Recombinant Mycobacterium bovis BCG-Based HIV Vaccine: Failures and Promising Approaches for a Successful Vaccine Strategy
Abstract
1. Introduction
2. Determinant Factors Involved in the Design of Recombinant BCG as a Vaccine Vehicle
2.1. Escherichia coli-Mycobacterium Shuttle Vectors
2.1.1. Replicative Vectors
2.1.2. Integrative Vectors
2.2. Promoters to Regulate Gene Expression
2.3. Transcriptional Termination Mechanisms
2.4. BCG Codon Optimization
2.5. Antibiotic-Free Selection Systems
2.6. In Vitro and In Vivo Genetic Plasmid Stability
2.7. Targeting of Heterologous Antigens
2.8. Antigen Localization
3. Specific SIV/HIV Immune Responses in Small Animal Models and Non-Human Primate Models
3.1. Small Animal Models
3.2. Guinea Pigs
3.3. Non-Human Primates
1.1. Murine and guinea pig model | ||||||
Animal Model | Recombinant Antigen | Promotor, Signal Sequence and Expression Vector | Route | rBCG Dose/Boost | Immunity Elicited | Reference |
Mice (BALB/c) | HIVA | Ag85B promoter, 19-kDa signal peptide, pJH222 | IP | 106 CFU rBCG + 106 HAdV5.HIVA/107 OAdV7.HIVA/100 µG pTH.HIVA DNA IM | Both strains elicit specific CD8 T-cell responses; HAdV5.HIVA and OAdV7.HIVA promoted the most robust responses and different intercellular signaling molecules in splenocytes between strains. | [134] |
Mice (BALB/c) | HIV-1 V3-concatemer | hsp60 promoter, pMV261 | IP | 107 CFU rBCG | rBCG promoted anti-mV3 polyclonal antibodies but the antiserum did not block HIV-1 replication. Additionally, vaccination was able to induce and maintain memory T cells. | [164] |
Mice (BALB/c) | HIV-1 gag (Subtype C), RT or gp120. | mtrA promoter, 19-kDa signal peptide, pCONEPI | IP | 3 × 107 CFU + MVA expressing polyprotein Gag, RT, Tat, Nef 104 PFU. | Vaccination boosted with SSAVI MVA-C greatly increased immune response and elicited robust cellular immune response and secretion of IFN-c, TNF-ɑ, and IL-2 against HIV. | [103] |
Mice (C57BL/6) | HIV-1 gp120 SIV Gag | Paph, leuCD, PgroEL2, lpqH or fbpB signal sequence, pSL70/ pSL718/ pSL720/ pSL509 | RO IM | 107 CFU, 3 × 107 rADV5 VP | Leucine auxotroph rBCG-gp120 ensures full-length expression stability after 1024-fold amplification in vitro and 60 growing days in vivo and promotes robust cellular response mediated by T cells. | [102] |
Mice (BALB/c) | HIV-1 Subtype C Mosaic Gag | mtrA, 19 kDa signal sequence, pTJBCG3 | IP | 2 × 107 CFU + 102/104/106 PFU MVA | MVA-GagM boost induced strong Gag-specific response and long-lasting CD4+ and CD8+ T cells expressing effector memory phenotype. | [136] |
Mice (BALB/c) | HIV-1 p24 Gag | hsp65 promoter, pMyong2 | SC | 106 CFU | rBCG elicited a higher antibody production, gag-specific immune response, and more robust CTL response than rSmeg. | [11] |
Mice (BALB/c) | HIVA | ɑ-antigen promoter, 19-kDa signal peptide, pJH222 | ID | 106 CFU + 108 IU ChAdOx1.tHIVconsv5&6 | Integrative expression vectors increased vaccine stability in vitro and in vivo, were well tolerated, and elicited T-cell responses. | [110] |
Mice (Balb/c + SCID) | HIVA | ɑ-antigen promoter, 19-kDa signal peptide, pJH222 | IDIP | 106 CFU rBCG + 106 PFU MVA.HIVA 106 CFU | Vaccination with MTBVAC.HIVA2auxo boosted with MVA.HIVA promoted polyfunctional HIV-1-specific CD8+ T cells with high production of IFN-γ, TNF-ɑ, and CD107ɑ. | [65] |
Mice (BALB/c) | HIVACAT T-cell immunogen (HTI) | ɑ-antigen promoter, 19-kDa signal peptide, pJH222 | ID | 106 CFU rBCG + 106 PFU MVA.HTI | BCG.HTI2auxo.int boosted with MVA.HTI was safe and elicited specific T-cell response with a wider recognition profile. | [141] |
Guinea pig | SIVmac239 gag gene | hsp60, pSO246 | ID O | 0.1 mg rBCG 80 mg rBCG | rBCG expressing SIVGag elicited long-lasting humoral and cell-mediated immunity for bacterial and viral antigens. Specific humoral responses last up to 3 years. | [143] |
1.2. Non-human primates model | ||||||
Animal Model | Recombinant Antigen | Promotor, Signal Sequence and Expression Vector | Route | rBCG Dose/Boost | Immunity Elicited | Reference |
Rhesus macaques | SIV gag SIV pol SIV env | ɑ-antigen promoter, 19-kDa signal peptide, pJH222 | ID IV IM | 106 CFU rBCG up to 109 CFU rBCG + 1010 vp rAd5 | rBCG induced polyfunctional CD8 T cells and rAd5 boosting elicited SIV-specific cellular response. | [158] |
Rhesus macaques | HIVA | Ag85B promoter, 19-kDa signal peptide, pJH222 | ID | 107 CFU rBCG + 5·107 PFU MVA.HIVA IM + 1010 IU OAdV.HIVA IM | MVA.HIVA and OAdV.HIVA boosting elicited strong specific T-cell responses against HIV-1 and immunological memory. | [160] |
Rhesus macaques | SIVgag | hsp60 promoter, Ag85B or 19-kDa signal peptide, pSL7/pSL10 | IV | 3 × 108 CFU rBCG + rNYVAC-SIVgag-pol 107 PFU | Vaccination promoted robust specific cellular immune responses against SIV epitopes. No protective immune response was proven during rectal mucosal challenges. | [13] |
Rhesus macaques | SIVmac239gag SIVmac239nef SIVmac239vif | Ag85B promoter, 19-kDa signal peptide, pJH222 | ID | 2 × 105 CFU rBCG | rBCG vaccination regimen elicited better cellular immune response compared to rAd5 and rYF17D, but all the regimens failed to control peak viremia after continuous challenges. | [14] |
Rhesus macaques | SIVmac239gag | hsp60 promoter, Ag85B or 19-kDa signal peptide, pMV261 | IV | 3 × 108 CFU rBCG + 107 pfu NYVAC SIVmac142 gag-pol | No significant differences were found regarding immune response to HIV epitopes depending on preexisting anti-mycobacterial immunity. | [12] |
Cynomolgus macaques | SIVmac239 gag | hsp60, pSO246 | ID IV | 10 mg boosted with 106 PFU rDIsSIVgag | Vaccination with rBCG-SIVgag with rDIsSIVgag as a booster induced strong specific anti-SIV Gag response and protective immunity. | [157] |
Cynomolgus macaques | SIVmac239gag SIVmac239gP120 SIVmac239RTN | hsp60 promoter, PSO246 | SC | 2.5 mg rBCG + m8Δ-SIV-Gag/m8Δ-SIV-gp160/m8Δ-SIV-RT/m8Δ-SIV-RTN 107 PFU. | Challenge with SIVmac251 IR after vaccination and boosting induced protection in two of six animals. The cynomolgus macaques that had the most robust cellular response showed undetectable viremia and in vitro suppressiona activity. | [162] |
Chacma baboons | HIV-1 gag (Subtype C) | mtrA promoter or katG promoter, 19-kDa signal peptide, Episomal vector | ID | 108 CFU rBCG + 11 µg Gag VLP IM | rBCG elicited robust cellular immune response against HIV-1 epitopes and promoted Gag-specific humoral response. | [159] |
Chacma baboons | HIV-1 gag (Subtype C) | mtrA promoter, 19-kDa signal peptide, pHS300/ pHS400/ pRT106 | ID | 108 CFU rBCG + 10 µg Gag VLP IM | rBCGpan-Gag boosted with Gag VLP elicited strong polyfunctional T-cell response and promoted Gag-specific memory T cells. | [165] |
4. Effect of Preexisting Immunity Against BCG and Viral Vectors on the Responses to Foreign Antigens Expressed in rBCG: Anti-Vector Immunity
5. Safety of Recombinant BCG Vaccination in HIV-1-Infected Individuals
6. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- UNAIDS. Global AIDS Update 2024; United Nations: New York, NY, USA, 2024; ISBN 9789210028370. [Google Scholar]
- UNAIDS. Global AIDS Update 2023; United Nations: New York, NY, USA, 2023; ISBN 9789210028370. [Google Scholar]
- Amin, O.; Powers, J.; Bricker, K.M.; Chahroudi, A. Understanding Viral and Immune Interplay During Vertical Transmission of HIV: Implications for Cure. Front. Immunol. 2021, 12, 757400. [Google Scholar]
- Yang, L.; Cambou, M.C.; Nielsen-Saines, K. The End Is in Sight: Current Strategies for the Elimination of HIV Vertical Transmission. Curr. HIV AIDS Rep. 2023, 20, 121–130. [Google Scholar] [PubMed]
- Lee, J.H.; Crotty, S. HIV Vaccinology: 2021 Update. Semin. Immunol. 2021, 51, 101470. [Google Scholar]
- Hanke, T. Aiming for Protective T-Cell Responses: A Focus on the First Generation Conserved-Region HIVconsv Vaccines in Preventive and Therapeutic Clinical Trials. Expert Rev. Vaccines 2019, 18, 1029–1041. [Google Scholar] [CrossRef]
- World Health Organization BCG Vaccine. Available online: https://www.who.int/teams/health-product-policy-and-standards/standards-and-specifications/norms-and-standards/vaccines-quality/bcg (accessed on 23 November 2024).
