deaths by 2022. Despite substantial declines in case fatalities following widespread vaccination campaigns, the threat of future coronavirus outbreaks remains a concern. Current treatments for COVID-19 have been repurposed from [...] Read more.
Background/Objectives: The COVID-19 pandemic resulted in 675 million cases and 6.9 million deaths by 2022. Despite substantial declines in case fatalities following widespread vaccination campaigns, the threat of future coronavirus outbreaks remains a concern. Current treatments for COVID-19 have been repurposed from existing therapies for other infectious and non-infectious diseases. Emerging evidence suggests a role for genetic factors in both susceptibility to SARS-CoV-2 infection and response to treatment. However, comprehensive studies correlating clinical outcomes with genetic variants are lacking. The main aim of our study is the identification of host genetic biomarkers that predict the clinical outcome of COVID-19 pharmacological treatments. Methods: In this study, we present findings from GWAS and candidate gene and pathway enrichment analyses leveraging diverse patient samples from the Spanish Coalition to Unlock Research of Host Genetics on COVID-19 (SCOURGE), representing patients treated with immunomodulators (n = 849), corticoids (n = 2202), and the combined cohort of both treatments (n = 2487) who developed different outcomes. We assessed various phenotypes as indicators of treatment response, including survival at 90 days, admission to the intensive care unit (ICU), radiological affectation, and type of ventilation. Results: We identified significant polymorphisms in 16 genes from the GWAS and candidate gene studies (TLR1, TLR6, TLR10, CYP2C19, ACE2, UGT1A1, IL-1α, ZMAT3, TLR4, MIR924HG, IFNG-AS1, ABCG1, RBFOX1, ABCB11, TLR5, and ANK3) that may modulate the response to corticoid and immunomodulator therapies in COVID-19 patients. Enrichment analyses revealed overrepresentation of genes involved in the innate immune system, drug ADME, viral infection, and the programmed cell death pathways associated with the response phenotypes. Conclusions: Our study provides an initial framework for understanding the genetic determinants of treatment response in COVID-19 patients, offering insights that could inform precision medicine approaches for future epidemics. Full article
Show Figures

Figure 1

31 pages, 5173 KB  
Review
Innate Immune Sensors and Cell Death—Frontiers Coordinating Homeostasis, Immunity, and Inflammation in Skin
by Ye Mon Soe, Seen Ling Sim and Snehlata Kumari
Viruses 2025, 17(2), 241; https://doi.org/10.3390/v17020241 - 10 Feb 2025
Cited by 3 | Viewed by 2325
Abstract
The skin provides a life-sustaining interface between the body and the external environment. A dynamic communication among immune and non-immune cells in the skin is essential to ensure body homeostasis. Dysregulated cellular communication can lead to the manifestation of inflammatory skin conditions. In [...] Read more.
The skin provides a life-sustaining interface between the body and the external environment. A dynamic communication among immune and non-immune cells in the skin is essential to ensure body homeostasis. Dysregulated cellular communication can lead to the manifestation of inflammatory skin conditions. In this review, we will focus on the following two key frontiers in the skin: innate immune sensors and cell death, as well as their cellular crosstalk in the context of skin homeostasis and inflammation. This review will highlight the recent advancements and mechanisms of how these pathways integrate signals and orchestrate skin immunity, focusing on inflammatory skin diseases and skin infections in mice and humans. Full article
(This article belongs to the Special Issue PANoptosis in Viral Infection)
Show Figures

Figure 1

Back to TopTop