Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (59)

Search Parameters:
Keywords = inhibitory-κBα

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 9088 KB  
Article
Inhibitory Effect and Mechanism of the Down-Regulation of TRIM32 in Colorectal Cancer
by Jiayu Ning, Xiaohua Cai, Yintong Su, Xingxing Fan and Mei Shen
Int. J. Mol. Sci. 2025, 26(11), 5047; https://doi.org/10.3390/ijms26115047 - 23 May 2025
Viewed by 546
Abstract
TRIM32 protein represents a crucial member of TRIM family that is highly expressed in numerous human cancers, and is associated with a poor prognosis. However, the mechanism of TRIM32 in colorectal cancer (CRC) is unclear. The expression of TRIM32 and its prognostic value [...] Read more.
TRIM32 protein represents a crucial member of TRIM family that is highly expressed in numerous human cancers, and is associated with a poor prognosis. However, the mechanism of TRIM32 in colorectal cancer (CRC) is unclear. The expression of TRIM32 and its prognostic value in CRC were analyzed using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. Real-time quantitative PCR, immunohistochemistry (IHC), and cell proliferation assays were used to explore the effects of down-regulation of TRIM32 expression on the proliferation, migration, and apoptosis of cultured CRC cells (HCT116 and SW480 cells) and in xenogeneic tumorigenic animals. Bioinformatics analysis showed that TRIM32 is up-regulated in many types of cancers, and exhibits significant prognostic value in CRC. Western blotting results showed that after knocking down TRIM32, the expression level of IκBα increased, and the expression levels of TRIM32, p-p65, Bcl-2, and IKKβ decreased. The inhibitory effect of TRIM32 on CRC in vivo was evaluated by measuring tumor volume and weight, Hematoxylin and eosin (H&E) staining, and Ki67 IHC staining in heterotopic tumor-forming mice with CRC. Down-regulation of TRIM32 can inhibit the activation of the NF-κB signaling pathway and the occurrence of CRC. Our research provides a new insight into the pathogenesis of CRC, and a therapeutic target for the treatment of CRC. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

20 pages, 8050 KB  
Article
Investigating Natural Product Inhibitors of IKKα: Insights from Integrative In Silico and Experimental Validation
by Muhammad Yasir, Jinyoung Park, Eun-Taek Han, Jin-Hee Han, Won Sun Park, Jongseon Choe and Wanjoo Chun
Molecules 2025, 30(9), 2025; https://doi.org/10.3390/molecules30092025 - 2 May 2025
Viewed by 747
Abstract
Nuclear factor-κB (NF-κB) signaling plays a pivotal role in regulating immune responses and is strongly implicated in cancer progression and inflammation-related diseases. The inhibitory κB kinases (IKKs), particularly IKKα, are central to modulating NF-κB activity, with distinct roles in the canonical and non-canonical [...] Read more.
Nuclear factor-κB (NF-κB) signaling plays a pivotal role in regulating immune responses and is strongly implicated in cancer progression and inflammation-related diseases. The inhibitory κB kinases (IKKs), particularly IKKα, are central to modulating NF-κB activity, with distinct roles in the canonical and non-canonical signaling pathways. This study investigates the potential of selectively targeting IKKα to develop novel therapeutic strategies. A receptor–ligand interaction pharmacophore model was generated based on the co-crystallized structure of IKKα, incorporating six key features, two hydrogen bond acceptors, two hydrogen bond donors, one hydrophobic region, and one hydrophobic aromatic region. This model was used to virtually screen a diverse natural compound library of 5540 molecules, yielding 82 candidates that matched the essential pharmacophore features. Molecular docking and molecular dynamics simulations were subsequently employed to evaluate binding conformations, stability, and dynamic behavior of the top hits. The end-state free energy calculations (gmx_MMPBSA) further validated the interaction strength and stability of selected compounds. To experimentally confirm their inhibitory potential, key compounds were tested in LPS-stimulated RAW 264.7 cells, where they significantly reduced IκBα phosphorylation. These findings validate the integrative computational-experimental approach and identify promising natural compounds as selective IKKα inhibitors for further therapeutic development in cancer and inflammatory diseases. Full article
(This article belongs to the Special Issue Role of Natural Products in Inflammation)
Show Figures