- Fletcher, H.A. Sleeping Beauty and the Story of the Bacille Calmette-Guérin Vaccine. mBio 2016, 7, e01370-16. [Google Scholar] [CrossRef]
- Kim, B.J.; Kim, B.R.; Kook, Y.H.; Kim, B.J. Potential of Recombinant Mycobacterium paragordonae Expressing HIV-1 Gag as a Prime Vaccine for HIV-1 Infection. Sci. Rep. 2019, 9, 15515. [Google Scholar] [CrossRef]
- Kilpeläinen, A.; Saubi, N.; Guitart, N.; Olvera, A.; Hanke, T.; Brander, C.; Joseph, J. Recombinant BCG Expressing HTI Prime and Recombinant ChAdOx1 Boost Is Safe and Elicits HIV-1-Specific T-Cell Responses in BALB/c Mice. Vaccines 2019, 7, 78. [Google Scholar] [CrossRef]
- Kim, B.J.; Kim, B.R.; Kook, Y.H.; Kim, B.J. Development of a Live Recombinant BCG Expressing Human Immunodeficiency Virus Type 1 (HIV-1) Gag Using a PMyong2 Vector System: Potential Use as a Novel HIV-1 Vaccine. Front. Immunol. 2018, 9, 643. [Google Scholar] [CrossRef]
- Korioth-Schmitz, B.; Perley, C.C.; Sixsmith, J.D.; Click, E.M.; Lee, S.; Letvin, N.L.; Frothingham, R. Rhesus Immune Responses to SIV Gag Expressed by Recombinant BCG Vectors Are Independent from Pre-Existing Mycobacterial Immunity. Vaccine 2015, 33, 5715–5722. [Google Scholar] [CrossRef]
- Sixsmith, J.D.; Panas, M.W.; Lee, S.; Gillard, G.O.; White, K.A.; Lifton, M.A.; Balachandran, H.; Mach, L.; Miller, J.P.; Lavine, C.; et al. Recombinant Mycobacterium bovis Bacillus Calmette-Guérin Vectors Prime for Strong Cellular Responses to Simian Immunodeficiency Virus Gag in Rhesus Macaques. Clin. Vaccine Immunol. 2014, 21, 1385–1395. [Google Scholar] [CrossRef]
- Martins, M.A.; Wilson, N.A.; Piaskowski, S.M.; Weisgrau, K.L.; Furlott, J.R.; Bonaldo, M.C.; Veloso de Santana, M.G.; Rudersdorf, R.A.; Rakasz, E.G.; Keating, K.D.; et al. Vaccination with Gag, Vif, and Nef Gene Fragments Affords Partial Control of Viral Replication after Mucosal Challenge with SIVmac239. J. Virol. 2014, 88, 7493–7516. [Google Scholar] [CrossRef] [PubMed]
- Fennelly, G.J.; Flynn, J.A.L.; Ter Meulen, V.; Liebert, U.G.; Bloom, B.R. Recombinant Bacille Calmette-Guérin Priming against Measles. J. Infect. Dis. 1995, 172, 698–705. [Google Scholar] [CrossRef] [PubMed]
- Streit, J.A.; Recker, T.J.; Donelson, J.E.; Wilson, M.E. BCG Expressing LCR1 of Leishmania Chagasi Induces Protective Immunity in Susceptible Mice. Exp. Parasitol. 2000, 94, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Govan, V.A.; Christensen, N.D.; Berkower, C.; Jacobs, W.R.; Williamson, A.L. Immunisation with Recombinant BCG Expressing the Cottontail Rabbit Papillomavirus (CRPV) L1 Gene Provides Protection from CRPV Challenge. Vaccine 2006, 24, 2087–2093. [Google Scholar] [CrossRef]
- Grode, L.; Seiler, P.; Baumann, S.; Hess, J.; Brinkmann, V.; Eddine, A.N.; Mann, P.; Goosmann, C.; Bandermann, S.; Smith, D.; et al. Increased Vaccine Efficacy against Tuberculosis of Recombinant Mycobacterium bovis Bacille Calmette-Guérin Mutants That Secrete Listeriolysin. J. Clin. Investig. 2005, 115, 2472–2479. [Google Scholar] [CrossRef]
- Langermann, S.; Palaszynski, S.R.; Burlein, J.E.; Koenig, S.; Hanson, M.S.; Briles, D.E.; Stover, C.K. Protective Humoral Response against Pneumococcal Infection in Mice Elicited by Recombinant Bacille Calmette-Guérin Vaccines Expressing Pneumococcal Surface Protein A. J. Exp. Med. 1994, 180, 2277–2286. [Google Scholar] [CrossRef]
- Matsumoto, S.; Yukitake, H.; Kanbara, H.; Yamada, T. Recombinant Mycobacterium bovis Bacillus Calmette-Guerin Secreting Merozoite Surface Protein 1 (MSP1) Induces Protection against Rodent Malaria Parasite Infection Depending on MSP1-Stimulated Interferon γ and Parasite-Specific Antibodies. J. Exp. Med. 1998, 188, 845–854. [Google Scholar] [CrossRef]
- Nascimento, I.P.; Dias, W.O.; Quintilio, W.; Christ, A.P.; Moraes, J.F.; Vancetto, M.D.C.; Ribeiro-dos-Santos, G.; Raw, I.; Leite, L.C.C. Neonatal Immunization with a Single Dose of Recombinant BCG Expressing Subunit S1 from Pertussis Toxin Induces Complete Protection against Bordetella Pertussis Intracerebral Challenge. Microbes Infect. 2008, 10, 198–202. [Google Scholar] [CrossRef]
- Stover, C.K.; Bansal, G.P.; Hanson, M.S.; Burlein, J.E.; Palaszynski, S.R.; Young, J.F.; Koenig, S.; Young, D.B.; Sadziene, A.; Barbour, A.G. Protective Immunity Elicited by Recombinant Bacille Calmette-Guerin (BCG) Expressing Outer Surface Protein A (OspA) Lipoprotein: A Candidate Lyme Disease Vaccine. J. Exp. Med. 1993, 178, 197–209. [Google Scholar] [CrossRef]
- Chen, J.; Gao, L.; Wu, X.; Fan, Y.; Liu, M.; Peng, L.; Song, J.; Li, B.; Liu, A.; Bao, F. BCG-Induced Trained Immunity: History, Mechanisms and Potential Applications. J. Transl. Med. 2023, 21, 106. [Google Scholar] [CrossRef]
- Li, J.; Zhan, L.; Qin, C. The Double-Sided Effects of Mycobacterium bovis Bacillus Calmette–Guérin Vaccine. npj Vaccines 2021, 6, 14. [Google Scholar] [CrossRef] [PubMed]
- Lai, R.; Ogunsola, A.F.; Rakib, T.; Behar, S.M. Key Advances in Vaccine Development for Tuberculosis—Success and Challenges. npj Vaccines 2023, 8, 158. [Google Scholar] [CrossRef] [PubMed]
- Cole, S.T. Comparative and Functional Genomics of the Mycobacterium tuberculosis Complex. Microbiology 2002, 148, 2919–2928. [Google Scholar] [CrossRef] [PubMed]
- Lewis, K.N.; Liao, R.; Guinn, K.M.; Hickey, M.J.; Smith, S.; Behr, M.A.; Sherman, D.R. Deletion of RD1 from Mycobacterium tuberculosis Mimics Bacille Calmette-Guérin Attenuation. J. Infect. Dis. 2003, 187, 117–123. [Google Scholar] [CrossRef]
- Gong, W.; An, H.; Wang, J.; Cheng, P.; Qi, Y. The Natural Effect of BCG Vaccination on COVID-19: The Debate Continues. Front. Immunol. 2022, 13, 953228. [Google Scholar] [CrossRef]
- Torun, S.; Ozkaya, S.; Şen, N.; Kanat, F.; Karaman, I.; Yosunkaya, S.; Sengoren Dikis, O.; Asan, A.; Aydogan Eroglu, S.; Semih Atal, S.; et al. The Relationship between COVID-19 Severity and Bacillus Calmette-Guérin (BCG)/Mycobacterium tuberculosis Exposure History in Healthcare Workers: A Multi-Center Study. Pathog. Glob. Health 2021, 115, 405–411. [Google Scholar] [CrossRef]
- Bashiri, G.; Baker, E.N. Production of Recombinant Proteins in Mycobacterium smegmatis for Structural and Functional Studies. Protein Sci. 2015, 24, 1–10. [Google Scholar] [CrossRef]
- Seniya, S.P.; Yadav, P.; Jain, V. Construction of E. Coli—Mycobacterium Shuttle Vectors with a Variety of Expression Systems and Polypeptide Tags for Gene Expression in Mycobacteria. PLoS ONE 2020, 15, e0230282. [Google Scholar] [CrossRef]
- Jacobs, W.R.; Snapper, S.B.; Tuckinan, M.; Bloom, B.R. Mycobacteriophage Vector Systems. Rev. Infect. Dis. 1989, 11, S404–S410. [Google Scholar] [CrossRef]
- Snapper, S.B.; Lugosi, L.; Jekkel, A.; Melton, R.E.; Kieser, T.; Bloom, B.R.; Jacobs, W.R. Lysogeny and Transformation in Mycobacteria: Stable Expression of Foreign Genes. Proc. Natl. Acad. Sci. USA 1988, 85, 6987–6991. [Google Scholar] [CrossRef]
- Kilpeläinen, A.; Maya-Hoyos, M.; Saubí, N.; Soto, C.Y.; Joseph Munne, J. Advances and Challenges in Recombinant Mycobacterium bovis BCG-Based HIV Vaccine Development: Lessons Learned. Expert Rev. Vaccines 2018, 17, 1005–1020. [Google Scholar] [CrossRef] [PubMed]
- Stover, C.K.; De La Cruz, V.F.; Fuerst, T.R.; Burlein, J.E.; Benson, L.A.; Bennett, L.T.; Bansal, G.P.; Young, J.F.; Lee, M.H.; Hatfull, G.F.; et al. New Use of BCG for Recombinant Vaccines. Nature 1991, 351, 456–460. [Google Scholar] [CrossRef] [PubMed]
- Aínsa, J.A.; Martín, C.; Cabeza, M.; De La Cruz, F.; Mendiola, M.V. Construction of a Family of Mycobacterium/Escherichia coli Shuttle Vectors Derived from PAL5000 and PACYC184: Their Use for Cloning an Antibiotic-Resistance Gene from Mycobacterium fortuitum. Gene 1996, 176, 23–26. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Kim, B.-J.; Kim, B.-R.; Kook, Y.-H.; Kim, B.-J. The Development of a Novel Mycobacterium-Escherichia coli Shuttle Vector System Using PMyong2, a Linear Plasmid from Mycobacterium yongonense DSM 45126T. PLoS ONE 2015, 10, e0122897. [Google Scholar] [CrossRef]
- Gicquel-Sanzey, B.; Moniz-Pereira, J.; Gheorghiu, M.; Rauzier, J. Structure of PAL5000, a Plasmid from M. fortuitum and Its Utilization in Transformation of Mycobacteria. Acta Leprol. 1989, 7, 208–211. [Google Scholar]
- Dellagostin, O.A.; Borsuk, S.; Oliveira, T.L.; Seixas, F.K. Auxotrophic Mycobacterium bovis BCG: Updates and Perspectives. Vaccines 2022, 10, 802. [Google Scholar] [CrossRef]
- Horwitz, M.A.; Harth, G.; Dillon, B.J.; Maslesa-Galic, S. Recombinant Bacillus Calmette-Guerin (BCG) Vaccines Expressing the Mycobacterium tuberculosis 30-KDa Major Secretory Protein Induce Greater Protective Immunity Againts Tuberculosis than Conventional BCG Vaccines in a Highly Susceptible Animal Model. Proc. Natl. Acad. Sci. USA 2000, 97, 13853–13858. [Google Scholar] [CrossRef]
- Stensballe, L.G.; Nante, E.; Jensen, I.P.; Kofoed, P.E.; Poulsen, A.; Jensen, H.; Newport, M.; Marchant, A.; Aaby, P. Acute Lower Respiratory Tract Infections and Respiratory Syncytial Virus in Infants in Guinea-Bissau: A Beneficial Effect of BCG Vaccination for Girls: Community Based Case-Control Study. Vaccine 2005, 23, 1251–1257. [Google Scholar] [CrossRef]
- Podder, I.; Bhattacharya, S.; Mishra, V.; Sarkar, T.K.; Chandra, S.; Sil, A.; Pal, S.; Kumar, D.; Saha, A.; Shome, K.; et al. Immunotherapy in Viral Warts with Intradermal Bacillus Calmette-Guerin Vaccine versus Intradermal Tuberculin Purified Protein Derivative: A Double-Blind, Randomized Controlled Trial Comparing Effectiveness and Safety in a Tertiary Care Center in Eastern India. Indian J. Dermatol. Venereol. Leprol. 2017, 83, 411. [Google Scholar] [CrossRef]
- Moorlag, S.J.C.F.M.; Arts, R.J.W.; van Crevel, R.; Netea, M.G. Non-Specific Effects of BCG Vaccine on Viral Infections. Clin. Microbiol. Infect. 2019, 25, 1473–1478. [Google Scholar] [CrossRef]
- Bastos, R.G.; Borsuk, S.; Seixas, F.K.; Dellagostin, O.A. Recombinant Mycobacterium bovis BCG. Vaccine 2009, 27, 6495–6503. [Google Scholar] [CrossRef] [PubMed]
- Bourn, W.R.; Jansen, Y.; Stutz, H.; Warren, R.M.; Williamson, A.L.; van Helden, P.D. Creation and Characterisation of a High-Copy-Number Version of the PAL5000 Mycobacterial Replicon. Tuberculosis 2007, 87, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Joseph, J.; Saubi, N.; Pezzat, E.; Gatell, J.M. Progress towards an HIV Vaccine Based on Recombinant Bacillus Calmette-Guérin: Failures and Challenges. Expert Rev. Vaccines 2006, 5, 827–838. [Google Scholar] [CrossRef] [PubMed]
- Romero, I.C.; Mehaffy, C.; Burchmore, R.J.; Dobos-Elder, K.; Brennan, P.; Walker, J. Identification of Promoter-Binding Proteins of the Fbp A and C Genes in Mycobacterium tuberculosis. Tuberculosis 2010, 90, 25–30. [Google Scholar] [CrossRef]
- Jain, V.; Sujatha, S.; Ojha, A.K.; Chatterji, D. Identification and Characterization of Rel Promoter Element of Mycobacterium tuberculosis. Gene 2005, 351, 149–157. [Google Scholar] [CrossRef]
- Blokpoel, M.C.J.; Murphy, H.N.; O’Toole, R.; Wiles, S.; Runn, E.S.C.; Stewart, G.R.; Young, D.B.; Robertson, B.D. Tetracycline-Inducible Gene Regulation in Mycobacteria. Nucleic Acids Res. 2005, 33, e22. [Google Scholar] [CrossRef]
- Mahenthiralingam, E.; Draper, P.; Davis, E.O.; Colston, M.J. Cloning and Sequencing of the Gene Which Encodes the Highly Inducible Acetamidase of Mycobacterium smegmatis. J. Gen. Microbiol. 1993, 139, 575–583. [Google Scholar] [CrossRef]
- Dos Vultos, T.; Méderlé, I.; Abadie, V.; Pimentel, M.; Moniz-Pereira, J.; Gicquel, B.; Reyrat, J.M.; Winter, N. Modification of the Mycobacteriophage Ms6 AttP Core Allows the Integration of Multiple Vectors into Different TRNAala T-Loops in Slow- and Fast-Growing Mycobacteria. BMC Mol. Biol. 2006, 7, 47. [Google Scholar] [CrossRef]
- Lee Hong, M.; Pascopella, L.; Jacobs, W.R.; Hatfull, G.F. Site-Specific Integration of Mycobacteriophage L5: Integration-Proficient Vectors for Mycobacterium smegmatis, Mycobacterium tuberculosis, and Bacille Calmette-Guérin. Proc. Natl. Acad. Sci. USA 1991, 88, 3111–3115. [Google Scholar] [CrossRef]
- Oliveira, T.L.; Rizzi, C.; Dellagostin, O.A. Recombinant BCG Vaccines: Molecular Features and Their Influence in the Expression of Foreign Genes. Appl. Microbiol. Biotechnol. 2017, 101, 6865–6877. [Google Scholar] [CrossRef]
- Dennehy, M.; Bourn, W.; Steele, D.; Williamson, A.L. Evaluation of Recombinant BCG Expressing Rotavirus VP6 as an Anti-Rotavirus Vaccine. Vaccine 2007, 25, 3646–3657. [Google Scholar] [CrossRef] [PubMed]
- Méderlé, I.; Bourguin, I.; Ensergueix, D.; Badell, E.; Moniz-Peireira, J.; Gicquel, B.; Winter, N. Plasmidic versus Insertional Cloning of Heterologous Genes in Mycobacterium bovis BCG: Impact on in Vivo Antigen Persistence and Immune Responses. Infect. Immun. 2002, 70, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Lugosi, L.; Jacobs, W.R.; Bloom, B.R. Genetic Transformation of BCG. Tubercle 1989, 70, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Aldovini, A.; Young, R.A. Humoral and Cell-Mediated Immune Responses to Live Recombinant BCG-HIV Vaccines. Nature 1991, 351, 479–482. [Google Scholar] [CrossRef]
- Al-Zarouni, M.; Dale, J.W. Expression of Foreign Genes in Mycobacterium bovis BCG Strains Using Different Promoters Reveals Instability of the Hsp60 Promoter for Expression of Foreign Genes in Mycobacterium bovis BCG Strains. Tuberculosis 2002, 82, 283–291. [Google Scholar] [CrossRef]
- Joseph, J.; Fernández-Lloris, R.; Pezzat, E.; Saubi, N.; Cardona, P.J.; Mothe, B.; Gatell, J.M. Molecular Characterization of Heterologous HIV-1gp120 Gene Expression Disruption in Mycobacterium bovis BCG Host Strain: A Critical Issue for Engineering Mycobacterial Based-Vaccine Vectors. J. Biomed. Biotechnol. 2010, 2010, 357370. [Google Scholar] [CrossRef]
- Hanke, T.; McMichael, A.J. Design and Construction of an Experimental HIV-1 Vaccine for a Year-2000 Clinical Trial in Kenya. Nat. Med. 2000, 6, 951–955. [Google Scholar] [CrossRef]
- Hopkins, R.; Bridgeman, A.; Joseph, J.; Gilbert, S.C.; McShane, H.; Hanke, T. Dual Neonate Vaccine Platform against HIV-1 and M. tuberculosis. PLoS ONE 2011, 6, e20067. [Google Scholar] [CrossRef]
- Im, E.-J.; Saubi, N.; Virgili, G.; Sander, C.; Teoh, D.; Gatell, J.M.; McShane, H.; Joseph, J.; Hanke, T. Vaccine Platform for Prevention of Tuberculosis and Mother-to-Child Transmission of Human Immunodeficiency Virus Type 1 through Breastfeeding. J. Virol. 2007, 81, 9408–9418. [Google Scholar] [CrossRef]
- Joseph, J.; Saubi, N.; Im, E.J.; Fernández-Lloris, R.; Gil, O.; Cardona, P.J.; Gatell, J.M.; Hanke, T. Newborn Mice Vaccination with BCG.HIVA222 + MVA.HIVA Enhances HIV-1-Specific Immune Responses: Influence of Age and Immunization Routes. Clin. Dev. Immunol. 2011, 2011, 516219. [Google Scholar] [CrossRef]
- Kim, B.J.; Kim, B.J.; Gong, J.R.; Kim, G.N.; Kim, B.R.; Lee, S.Y.; Kook, Y.H. Recombinant Mycobacterium smegmatis with a PMyong2 Vector Expressing Human Immunodeficiency Virus Type I Gag Can Induce Enhanced Virus-Specific Immune Responses. Sci. Rep. 2017, 7, 44776. [Google Scholar] [CrossRef] [PubMed]