Figure 1

19 pages, 8963 KB  
Article
A Chloroform Fraction Derived from Vitis vinifera Root Ethanol Extract Attenuates Lipopolysaccharide-Induced Inflammatory Responses and Cognitive Dysfunction in BV-2 Microglia Cells and C57BL/6J Mouse Model
by Yon-Suk Kim, Sang-Bong Lee, Shin-Il Kang, Woo-Jung Kim and Dong-Kug Choi
Int. J. Mol. Sci. 2025, 26(7), 3126; https://doi.org/10.3390/ijms26073126 - 28 Mar 2025
Viewed by 766
Abstract
This study aimed to investigate the inhibitory effect of the chloroform fraction (CF) from Vitis vinifera root extract on LPS-induced neuroinflammation in BV-2 microglia cells and a C57/BL6J mouse model. CF significantly suppressed LPS-induced proinflammatory cytokines, including nitric oxide (NO), tumor necrosis factor-α [...] Read more.
This study aimed to investigate the inhibitory effect of the chloroform fraction (CF) from Vitis vinifera root extract on LPS-induced neuroinflammation in BV-2 microglia cells and a C57/BL6J mouse model. CF significantly suppressed LPS-induced proinflammatory cytokines, including nitric oxide (NO), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in BV-2 microglia cells. Mechanistically, CF inhibited LPS-induced activation of nuclear factor-κB (NF-κB) by blocking the p65 subunit and preventing the phosphorylation of NF-kappa-B inhibitor α (IκBα), while its effect was independent of the mitogen-activated protein kinase (MAPK) pathway. Furthermore, CF modulated the TRIF signaling pathway by regulating TANK-binding kinase 1 (TBK1) and interferon regulatory factor 3 (IRF3), which contributed to the suppression of inflammatory mediators in BV-2 microglia cells. In vivo, we evaluated the neuroprotective effects of CF against cognitive dysfunction and inflammatory responses in an LPS-induced mouse model. Our behavioral assessments, including the Morris water maze and Y-maze tests, demonstrated that CF alleviated LPS-induced spatial learning impairment and cognitive decline. Additionally, CF significantly reduced the levels of inflammatory cytokines in serum and inflammatory mediators proteins expression in whole brain in LPS-injected mice, suggesting a direct link between reduced inflammatory responses and improved cognitive function. These findings suggest that CF from V. vinifera root extract may serve as a potential therapeutic strategy for neurodegenerative diseases mediated by microglial activation, such as Alzheimer’s disease. Full article
(This article belongs to the Special Issue Recent Molecular Basis of Neurocognitive Mechanism)
Show Figures

Figure 1

11 pages, 811 KB  
Article
Anti-Inflammatory Effects of Honeysuckle Leaf Against Lipopolysaccharide-Induced Neuroinflammation on BV2 Microglia
by Bitna Kweon, Jinyoung Oh, Yebin Lim, Gyeongran Noh, Jihyun Yu, Donggu Kim, Mikyung Jang, Donguk Kim and Gisang Bae
Nutrients 2024, 16(22), 3954; https://doi.org/10.3390/nu16223954 - 19 Nov 2024
Cited by 5 | Viewed by 1758
Abstract
Background/Objectives: Neurodegenerative disorders have emerged as a major global public health concern, and the burden is predicted to increase over time. Modulating neuroinflammation and microglial activity is considered a promising target for improving neurodegenerative disorders. The leaf of honeysuckle (LH), which has anti-inflammatory [...] Read more.
Background/Objectives: Neurodegenerative disorders have emerged as a major global public health concern, and the burden is predicted to increase over time. Modulating neuroinflammation and microglial activity is considered a promising target for improving neurodegenerative disorders. The leaf of honeysuckle (LH), which has anti-inflammatory properties, has long been collected, regardless of the season, and used for medicinal purposes. However, research on its effects on neuroinflammation is scarce. In this study, we determined the neuroprotective effects of LH water extract by inhibiting microglial activation induced by lipopolysaccharide (LPS). Methods: The production or secretion of pro-inflammatory mediators was examined in LPS-exposed BV2 cells to ascertain the efficacy of LH water extract in improving neuroinflammation. In addition, the phosphorylation of mitogen-activated protein kinases (MAPKs) and the degradation of inhibitory κBα (IκBα) were analyzed to elucidate the regulatory mechanisms of LH water extract. Ultra-performance liquid chromatography (UPLC) analysis was conducted to identify the active component of the LH. Results: LH water extract suppressed the formation of inducible nitric oxide synthase (iNOS), nitric oxide (NO), and pro-inflammatory cytokines, including interleukin (IL)-1β and tumor necrosis factor (TNF)-α, in LPS-activated BV2 cells. LH impeded the activation of c-Jun N-terminal kinase (JNK). Moreover, chlorogenic acid was found in LH. Conclusions: The above findings suggest that LH water extract could improve neuroinflammation. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