- Broset, E.; Saubi, N.; Guitart, N.; Aguilo, N.; Uranga, S.; Kilpeläinen, A.; Eto, Y.; Hanke, T.; Gonzalo-Asensio, J.; Martín, C.; et al. MTBVAC-Based TB-HIV Vaccine Is Safe, Elicits HIV-T Cell Responses, and Protects against Mycobacterium tuberculosis in Mice. Mol. Ther. Methods Clin. Dev. 2019, 13, 253–264. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Srivastava, B.S.; Srivastava, R. Genetic Rearrangements Leading to Disruption of Heterologous Gene Expression in Mycobacteria: An Observation with Escherichia coli β-Galactosidase in Mycobacterium smegmatis and Its Implication in Vaccine Development. Vaccine 1998, 16, 1212–1215. [Google Scholar] [CrossRef] [PubMed]
- Chapman, R.; Chege, G.; Shephard, E.; Stutz, H.; Williamson, A.-L. Recombinant Mycobacterium bovis BCG as an HIV Vaccine Vector. Curr. HIV Res. 2010, 8, 282–298. [Google Scholar] [CrossRef]
- Huff, J.; Czyz, A.; Landick, R.; Niederweis, M. Taking Phage Integration to the next Level as a Genetic Tool for Mycobacteria. Gene 2010, 468, 8–19. [Google Scholar] [CrossRef]
- Anes, E.; Portugal, I.; Moniz-Pereira, J. Insertion into the Mycobacterium smegmatis Genome of the Aph Gene through Lysogenization with the Temperate Mycobacteriophage Ms6. FEMS Microbiol. Lett. 1992, 95, 21–25. [Google Scholar] [CrossRef]
- Lewis, J.A.; Hatfull, G.F. Identification and Characterization of Mycobacteriophage L5 Excisionase. Mol. Microbiol. 2000, 35, 350–360. [Google Scholar] [CrossRef]
- Pashley, C.A.; Parish, T. Efficient Switching of Mycobacteriophage L5-Based Integrating Plasmids in Mycobacterium tuberculosis. FEMS Microbiol. Lett. 2003, 229, 211–215. [Google Scholar] [CrossRef]
- Mahant, A.; Saubi, N.; Eto, Y.; Guitart, N.; Gatell, J.M.; Hanke, T.; Joseph, J. Preclinical Development of BCG.HIVA2auxo.Int, Harboring an Integrative Expression Vector, for a HIV-TB Pediatric Vaccine. Enhancement of Stability and Specific HIV-1 T-Cell Immunity. Hum. Vaccin. Immunother. 2017, 13, 1798–1810. [Google Scholar] [CrossRef]
- Newton-Foot, M.; Gey Van Pittius, N.C. The Complex Architecture of Mycobacterial Promoters. Tuberculosis 2013, 93, 60–74. [Google Scholar] [CrossRef]
- Petolino, J.F.; Davies, J.P. Designed Transcriptional Regulators for Trait Development. Plant Sci. 2013, 201–202, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Bashyam, M.D.; Kaushal, D.; Dasgupta, S.K.; Tyagi, A.K. A Study of the Mycobacterial Transcriptional Apparatus: Identification of Novel Features in Promoter Elements. J. Bacteriol. 1996, 178, 4847–4853. [Google Scholar] [CrossRef] [PubMed]
- Maya-Hoyos, M.; Soto, C.Y. ATPasas Tipo P2 Como Blancos Para La Atenuación de Mycobacterium tuberculosis; Universidad Nacional de Colombia: Bogotá, Colombia, 2021. [Google Scholar]
- Cheng, J.; Huangfu, Y.; Feng, Z.; Liang, J.; Xiao, H. Expression of Foreign Gene in Mycobacterium Regulated by Human Mycobacterium tuberculosis Heat Shock Protein 70 Promoter. J. Tongji Med. Univ. 1997, 17, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Movahedzadeh, F.; Frita, R.; Gutka, H.J. A Two-Step Strategy for the Complementation of M. tuberculosis Mutants. Genet. Mol. Biol. 2011, 34, 286–289. [Google Scholar] [CrossRef]
- Maheshwari, J.J.; Dharmalingam, K. Protective Role of Mycobacterium leprae Small Heat-Shock Protein in Heterologous Hosts, Escherichia coli and Mycobacterium smegmatis, Grown under Stress. J. Med. Microbiol. 2013, 62, 959–967. [Google Scholar] [CrossRef]
- Schnappinger, D.; Ehrt, S. Regulated Expression Systems for Mycobacteria and Their Applications. Microbiol. Spectr. 2014, 2, 225–238. [Google Scholar] [CrossRef]
- Parish, T.; Mahenthiralingam, E.; Draper, P.; Davis, E.O.; Colston, M.J. Regulation of the Inducible Acetamidase Gene of Mycobacterium smegmatis. Microbiology 1997, 143, 2267–2276. [Google Scholar] [CrossRef]
- Brown, A.C.; Parish, T. Instability of the Acetamide-Inducible Expression Vector PJAM2 in Mycobacterium tuberculosis. Plasmid 2006, 55, 81–86. [Google Scholar] [CrossRef]
- Yuan, Y.; Crane, D.D.; Simpson, R.M.; Zhu, Y.; Hickey, M.J.; Sherman, D.R.; Barry, C.E. The 16-KDa α-Crystallin (Acr) Protein of Mycobacterium tuberculosis Is Required for Growth in Macrophages. Proc. Natl. Acad. Sci. USA 1998, 95, 9578–9583. [Google Scholar] [CrossRef]
- Kong, C.U.; Ng, L.G.; Nambiar, J.K.; Spratt, J.M.; Weninger, W.; Triccas, J.A. Targeted Induction of Antigen Expression within Dendritic Cells Modulates Antigen-Specific Immunity Afforded by Recombinant BCG. Vaccine 2011, 29, 1374–1381. [Google Scholar] [CrossRef]
- Carroll, P.; Brown, A.C.; Hartridge, A.R.; Parish, T. Expression of Mycobacterium tuberculosis Rv1991c Using an Arabinose-Inducible Promoter Demonstrates Its Role as a Toxin. FEMS Microbiol. Lett. 2007, 274, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Klotzsche, M.; Ehrt, S.; Schnappinger, D. Improved Tetracycline Repressors for Gene Silencing in Mycobacteria. Nucleic Acids Res. 2009, 37, 1778–1788. [Google Scholar] [CrossRef] [PubMed]
- Bretl, D.J.; Demetriadou, C.; Zahrt, T.C. Adaptation to Environmental Stimuli within the Host: Two-Component Signal Transduction Systems of Mycobacterium tuberculosis. Microbiol. Mol. Biol. Rev. 2011, 75, 566–582. [Google Scholar] [CrossRef] [PubMed]
- Chapman, R.; Bourn, W.R.; Shephard, E.; Stutz, H.; Douglass, N.; Mgwebi, T.; Meyers, A.; Chin’Ombe, N.; Williamson, A.L. The Use of Directed Evolution to Create a Stable and Immunogenic Recombinant BCG Expressing a Modified HIV-1 Gag Antigen. PLoS ONE 2014, 9, e103314. [Google Scholar] [CrossRef]
- Gusarov, I.; Nudler, E. The Mechanism of Intrinsic Transcription Termination. Mol. Cell 1999, 3, 495–504. [Google Scholar] [CrossRef]
- Ray-Soni, A.; Bellecourt, M.J.; Landick, R. Mechanisms of Bacterial Transcription Termination: All Good Things Must End. Annu. Rev. Biochem. 2016, 85, 319–347. [Google Scholar] [CrossRef]
- Mitra, A.; Angamuthu, K.; Nagaraja, V. Genome-Wide Analysis of the Intrinsic Terminators of Transcription across the Genus Mycobacterium. Tuberculosis 2008, 88, 566–575. [Google Scholar] [CrossRef]
- Czyz, A.; Mooney, R.A.; Iaconi, A.; Landick, R. Mycobacterial RNA Polymerase Requires a U-Tract at Intrinsic Terminators and Is Aided by NusG at Suboptimal Terminators. mBio 2014, 5, e00931. [Google Scholar] [CrossRef]
- Kalarickal, N.C.; Ranjan, A.; Kalyani, B.S.; Wal, M.; Sen, R. A Bacterial Transcription Terminator with Inefficient Molecular Motor Action but with a Robust Transcription Termination Function. J. Mol. Biol. 2010, 395, 966–982. [Google Scholar] [CrossRef]
- Kanekiyo, M.; Matsuo, K.; Hamatake, M.; Hamano, T.; Ohsu, T.; Matsumoto, S.; Yamada, T.; Yamazaki, S.; Hasegawa, A.; Yamamoto, N.; et al. Mycobacterial Codon Optimization Enhances Antigen Expression and Virus-Specific Immune Responses in Recombinant Mycobacterium bovis Bacille Calmette-Guérin Expressing Human Immunodeficiency Virus Type 1 Gag. J. Virol. 2005, 79, 8716–8723. [Google Scholar] [CrossRef]
- Promkhatkaew, D.; Pinyosukhee, N.; Thongdeejaroen, W.; Teeka, J.; Wutthinantiwong, P.; Leangaramgul, P.; Sawanpanyalert, P.; Warachit, P. Prime-Boost Immunization of Codon Optimized HIV-1 CRF01AE Gag in BCG with Recombinant Vaccinia Virus Elicits MHC Class i and II Immune Responses in Mice. Immunol. Investig. 2009, 38, 762–779. [Google Scholar] [CrossRef] [PubMed]
- Broset, E.; Calvet Seral, J.; Arnal, C.; Uranga, S.; Kanno, A.I.; Leite, L.C.C.; Martín, C.; Gonzalo-Asensio, J. Engineering a New Vaccine Platform for Heterologous Antigen Delivery in Live-Attenuated Mycobacterium tuberculosis. Comput. Struct. Biotechnol. J. 2021, 19, 4273–4283. [Google Scholar] [CrossRef] [PubMed]
- Varaldo, P.B.; Miyaji, E.N.; Vilar, M.M.; Campos, A.S.; Dias, W.O.; Armôa, G.R.G.; Tendler, M.; Leite, L.C.C.; McIntosh, D. Mycobacterial Codon Optimization of the Gene Encoding the Sm14 Antigen of Schistosoma mansoni in Recombinant Mycobacterium bovis Bacille Calmette-Guérin Enhances Protein Expression but Not Protection against Cercarial Challenge in Mice. FEMS Immunol. Med. Microbiol. 2006, 48, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Mignon, C.; Sodoyer, R.; Werle, B. Antibiotic-Free Selection in Biotherapeutics: Now and Forever. Pathogens 2015, 4, 157–181. [Google Scholar] [CrossRef]
- Peubez, I.; Chaudet, N.; Mignon, C.; Hild, G.; Husson, S.; Courtois, V.; De Luca, K.; Speck, D.; Sodoyer, R. Antibiotic-Free Selection in E. coli: New Considerations for Optimal Design and Improved Production. Microb. Cell Fact. 2010, 9, 65. [Google Scholar] [CrossRef]
- Saubi, N.; Mbewe-Mvula, A.; Gea-Mallorqui, E.; Rosario, M.; Gatell, J.M.; Hanke, T.; Joseph, J. Pre-Clinical Development of BCG.HIVACAT, an Antibiotic-Free Selection Strain, for HIV-TB Pediatric Vaccine Vectored by Lysine Auxotroph of BCG. PLoS ONE 2012, 7, e42559. [Google Scholar] [CrossRef]
- Saubi, N.; Gea-Mallorquí, E.; Ferrer, P.; Hurtado, C.; Sánchez-Úbeda, S.; Eto, Y.; Gatell, J.M.; Hanke, T.; Joseph, J. Engineering New Mycobacterial Vaccine Design for HIV-TB Pediatric Vaccine Vectored by Lysine Auxotroph of BCG. Mol. Ther. Methods Clin. Dev. 2014, 1, 14017. [Google Scholar] [CrossRef]
- Hart, B.E.; Asrican, R.; Lim, S.Y.; Sixsmith, J.D.; Lukose, R.; Souther, S.J.R.; Rayasam, S.D.G.; Saelens, J.W.; Chen, C.J.; Seay, S.A.; et al. Stable Expression of Lentiviral Antigens by Quality-Controlled Recombinant Mycobacterium bovis BCG Vectors. Clin. Vaccine Immunol. 2015, 22, 726–741. [Google Scholar] [CrossRef]
- Chapman, R.; Stutz, H.; Jacobs, W.; Shephard, E.; Williamson, A.L. Priming with Recombinant Auxotrophic BCG Expressing HIV-1 Gag, RT and Gp120 and Boosting with Recombinant MVA Induces a Robust T Cell Response in Mice. PLoS ONE 2013, 8, e71601. [Google Scholar] [CrossRef]
- Guilhot, C.; Gicquel, B.; Martín, C. Temperature-Sensitive Mutants of the Mycobacterium Plasmid PAL5000. FEMS Microbiol. Lett. 1992, 98, 181–186. [Google Scholar] [CrossRef]
- Movahedzadeh, F.; Bitter, W. Ins and Outs of Mycobacterial Plasmids. In Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2008; Volume 465. [Google Scholar] [CrossRef]
- Pelicic, V.; Jackson, M.; Reyrat, J.M.; Jacobs, W.R.; Gicquel, B.; Guilhot, C. Efficient Allelic Exchange and Transposon Mutagenesis in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 1997, 94, 10955–10960. [Google Scholar] [CrossRef] [PubMed]
- Pelicic, V.; Reyrat, J.M.; Gicquel, B. Generation of Unmarked Directed Mutations in Mycobacteria, Using Sucrose Counter-Selectable Suicide Vectors. Mol. Microbiol. 1996, 20, 919–925. [Google Scholar] [CrossRef] [PubMed]
- Chapman, R.; Shephard, E.; Stutz, H.; Douglass, N.; Sambandamurthy, V.; Garcia, I.; Ryffel, B.; Jacobs, W.; Williamson, A.L. Priming with a Recombinant Pantothenate Auxotroph of Mycobacterium bovis Bcg and Boosting with Mva Elicits HIV-1 Gag Specific CD8 + T Cells. PLoS ONE 2012, 7, e32769. [Google Scholar] [CrossRef] [PubMed]
- Springer, B.; Sander, P.; Sedlacek, L.; Ellrott, K.; Böttger, E.C. Instability and Site-Specific Excision of Integration-Proficient Mycobacteriophage L5 Plasmids: Development of Stably Maintained Integrative Vectors. Int. J. Med. Microbiol. 2001, 290, 669–675. [Google Scholar] [CrossRef]
- Kilpeläinen, A.; Saubi, N.; Guitart, N.; Moyo, N.; Wee, E.G.; Ravi, K.; Hanke, T.; Joseph, J. Priming with Recombinant BCG Expressing Novel HIV-1 Conserved Mosaic Immunogens and Boosting with Recombinant CHADOX1 Is Safe, Stable, and Elicits HIV-1specific T-Cell Responses in BALB/c Mice. Front. Immunol. 2019, 10, 923. [Google Scholar] [CrossRef]
- Borsuk, S.; Mendum, T.A.; Fagundes, M.Q.; Michelon, M.; Cunha, C.W.; McFadden, J.; Dellagostin, O.A. Auxotrophic Complementation as a Selectable Marker for Stable Expression of Foreign Antigens in Mycobacterium bovis BCG. Tuberculosis 2007, 87, 474–480. [Google Scholar] [CrossRef]
- Arama, C.; Waseem, S.; Fernández, C.; Assefaw-Redda, Y.; You, L.; Rodriguez, A.; Radošević, K.; Goudsmit, J.; Kaufmann, S.H.E.; Reece, S.T.; et al. A Recombinant Bacille Calmette-Guérin Construct Expressing the Plasmodium falciparum Circumsporozoite Protein Enhances Dendritic Cell Activation and Primes for Circumsporozoite-Specific Memory Cells in BALB/c Mice. Vaccine 2012, 30, 5578–5584. [Google Scholar] [CrossRef]
- Varaldo, P.B.; Leite, L.C.C.; Dias, W.O.; Miyaji, E.N.; Torres, F.I.G.; Gebara, V.C.; Armôa, G.R.G.; Campos, A.S.; Matos, D.C.S.; Winter, N.; et al. Recombinant Mycobacterium bovis BCG Expressing the Sm14 Antigen of Schistosoma mansoni Protects Mice from Cercarial Challenge. Infect. Immun. 2004, 72, 3336–3343. [Google Scholar] [CrossRef]
- Ibrahim, H.M.; Bannai, H.; Xuan, X.; Nishikawa, Y. Toxoplasma Gondii Cyclophilin 18-Mediated Production of Nitric Oxide Induces Bradyzoite Conversion in a CCR5-Dependent Manner. Infect. Immun. 2009, 77, 3686–3695. [Google Scholar] [CrossRef]
- Li, W.C.; Zhang, X.K.; Du, L.; Pan, L.; Gong, P.T.; Li, J.H.; Yang, J.; Li, H.; Zhang, X.C. Eimeria Maxima: Efficacy of Recombinant Mycobacterium bovis BCG Expressing Apical Membrane Antigen1 against Homologous Infection. Parasitol. Res. 2013, 112, 3825–3833. [Google Scholar] [CrossRef]
- Bontempi, I.; Leal, K.; Prochetto, E.; Díaz, G.; Cabrera, G.; Bortolotti, A.; Morbidoni, H.R.; Borsuk, S.; Dellagostin, O.; Marcipar, I. Recombinant Mycobacterium bovis BCG Is a Promising Platform to Develop Vaccines against Trypansoma cruzi Infection. Clin. Exp. Immunol. 2020, 201, 306–316. [Google Scholar] [CrossRef] [PubMed]
- Dorneles, J.; Madruga, A.B.; Seixas Neto, A.C.P.; Rizzi, C.; Bettin, É.B.; Hecktheuer, A.S.; de Castro, C.C.; Fernandes, C.G.; Oliveira, T.L.; Dellagostin, O.A. Protection against Leptospirosis Conferred by Mycobacterium bovis BCG Expressing Antigens from Leptospira interrogans. Vaccine 2020, 38, 8136–8144. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, I.P.; Dias, W.O.; Quintilio, W.; Hsu, T.; Jacobs, W.R.; Leite, L.C.C. Construction of an Unmarked Recombinant BCG Expressing a Pertussis Antigen by Auxotrophic Complementation: Protection against Bordetella pertussis Challenge in Neonates. Vaccine 2009, 27, 7346–7351. [Google Scholar] [CrossRef] [PubMed]
- Fujii, J.; Naito, M.; Yutsudo, T.; Matsumoto, S.; Heatherly, D.P.; Yamada, T.; Kobayashi, H.; Yoshida, S.I.; Obrig, T. Protection by a Recombinant Mycobacterium bovis Bacillus Calmette-Guérin Vaccine Expressing Shiga Toxin 2 B Subunit against Shiga Toxin-Producing Escherichia coli in Mice. Clin. Vaccine Immunol. 2012, 19, 1932–1937. [Google Scholar] [CrossRef]
- Marques-Neto, L.M.; Piwowarska, Z.; Kanno, A.I.; Moraes, L.; Trentini, M.M.; Rodriguez, D.; Silva, J.L.S.C.; Leite, L.C.C. Thirty Years of Recombinant BCG: New Trends for a Centenary Vaccine. Expert Rev. Vaccines 2021, 20, 1001–1011. [Google Scholar] [CrossRef]
- Someya, K.; Cecilia, D.; Ami, Y.; Nakasone, T.; Matsuo, K.; Burda, S.; Yamamoto, H.; Yoshino, N.; Kaizu, M.; Ando, S.; et al. Vaccination of Rhesus Macaques with Recombinant Mycobacterium bovis Bacillus Calmette-Guérin Env V3 Elicits Neutralizing Antibody-Mediated Protection against Simian-Human Immunodeficiency Virus with a Homologous but Not a Heterologous V3 Motif. J. Virol. 2005, 79, 1452–1462. [Google Scholar] [CrossRef]