14 pages, 3251 KB  
Article
Eugenol: A Potential Modulator of Human Platelet Activation and Mouse Mesenteric Vascular Thrombosis via an Innovative cPLA2-NF-κB Signaling Axis
by Yi Chang, Chih-Wei Hsia, Kuan-Rau Chiou, Ting-Lin Yen, Thanasekaran Jayakumar, Joen-Rong Sheu and Wei-Chieh Huang
Biomedicines 2024, 12(8), 1689; https://doi.org/10.3390/biomedicines12081689 - 29 Jul 2024
Cited by 3 | Viewed by 2093
Abstract
Background: Platelets, a type of anucleated cell, play a crucial role in cardiovascular diseases (CVDs). Therefore, targeting platelet activation is essential for mitigating CVDs. Endogenous agonists, such as collagen, activate platelets by initiating signal transduction through specific platelet receptors, leading to platelet aggregation. [...] Read more.
Background: Platelets, a type of anucleated cell, play a crucial role in cardiovascular diseases (CVDs). Therefore, targeting platelet activation is essential for mitigating CVDs. Endogenous agonists, such as collagen, activate platelets by initiating signal transduction through specific platelet receptors, leading to platelet aggregation. Eugenol, primarily sourced from clove oil, is known for its antibacterial, anticancer, and anti-inflammatory properties, making it a valuable medicinal agent. In our previous study, eugenol was shown to inhibit platelet aggregation induced by collagen and arachidonic acid. We concluded that eugenol exerts a potent inhibitory effect on platelet activation by targeting the PLCγ2–PKC and cPLA2-TxA2 pathways, thereby suppressing platelet aggregation. In our current study, we found that eugenol significantly inhibits NF-κB activation. This led us to investigate the relationship between the NF-κB and cPLA2 pathways to elucidate how eugenol suppresses platelet activation. Methods: In this study, we prepared platelet suspensions from the blood of healthy human donors to evaluate the inhibitory mechanisms of eugenol on platelet activation. We utilized immunoblotting and confocal microscopy to analyze these mechanisms in detail. Additionally, we assessed the anti-thrombotic effect of eugenol by observing fluorescein-induced platelet plug formation in the mesenteric microvessels of mice. Results: For immunoblotting and confocal microscopy studies, eugenol significantly inhibited NF-κB-mediated signaling events stimulated by collagen in human platelets. Specifically, it reduced the phosphorylation of IKK and p65 and prevented the degradation of IκBα. Additionally, CAY10502, a cPLA2 inhibitor, significantly reduced NF-κB-mediated signaling events. In contrast, BAY11-7082, an IKK inhibitor, did not affect collagen-stimulated cPLA2 phosphorylation. These findings suggest that cPLA2 acts as an upstream regulator of NF-κB activation during platelet activation. Furthermore, both BAY11-7082 and CAY10502 significantly reduced the collagen-induced rise in intracellular calcium levels. In the animal study, eugenol demonstrated potential as an anti-thrombotic agent by significantly reducing platelet plug formation in fluorescein-irradiated mouse mesenteric microvessels. Conclusion: Our study uncovered a novel pathway in platelet activation involving the cPLA2-NF-κB axis, which plays a key role in the antiplatelet effects of eugenol. These findings suggest that eugenol could serve as a valuable and potent prophylactic or therapeutic option for arterial thrombosis. Full article
(This article belongs to the Special Issue Bioactive Compounds in Chronic Diseases—2nd Edition)
Show Figures