- Lim, E.M.; Lagranderie, M.; Le Grand, R.; Rauzier, J.; Gheorghiu, M.; Gicquel, B.; Winter, N. Recombinant Mycobacterium bovis BCG Producing the N-Terminal Half of SIVmac251 Env Antigen Induces Neutralizing Antibodies and Cytotoxic T Lymphocyte Responses in Mice and Guinea Pigs. AIDS Res. Hum. Retroviruses 1997, 13, 1573–1581. [Google Scholar] [CrossRef]
- de Taeye, S.W.; Moore, J.P.; Sanders, R.W. HIV-1 Envelope Trimer Design and Immunization Strategies to Induce Broadly Neutralizing Antibodies. Trends Immunol. 2016, 37, 221–232. [Google Scholar] [CrossRef]
- Ondondo, B.; Murakoshi, H.; Clutton, G.; Abdul-Jawad, S.; Wee, E.G.T.; Gatanaga, H.; Oka, S.; McMichael, A.J.; Takiguchi, M.; Korber, B.; et al. Novel Conserved-Region T-Cell Mosaic Vaccine with High Global HIV-1 Coverage Is Recognized by Protective Responses in Untreated Infection. Mol. Ther. 2016, 24, 832–842. [Google Scholar] [CrossRef]
- Burggraaf, M.J.; Ates, L.S.; Speer, A.; Van Der Kuij, K.; Kuijl, C.; Bitter, W. Optimization of Secretion and Surface Localization of Heterologous OVA Protein in Mycobacteria by Using LipY as a Carrier. Microb. Cell Fact. 2019, 18, 44. [Google Scholar] [CrossRef]
- Nieuwenhuizen, N.E.; Kulkarni, P.S.; Shaligram, U.; Cotton, M.F.; Rentsch, C.A.; Eisele, B.; Grode, L.; Kaufmann, S.H.E. The Recombinant Bacille Calmette-Guérin Vaccine VPM1002: Ready for Clinical Efficacy Testing. Front. Immunol. 2017, 8, 1147. [Google Scholar] [CrossRef] [PubMed]
- Garbe, T.; Harris, D.; Vordermeier, M.; Lathigra, R.; Ivanyi, J.; Young, D. Expression of the Mycobacterium tuberculosis 19-Kilodalton Antigen in Mycobacterium smegmatis: Immunological Analysis and Evidence of Glycosylation. Infect. Immun. 1993, 61, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Bastos, R.G.; Dellagostin, O.A.; Barletta, R.G.; Doster, A.R.; Nelson, E.; Osorio, F.A. Construction and Immunogenicity of Recombinant Mycobacterium bovis BCG Expressing GP5 and M Protein of Porcine Reproductive Respiratory Syndrome Virus. Vaccine 2002, 21, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Berthet, F.X.; Rauzier, J.; Lim, E.M.; Philipp, W.; Gicquel, B.; Portnoi, D. Characterization of the Mycobacterium tuberculosis Erp Gene Encoding a Potential Cell Surface Protein with Repetitive Structures. Microbiology 1995, 141, 2123–2130. [Google Scholar] [CrossRef]
- Honda, M.; Matsuo, K.; Nakasone, T.; Okamoto, Y.; Yoshizaki, H.; Kitamura, K.; Sugiura, W.; Watanabe, K.; Fukushima, Y.; Haga, S.; et al. Protective Immune Responses Induced by Secretion of a Chimeric Soluble Protein from a Recombinant Mycobacterium bovis Bacillus Calmette-Guérin Vector Candidate Vaccine for Human Immunodeficiency Virus Type 1 in Small Animals. Proc. Natl. Acad. Sci. USA 1995, 92, 10693–10697. [Google Scholar] [CrossRef]
- Chujoh, Y.; Matsuo, K.; Yoshizaki, H.; Nakasatomi, T.; Someya, K.; Okamoto, Y.; Naganawa, S.; Haga, S.; Yoshikura, H.; Yamazaki, A.; et al. Cross-Clade Neutralizing Antibody Production against Human Immunodeficiency Virus Type 1 Clade E and B′ Strains by Recombinant Mycobacterium bovis BCG-Based Candidate Vaccine. Vaccine 2001, 20, 797–804. [Google Scholar] [CrossRef]
- Goto, H.; Hiroi, T.; Ynagita, M.; Yamanaka, N.; Kiyono, H. HIV Mucosal Vaccine: Nasal Immunization with RBCG-V3J1 Induces a Long-Term V3J1 Peptide-Specific Neutralizing Immunity in Th1- and Th2-Deficient Condition. Int. Congr. Ser. 2003, 1257, 257–261. [Google Scholar] [CrossRef]
- Yu, J.S.; Peacock, J.W.; Jacobs, W.R.; Frothingham, R.; Letvin, N.L.; Liao, H.X.; Haynes, B.F. Recombinant Mycobacterium bovis Bacillus Calmette-Guérin Elicits Human Immunodeficiency Virus Type 1 Envelope-Specific T Lymphocytes at Mucosal Sites. Clin. Vaccine Immunol. 2007, 14, 886–893. [Google Scholar] [CrossRef]
- Hopkins, R.; Bridgeman, A.; Bourne, C.; Mbewe-Mvula, A.; Sadoff, J.C.; Both, G.W.; Joseph, J.; Fulkerson, J.; Hanke, T. Optimizing HIV-1-Specific CD8+ T-Cell Induction by Recombinant BCG in Prime-Boost Regimens with Heterologous Viral Vectors. Eur. J. Immunol. 2011, 41, 3542–3552. [Google Scholar] [CrossRef]
- Rosario, M.; Hopkins, R.; Fulkerson, J.; Borthwick, N.; Quigley, M.F.; Joseph, J.; Douek, D.C.; Greenaway, H.Y.; Venturi, V.; Gostick, E.; et al. Novel Recombinant Mycobacterium bovis BCG, Ovine Atadenovirus, and Modified Vaccinia Virus Ankara Vaccines Combine to Induce Robust Human Immunodeficiency Virus-Specific CD4 and CD8 T-Cell Responses in Rhesus Macaques. J. Virol. 2010, 84, 5898–5908. [Google Scholar] [CrossRef]
- Jongwe, T.I.; Chapman, R.; Douglass, N.; Chetty, S.; Chege, G.; Williamson, A.L. HIV-1 Subtype C Mosaic Gag Expressed by BCG and MVA Elicits Persistent Effector T Cell Responses in a Prime-Boost Regimen in Mice. PLoS ONE 2016, 11, e0159141. [Google Scholar] [CrossRef] [PubMed]
- Venkataswamy, M.M.; Ng, T.W.; Kharkwal, S.S.; Carreño, L.J.; Johnson, A.J.; Kunnath-Velayudhan, S.; Liu, Z.; Bittman, R.; Jervis, P.J.; Cox, L.R.; et al. Improving Mycobacterium bovis Bacillus Calmette-Guèrin as a Vaccine Delivery Vector for Viral Antigens by Incorporation of Glycolipid Activators of NKT Cells. PLoS ONE 2014, 9, e108383. [Google Scholar] [CrossRef] [PubMed]
- Himmelrich, H.; Lo-Man, R.; Winter, N.; Guermonprez, P.; Sedlik, C.; Rojas, M.; Monnaie, D.; Gheorghiu, M.; Lagranderie, M.; Hofnung, M.; et al. Immune Responses Induced by Recombinant BCG Strains According to Level of Production of a Foreign Antigen: MalE. Vaccine 2000, 18, 2636–2647. [Google Scholar] [CrossRef] [PubMed]
- Haynes, B.F.; Shattock, R.J. Critical Issues in Mucosal Immunity for HIV-1 Vaccine Development. J. Allergy Clin. Immunol. 2008, 122, 3–9. [Google Scholar] [CrossRef]
- Grode, L.; Kursar, M.; Fensterle, J.; Kaufmann, S.H.E.; Hess, J. Cell-Mediated Immunity Induced by Recombinant Mycobacterium bovis Bacille Calmette-Guérin Strains Against an Intracellular Bacterial Pathogen: Importance of Antigen Secretion or Membrane-Targeted Antigen Display as Lipoprotein for Vaccine Efficacy. J. Immunol. 2002, 168, 1869–1876. [Google Scholar] [CrossRef]
- Saubi, N.; Kilpeläinen, A.; Eto, Y.; Chen, C.W.; Olvera, À.; Hanke, T.; Brander, C.; Joseph-Munné, J. Priming with Recombinant BCG Expressing HTI Enhances the Magnitude and Breadth of the T-Cell Immune Responses Elicited by MVA.HTI in BALB/c Mice. Vaccines 2020, 8, 678. [Google Scholar] [CrossRef]
- Kawahara, M.; Matsuo, K.; Honda, M. Intradermal and Oral Immunization with Recombinant Mycobacterium bovis BCG Expressing the Simian Immunodeficiency Virus Gag Protein Induces Long-Lasting, Antigen-Specific Immune Responses in Guinea Pigs. Clin. Immunol. 2006, 119, 67–78. [Google Scholar] [CrossRef]
- Kawahara, M. Recombinant Mycobacterium bovis BCG Vector System Expressing SIV Gag Protein Stably and Persistently Induces Antigen-Specific Humoral Immune Response Concomitant with IFNγ Response, Even at Three Years after Immunization. Clin. Immunol. 2008, 129, 67–78. [Google Scholar] [CrossRef]
- Adams, E.J.; Parham, P. Species-Specific Evolution of MHC Class I Genes in the Higher Primates. Immunol. Rev. 2001, 183, 41–64. [Google Scholar] [CrossRef]
- Bontrop, R.E.; Otting, N.; De Groot, N.G.; Doxiadis, G.G.M. Major Histocompatibility Complex Class II Polymorphisms in Primates. Immunol. Rev. 1999, 167, 339–350. [Google Scholar] [CrossRef]
- Bontrop, R.E.; Otting, N.; Slierendregt, B.L.; Lanchbury, J.S. Evolution of Major Histocompatibility Complex Polymorphisms and T-Cell Receptor Diversity in Primates. Immunol. Rev. 1995, 143, 33–62. [Google Scholar] [CrossRef] [PubMed]
- Bontrop, R.E.; Watkins, D.I. MHC Polymorphism: AIDS Susceptibility in Non-Human Primates. Trends Immunol. 2005, 26, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Boyson, J.E.; Shufflebotham, C.; Cadavid, L.F.; Urvater, J.A.; Knapp, L.A.; Hughes, A.L.; Watkins, D.I. The MHC Class I Genes of the Rhesus Monkey. Different Evolutionary Histories of MHC Class I and II Genes in Primates. J. Immunol. 1996, 156, 4656–4665. [Google Scholar] [CrossRef] [PubMed]
- Damian, R.T.; Greene, N.D.; Kalter, S.S. IgG Subclasses in the Baboon (Papio Cynocephalus). J. Immunol. 1971, 106, 246–257. [Google Scholar] [CrossRef]
- Doxiadis, G.G.M.; Otting, N.; De Groot, N.G.; Bontrop, R.E. Differential Evolutionary MHC Class II Strategies in Humans and Rhesus Macaques: Relevance for Biomedical Studies. Immunol. Rev. 2001, 183, 76–85. [Google Scholar] [CrossRef]
- Hainsey, B.M.; Hubbard, G.B.; Leland, M.M.; Brasky, K.M. Clinical Parameters of the Normal Baboons (Papio Species) and Chimpanzees (Pan troglodytes). Lab. Anim. Sci. 1993, 43, 236–243. [Google Scholar]
- Rogers, J.; Hixson, J.E. Baboons as an Animal Model for Genetic Studies of Common Human Disease. Am. J. Hum. Genet. 1997, 61, 489–493. [Google Scholar] [CrossRef]
- Yasutomi, Y.; Koenig, S.; Haun, S.S.; Stover, C.K.; Jackson, R.K.; Conard, P.; Conley, A.J.; Emini, E.A.; Fuerst, T.R.; Letvin, N.L. Immunization with Recombinant BCG-SIV Elicits SIV-Specific Cytotoxic T Lymphocytes in Rhesus Monkeys. J. Immunol. 1993, 150, 3101–3107. [Google Scholar] [CrossRef]
- Yasutomi, Y.; Koenig, S.; Woods, R.M.; Madsen, J.; Wassef, N.M.; Alving, C.R.; Klein, H.J.; Nolan, T.E.; Boots, L.J.; Kessler, J.A. A Vaccine-Elicited, Single Viral Epitope-Specific Cytotoxic T Lymphocyte Response Does Not Protect against Intravenous, Cell-Free Simian Immunodeficiency Virus Challenge. J. Virol. 1995, 69, 2279–2284. [Google Scholar] [CrossRef]
- Leung, N.J.; Aldovini, A.; Young, R.; Jarvis, M.A.; Smith, J.M.; Meyer, D.; Anderson, D.E.; Carlos, M.P.; Gardner, M.B.; Torres, J.V. The Kinetics of Specific Immune Responses in Rhesus Monkeys Inoculated with Live Recombinant BCG Expressing SIV Gag, Pol, Env, and Nef Proteins. Virology 2000, 268, 94–103. [Google Scholar] [CrossRef]
- Méderlé, I.; Le Grand, R.; Vaslin, B.; Badell, E.; Vingert, B.; Dormont, D.; Gicquel, B.; Winter, N. Mucosal Administration of Three Recombinant Mycobacterium bovis BCG-SIVmac251 Strains to Cynomolgus Macaques Induces Rectal IgAs and Boosts Systemic Cellular Immune Responses That Are Primed by Intradermal Vaccination. Vaccine 2003, 21, 4153–4166. [Google Scholar] [CrossRef] [PubMed]
- Ami, Y.; Izumi, Y.; Matsuo, K.; Someya, K.; Kanekiyo, M.; Horibata, S.; Yoshino, N.; Sakai, K.; Shinohara, K.; Matsumoto, S.; et al. Priming-Boosting Vaccination with Recombinant Mycobacterium bovis Bacillus Calmette-Guérin and a Nonreplicating Vaccinia Virus Recombinant Leads to Long-Lasting and Effective Immunity. J. Virol. 2005, 79, 12871–12879. [Google Scholar] [CrossRef] [PubMed]
- Cayabyab, M.J.; Korioth-Schmitz, B.; Sun, Y.; Carville, A.; Balachandran, H.; Miura, A.; Carlson, K.R.; Buzby, A.P.; Haynes, B.F.; Jacobs, W.R.; et al. Recombinant Mycobacterium bovis BCG Prime-Recombinant Adenovirus Boost Vaccination in Rhesus Monkeys Elicits Robust Polyfunctional Simian Immunodeficiency Virus-Specific T-Cell Responses. J. Virol. 2009, 83, 5505–5513. [Google Scholar] [CrossRef] [PubMed]
- Chege, G.K.; Thomas, R.; Shephard, E.G.; Meyers, A.; Bourn, W.; Williamson, C.; Maclean, J.; Gray, C.M.; Rybicki, E.P.; Williamson, A.L. A Prime-Boost Immunisation Regimen Using Recombinant BCG and Pr55gag Virus-like Particle Vaccines Based on HIV Type 1 Subtype C Successfully Elicits Gag-Specific Responses in Baboons. Vaccine 2009, 27, 4857–4866. [Google Scholar] [CrossRef]
- Rosario, M.; Fulkerson, J.; Soneji, S.; Parker, J.; Im, E.-J.; Borthwick, N.; Bridgeman, A.; Bourne, C.; Joseph, J.; Sadoff, J.C.; et al. Safety and Immunogenicity of Novel Recombinant BCG and Modified Vaccinia Virus Ankara Vaccines in Neonate Rhesus Macaques. J. Virol. 2010, 84, 7815–7821. [Google Scholar] [CrossRef]
- Jensen, K.; Dela Pena, M.G.; Wilson, R.L.; Ranganathan, U.D.K.; Jacobs, W.R.; Fennelly, G.; Larsen, M.; Van Rompay, K.K.A.; Kozlowski, P.A.; Abel, K. A Neonatal Oral Mycobacterium tuberculosis-SIV Prime/Intramuscular MVA-SIV Boost Combination Vaccine Induces Both SIV and Mtb-Specific Immune Responses in Infant Macaques. Trials Vaccinol. 2013, 2, 53–63. [Google Scholar] [CrossRef]
- Kato, S.; Shida, H.; Okamura, T.; Zhang, X.; Miura, T.; Mukai, T.; Inoue, M.; Shu, T.; Naruse, T.K.; Kimura, A.; et al. CD8 T Cells Show Protection against Highly Pathogenic Simian Immunodeficiency Virus (SIV) after Vaccination with SIV Gene-Expressing BCG Prime and Vaccinia Virus/Sendai Virus Vector Boosts. J. Virol. 2021, 95, 10.1128/jvi.01718-20. [Google Scholar] [CrossRef]
- Chege, G.K.; Williamson, A.L.; Passmore, J.S.; Bourn, W.; Ryffel, B.; Shephard, E.G. The Immune Response of the Chacma Baboon to Bacille Calmette Guerin: Development of a Primate Model for BCG-Based Vaccine Research. Vaccine 2005, 23, 5783–5791. [Google Scholar] [CrossRef]
- Kim, Y.J. Efficiency of Recombinant Bacille Calmette-Guérin in Inducing Humoral and Cell Mediated Immunities against Human Immunodeficiency Virus Type 1 Third Variable Domain in Immunized Mice. Yonsei Med. J. 2011, 52, 173–180. [Google Scholar] [CrossRef]
- Chege, G.K.; Burgers, W.A.; Stutz, H.; Meyers, A.E.; Chapman, R.; Kiravu, A.; Bunjun, R.; Shephard, E.G.; Jacobs, W.R.; Rybicki, E.P.; et al. Robust Immunity to an Auxotrophic Mycobacterium bovis BCG-VLP Prime-Boost HIV Vaccine Candidate in a Nonhuman Primate Model. J. Virol. 2013, 87, 5151–5160. [Google Scholar] [CrossRef]
- Dharmapuri, S.; Peruzzi, D.; Aurisicchio, L. Engineered Adenovirus Serotypes for Overcoming Anti-Vector Immunity. Expert Opin. Biol. Ther. 2009, 9, 1279–1287. [Google Scholar] [CrossRef] [PubMed]
- Gudmundsdotter, L.; Nilsson, C.; Brave, A.; Hejdeman, B.; Earl, P.; Moss, B.; Robb, M.; Cox, J.; Michael, N.; Marovich, M.; et al. Recombinant Modified Vaccinia Ankara (MVA) Effectively Boosts DNA-Primed HIV-Specific Immune Responses in Humans despite Pre-Existing Vaccinia Immunity. Vaccine 2009, 27, 4468–4474. [Google Scholar] [CrossRef] [PubMed]
- Barouch, D.H.; Pau, M.G.; Custers, J.H.H.V.; Koudstaal, W.; Kostense, S.; Havenga, M.J.E.; Truitt, D.M.; Sumida, S.M.; Kishko, M.G.; Arthur, J.C.; et al. Immunogenicity of Recombinant Adenovirus Serotype 35 Vaccine in the Presence of Pre-Existing Anti-Ad5 Immunity. J. Immunol. 2004, 172, 6290–6297. [Google Scholar] [CrossRef] [PubMed]
- Ewer, K.; Sebastian, S.; Spencer, A.J.; Gilbert, S.; Hill, A.V.S.; Lambe, T. Chimpanzee Adenoviral Vectors as Vaccines for Outbreak Pathogens. Hum. Vaccines Immunother. 2017, 13, 3020–3032. [Google Scholar] [CrossRef]
- Leong, M.L.; Hampl, J.; Liu, W.; Mathur, S.; Bahjat, K.S.; Luckett, W.; Dubensky, T.W.; Brockstedt, D.G. Impact of Preexisting Vector-Specific Immunity on Vaccine Potency: Characterization of Listeria monocytogenes-Specific Humoral and Cellular Immunity in Humans and Modeling Studies Using Recombinant Vaccines in Mice. Infect. Immun. 2009, 77, 3958–3968. [Google Scholar] [CrossRef]
- Gheorghiu, M.; Lagranderie, M.R.R.; Gicquel, B.M.E.; Leclerc, C.D. Mycobacterium bovis BCG Priming Induces a Strong Potentiation of the Antibody Response Induced by Recombinant BCG Expressing a Foreign Antigen. Infect. Immun. 1994, 62, 4287–4295. [Google Scholar] [CrossRef]