Figure 1

14 pages, 2804 KB  
Article
Saponins from Allium macrostemon Bulbs Attenuate Endothelial Inflammation and Acute Lung Injury via the NF-κB/VCAM-1 Pathway
by Li Liu, Liang Qiu, Jing Xue, Chao Zhong, Manman Qin, Yifeng Zhang, Chuanming Xu, Yanfei Xie and Jun Yu
Molecules 2024, 29(6), 1239; https://doi.org/10.3390/molecules29061239 - 11 Mar 2024
Cited by 7 | Viewed by 2322
Abstract
Endothelial inflammation is a multifaceted physiological process that plays a pivotal role in the pathogenesis and progression of diverse diseases, encompassing but not limited to acute lung infections like COVID-19, coronary artery disease, stroke, sepsis, metabolic syndrome, certain malignancies, and even psychiatric disorders [...] Read more.
Endothelial inflammation is a multifaceted physiological process that plays a pivotal role in the pathogenesis and progression of diverse diseases, encompassing but not limited to acute lung infections like COVID-19, coronary artery disease, stroke, sepsis, metabolic syndrome, certain malignancies, and even psychiatric disorders such as depression. This inflammatory response is characterized by augmented expression of adhesion molecules and secretion of pro-inflammatory cytokines. In this study, we discovered that saponins from Allium macrostemon bulbs (SAMB) effectively inhibited inflammation in human umbilical vein endothelial cells induced by the exogenous inflammatory mediator lipopolysaccharide or the endogenous inflammatory mediator tumor necrosis factor-α, as evidenced by a significant reduction in the expression of pro-inflammatory factors and vascular cell adhesion molecule-1 (VCAM-1) with decreased monocyte adhesion. By employing the NF-κB inhibitor BAY-117082, we demonstrated that the inhibitory effect of SAMB on VCAM-1 expression may be attributed to the NF-κB pathway’s inactivation, as characterized by the suppressed IκBα degradation and NF-κB p65 phosphorylation. Subsequently, we employed a murine model of lipopolysaccharide-induced septic acute lung injury to substantiate the potential of SAMB in ameliorating endothelial inflammation and acute lung injury in vivo. These findings provide novel insight into potential preventive and therapeutic strategies for the clinical management of diseases associated with endothelial inflammation. Full article
Show Figures

Figure 1

16 pages, 7552 KB  
Article
Preparation and Evaluation of Folate Modified PEG-PLLA Nanoparticles Loaded with Lycorine for Glioma Treatment
by Jieqiong Ding, Jie Su, Binhua Luo and Liqiong Ding
Molecules 2024, 29(5), 1081; https://doi.org/10.3390/molecules29051081 - 29 Feb 2024
Cited by 3 | Viewed by 1707
Abstract
Lycorine is a kind of natural active ingredient with a strong antitumor effect. In this study, folate ligand-conjugated polyethylene glycol-block-poly(l-lactide) (PEG-PLLA) nanoparticles (FA-PEG-PLLA NPs) were designed to deliver lycorine to enhance its anti-glioma activity. The successful preparation of the FA-PEG-PLLA polymer was confirmed [...] Read more.
Lycorine is a kind of natural active ingredient with a strong antitumor effect. In this study, folate ligand-conjugated polyethylene glycol-block-poly(l-lactide) (PEG-PLLA) nanoparticles (FA-PEG-PLLA NPs) were designed to deliver lycorine to enhance its anti-glioma activity. The successful preparation of the FA-PEG-PLLA polymer was confirmed by 1H-NMR, FT-IR, XRD, TGA, and DSC. The optimal formulation for LYC@FA-PEG-PLLA NPs was determined by response surface analysis as follows: sodium dodecyl sulfate (SDS) of 1%, carrier material of 0.03 g, organic phase volume of 3 mL, and ultrasonic power of 20%. The LYC@FA-PEG-PLLA NPs exhibited an encapsulation efficiency of 83.58% and a particle size of 49.71 nm, demonstrating good stability. Hemolysis experiments, MTT assays, and cell scratch assays revealed excellent biocompatibility of FA-PEG-PLLA and superior anti-glioma activity of LYC@FA-PEG-PLLA NPs compared to the raw drug. Additionally, cell apoptosis assays, ROS experiments, and western blot analysis demonstrated that LYC@FA-PEG-PLLA NPs contributed to cell apoptosis by inducing ROS generation and increasing the expression of NF-κB inhibitory protein IκBα. These results suggested that LYC@FA-PEG-PLLA NPs hold promise for glioma treatment. Full article
Show Figures