- Kameoka, M.; Nishino, Y.; Matsuo, K.; Ohara, N.; Kimura, T.; Yamazaki, A.; Yamada, T.; Ikuta, K. Cytotoxic T Lymphocyte Response in Mice Induced by a Recombinant BCG Vaccination Which Produces an Extracellular α Antigen That Fused with the Human Immunodeficiency Virus Type 1 Envelope Immunodominant Domain in the V3 Loop. Vaccine 1994, 12, 153–158. [Google Scholar] [CrossRef]
- Cayabyab, M.J.; Hovav, A.-H.; Hsu, T.; Krivulka, G.R.; Lifton, M.A.; Gorgone, D.A.; Fennelly, G.J.; Haynes, B.F.; Jacobs, W.R.; Letvin, N.L. Generation of CD8 + T-Cell Responses by a Recombinant Nonpathogenic Mycobacterium smegmatis Vaccine Vector Expressing Human Immunodeficiency Virus Type 1 Env. J. Virol. 2006, 80, 1645–1652. [Google Scholar] [CrossRef]
- Brandt, L.; Cunha, J.F.; Olsen, A.W.; Chilima, B.; Hirsch, P.; Appelberg, R.; Andersen, P. Failure of the Mycobacterium bovis BCG Vaccine: Some Species of Environmental Mycobacteria Block Multiplication of BCG and Induction of Protective Immunity to Tuberculosis. Infect. Immun. 2002, 70, 672–678. [Google Scholar] [CrossRef]
- Von Reyn, C.F.; Horsburgh, C.R.; Olivier, K.N.; Barnes, P.F.; Waddell, R.; Warren, C.; Tvaroha, S.; Jaeger, A.S.; Lein, A.D.; Alexander, L.N.; et al. Skin Test Reactions to Mycobacterium tuberculosis Purified Protein Derivative and Mycobacterium avium Sensitin among Health Care Workers and Medical Students in the United States. Int. J. Tuberc. Lung Dis. 2001, 5, 1122–1128. [Google Scholar]
- Harboe, M.; Mshana, R.N.; Closs, O.; Kronvall, G.; Axelsen, N.H. Cross-reactions between Mycobacteria: II. Crossed Immunoelectrophoretic Analysis of Soluble Antigens of BCG and Comparison with Other Mycobacteria. Scand. J. Immunol. 1979, 9, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Chaparas, S.D.; Maloney, C.J.; Hedrick, S.R. Specificity of Tuberculins and Antigens from Various Species of Mycobacteria. Am. Rev. Respir. Dis. 1970, 101, 74–83. [Google Scholar] [PubMed]
- Von Reyn, C.F.; Williams, D.E.; Horsburgh, C.R.; Jaeger, A.S.; Marsh, B.J.; Haslov, K.; Magnusson, M. Dual Skin Testing with Mycobacterium avium Sensitin and Purified Protein Derivative to Discriminate Pulmonary Disease Due to M. Avium Complex from Pulmonary Disease Due to Mycobacterium tuberculosis. J. Infect. Dis. 1998, 177, 730–736. [Google Scholar] [CrossRef] [PubMed]
- Zwerling, A.; Behr, M.A.; Verma, A.; Brewer, T.F.; Menzies, D.; Pai, M. The BCG World Atlas: A Database of Global BCG Vaccination Policies and Practices. PLoS Med. 2011, 8, e1001012. [Google Scholar] [CrossRef]
- World Health Organization. BCG Vaccine: WHO Position Paper, February 2018—Recommendations. Vaccine 2018, 36, 3408–3410. [Google Scholar] [CrossRef]
- Roth, A.; Gustafson, P.; Nhaga, A.; Djana, Q.; Poulsen, A.; Garly, M.L.; Jensen, H.; Sodemann, M.; Rodriques, A.; Aaby, P. BCG Vaccination Scar Associated with Better Childhood Survival in Guinea-Bissau. Int. J. Epidemiol. 2005, 34, 540–547. [Google Scholar] [CrossRef]
- Post, C.L.; Victora, C.G.; Valente, J.G.; Leal, M.C.; Niobey, F.M.; Sabroza, P.C. Prognostic Factors of Hospital Mortality from Diarrhea or Pneumonia in Infants Younger than 1 Year Old. A Case-Control Study. Rev. Saude Publica 1992, 26, 369–378. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, X.; Zhou, L.; Lu, J.; Zhu, F.; Li, J. Research Progress in the Off-Target Effects of Bacille Calmette–Guérin Vaccine. Chin. Med. J. 2024, 137, 2065–2074. [Google Scholar] [CrossRef]
- Faurholt-Jepsen, D.; Range, N.; PrayGod, G.; Jeremiah, K.; Faurholt-Jepsen, M.; Aabye, M.G.; Grewal, H.M.S.; Changalucha, J.; Witte, D.R.; Andersen, A.B.; et al. BCG Protects against Tuberculosis Irrespective of HIV Status: A Matched Case-Control Study in Mwanza, Tanzania. Thorax 2013, 68, 288–289. [Google Scholar] [CrossRef]
- Bhat, G.J.; Diwan, V.K.; Chintu, C.; Kabika, M.; Masona, J. HIV, Bcg and TB in Children: A Case Control Study in Lusaka, Zambia. J. Trop. Pediatr. 1993, 39, 219–223. [Google Scholar] [CrossRef]
- Van-Dunem, J.C.V.D.; Rodrigues, L.C.; Alencar, L.C.A.; Militão-Albuquerque, M.D.F.P.; Ximenes, R.A.D.A. Effectiveness of the First Dose of BCG against Tuberculosis among HIV-Infected, Predominantly Immunodeficient Children. Biomed. Res. Int. 2015, 2015, 275029. [Google Scholar] [CrossRef] [PubMed]
- Netea, M.G.; Quintin, J.; Van Der Meer, J.W.M. Trained Immunity: A Memory for Innate Host Defense. Cell Host Microbe 2011, 9, 355–361. [Google Scholar] [CrossRef] [PubMed]
- van der Meer, J.W.M.; Joosten, L.A.B.; Riksen, N.; Netea, M.G. Trained Immunity: A Smart Way to Enhance Innate Immune Defence. Mol. Immunol. 2015, 68, 40–44. [Google Scholar] [CrossRef] [PubMed]
- Kleinnijenhuis, J.; Quintin, J.; Preijers, F.; Joosten, L.A.B.; Ifrim, D.C.; Saeed, S.; Jacobs, C.; Van Loenhout, J.; De Jong, D.; Hendrik, S.; et al. Bacille Calmette-Guérin Induces NOD2-Dependent Nonspecific Protection from Reinfection via Epigenetic Reprogramming of Monocytes. Proc. Natl. Acad. Sci. USA 2012, 109, 17537–17542. [Google Scholar] [CrossRef]
- Kleinnijenhuis, J.; Quintin, J.; Preijers, F.; Joosten, L.A.B.; Jacobs, C.; Xavier, R.J.; van der Meer, J.W.M.; van Crevel, R.; Netea, M.G. BCG-Induced Trained Immunity in NK Cells: Role for Non-Specific Protection to Infection. Clin. Immunol. 2014, 155, 213–219. [Google Scholar] [CrossRef]
- Jensen, K.; Ranganathan, U.D.K.; Van Rompay, K.K.A.; Canfield, D.R.; Khan, I.; Ravindran, R.; Luciw, P.A.; Jacobs, W.R.; Fennelly, G.; Larsen, M.H.; et al. A Recombinant Attenuated Mycobacterium tuberculosis Vaccine Strain Is Safe in Immunosuppressed Simian Immunodeficiency Virus-Infected Infant Macaques. Clin. Vaccine Immunol. 2012, 19, 1170–1181. [Google Scholar] [CrossRef]
- Jensen, K.; Dela Pena-Ponce, M.G.; Piatak, M.; Shoemaker, R.; Oswald, K.; Jacobs, W.R.; Fennelly, G.; Lucero, C.; Mollan, K.R.; Hudgens, M.G.; et al. Balancing Trained Immunity with Persistent Immune Activation and the Risk of Simian Immunodeficiency Virus Infection in Infant Macaques Vaccinated with Attenuated Mycobacterium tuberculosis or Mycobacterium bovis BCG Vaccine. Clin. Vaccine Immunol. 2017, 24, e00360-16. [Google Scholar] [CrossRef]
- Thayil, S.M.; Ho, Y.C.; Bollinger, R.C.; Blankson, J.N.; Siliciano, R.F.; Karakousis, P.C.; Page, K.R. Mycobacterium tuberculosis Complex Enhances Susceptibility of CD4 T Cells to HIV through a TLR2-Mediated Pathway. PLoS ONE 2012, 7, e41093. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joseph-Munné, J.; Maya-Hoyos, M.; Saubi, N.; Perez, S.; Lopez, M.A.M.; Baron, E.; Soto, C.Y. Recombinant Mycobacterium bovis BCG-Based HIV Vaccine: Failures and Promising Approaches for a Successful Vaccine Strategy. Vaccines 2025, 13, 606. https://doi.org/10.3390/vaccines13060606
Joseph-Munné J, Maya-Hoyos M, Saubi N, Perez S, Lopez MAM, Baron E, Soto CY. Recombinant Mycobacterium bovis BCG-Based HIV Vaccine: Failures and Promising Approaches for a Successful Vaccine Strategy. Vaccines. 2025; 13(6):606. https://doi.org/10.3390/vaccines13060606
Chicago/Turabian StyleJoseph-Munné, Joan, Milena Maya-Hoyos, Narcís Saubi, Santiago Perez, Miguel Angel Martinez Lopez, Eder Baron, and Carlos Yesid Soto. 2025. "Recombinant Mycobacterium bovis BCG-Based HIV Vaccine: Failures and Promising Approaches for a Successful Vaccine Strategy" Vaccines 13, no. 6: 606. https://doi.org/10.3390/vaccines13060606
APA StyleJoseph-Munné, J., Maya-Hoyos, M., Saubi, N., Perez, S., Lopez, M. A. M., Baron, E., & Soto, C. Y. (2025). Recombinant Mycobacterium bovis BCG-Based HIV Vaccine: Failures and Promising Approaches for a Successful Vaccine Strategy. Vaccines, 13(6), 606. https://doi.org/10.3390/vaccines13060606