Graphical abstract

15 pages, 7446 KB  
Article
Cardioprotective Effects of the GRK2 Inhibitor Paroxetine on Isoproterenol-Induced Cardiac Remodeling by Modulating NF-κB Mediated Prohypertrophic and Profibrotic Gene Expression
by Asma S. Alonazi, Anfal F. Bin Dayel, Danah A. Albuaijan, Alhanouf S. Bin Osfur, Fatemah M. Hakami, Shaden S. Alzayed, Ahmad R. Almotairi, Mohammad R. Khan, Hana M. Alharbi, Rehab A. Ali, Maha A. Alamin, Hanan K. Alghibiwi, Nouf M. Alrasheed and Khaled A. Alhosaini
Int. J. Mol. Sci. 2023, 24(24), 17270; https://doi.org/10.3390/ijms242417270 - 8 Dec 2023
Cited by 7 | Viewed by 2208
Abstract
Pathological cardiac remodeling is associated with cardiovascular disease and can lead to heart failure. Nuclear factor-kappa B (NF-κB) is upregulated in the hypertrophic heart. Moreover, the expression of the G-protein-coupled receptor kinase 2 (GRK2) is increased and linked to the progression of heart [...] Read more.
Pathological cardiac remodeling is associated with cardiovascular disease and can lead to heart failure. Nuclear factor-kappa B (NF-κB) is upregulated in the hypertrophic heart. Moreover, the expression of the G-protein-coupled receptor kinase 2 (GRK2) is increased and linked to the progression of heart failure. The inhibitory effects of paroxetine on GRK2 have been established. However, its protective effect on IκBα/NFκB signaling has not been elucidated. This study investigated the cardioprotective effect of paroxetine in an animal model of cardiac hypertrophy (CH), focusing on its effect on GRK2-mediated NF-κB-regulated expression of prohypertrophic and profibrotic genes. Wistar albino rats were administered normal saline, paroxetine, or fluoxetine, followed by isoproterenol to induce CH. The cardioprotective effects of the treatments were determined by assessing cardiac injury, inflammatory biomarker levels, histopathological changes, and hypertrophic and fibrotic genes in cardiomyocytes. Paroxetine pre-treatment significantly decreased the HW/BW ratio (p < 0.001), and the expression of prohypertrophic and profibrotic genes Troponin-I (p < 0.001), BNP (p < 0.01), ANP (p < 0.001), hydroxyproline (p < 0.05), TGF-β1 (p < 0.05), and αSMA (p < 0.01) as well as inflammatory markers. It also markedly decreased pIκBα, NFκB(p105) subunit expression (p < 0.05) and phosphorylation. The findings suggest that paroxetine prevents pathological cardiac remodeling by inhibiting the GRK2-mediated IκBα/NF-κB signaling pathway. Full article
(This article belongs to the Special Issue Molecular Pharmacology of Cardiovascular Disease)
Show Figures

Figure 1

20 pages, 2865 KB  
Article
In Vitro Assessment of Anti-Adipogenic and Anti-Inflammatory Properties of Black Cumin (Nigella sativa L.) Seeds Extract on 3T3-L1 Adipocytes and Raw264.7 Macrophages
by Khawaja Muhammad Imran Bashir, Jong-Kyu Kim, Yoon-Seok Chun, Jae-Suk Choi and Sae-Kwang Ku
Medicina 2023, 59(11), 2028; https://doi.org/10.3390/medicina59112028 - 17 Nov 2023
Cited by 4 | Viewed by 2787
Abstract
Background and Objectives: This study evaluated the in vitro anti-adipogenic and anti-inflammatory properties of black cumin (Nigella sativa L.) seed extract (BCS extract) as a potential candidate for developing herbal formulations targeting metabolic disorders. Materials and Methods: We evaluated the BCS [...] Read more.
Background and Objectives: This study evaluated the in vitro anti-adipogenic and anti-inflammatory properties of black cumin (Nigella sativa L.) seed extract (BCS extract) as a potential candidate for developing herbal formulations targeting metabolic disorders. Materials and Methods: We evaluated the BCS extract by assessing its 2,2-diphenyl-1-picrohydrazyl (DPPH) radical scavenging activity, levels of prostaglandin E2 (PGE2) and nitric oxide (NO), and mRNA expression levels of key pro-inflammatory mediators. We also quantified the phosphorylation of nuclear factor kappa light chain enhancer of activated B cells (NF-κB) and mitogen-activated protein kinases (MAPK) signaling molecules. To assess anti-adipogenic effects, we used differentiated 3T3-L1 cells and BCS extract in doses from 10 to 100 μg/mL. We also determined mRNA levels of key adipogenic genes, including peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding protein α (C/BEPα), adipocyte protein 2 (aP2), lipoprotein lipase (LPL), fatty acid synthase (FAS), and sterol-regulated element-binding protein 1c (SREBP-1c) using real-time quantitative polymerase chain reaction (qPCR). Results: This study showed a concentration-dependent DPPH radical scavenging activity and no toxicity at concentrations up to 30 μg/mL in Raw264.7 cells. BCS extract showed an IC50 of 328.77 ± 20.52 μg/mL. Notably, pre-treatment with BCS extract (30 μg/mL) significantly enhanced cell viability in lipopolysaccharide (LPS)-treated Raw264.7 cells. BCS extract treatment effectively inhibited LPS-induced production of PGE2 and NO, as well as the expression of monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), inducible NO synthase (iNOS), interleukin (IL)-1β and IL-6, possibly by limiting the phosphorylation of p38, p65, inhibitory κBα (I-κBα), and c-Jun N-terminal kinase (JNK). It also significantly attenuated lipid accumulation and key adipogenic genes in 3T3-L1 cells. Conclusions: This study highlights the in vitro anti-adipogenic and anti-inflammatory potential of BCS extract, underscoring its potential as a promising candidate for managing metabolic disorders. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

18 pages, 2616 KB  
Article
Effects of Modified Glucosamine on the Chondrogenic Potential of Circulating Stem Cells under Experimental Inflammation
by Marco Gasparella, Carola Cenzi, Monica Piccione, Valentina Noemi Madia, Roberto Di Santo, Valeria Tudino, Marco Artico, Samanta Taurone, Chiara De Ponte, Roberta Costi and Rosa Di Liddo
Int. J. Mol. Sci. 2023, 24(12), 10397; https://doi.org/10.3390/ijms241210397 - 20 Jun 2023
Cited by 1 | Viewed by 2231
Abstract
Glucosamine (GlcN) is a glycosaminoglycan (GAGs) constituent in connective tissues. It is naturally produced by our body or consumed from diets. In the last decade, in vitro and in vivo trials have demonstrated that the administration of GlcN or its derivates has a [...] Read more.
Glucosamine (GlcN) is a glycosaminoglycan (GAGs) constituent in connective tissues. It is naturally produced by our body or consumed from diets. In the last decade, in vitro and in vivo trials have demonstrated that the administration of GlcN or its derivates has a protective effect on cartilage when the balance between catabolic and anabolic processes is disrupted and cells are no longer able to fully compensate for the loss of collagen and proteoglycans. To date, these benefits are still controversial because the mechanism of action of GlcN is not yet well clarified. In this study, we have characterized the biological activities of an amino acid (AA) derivate of GlcN, called DCF001, in the growth and chondrogenic induction of circulating multipotent stem cells (CMCs) after priming with tumor necrosis factor-alpha (TNFα), a pleiotropic cytokine commonly expressed in chronic inflammatory joint diseases. In the present work, stem cells were isolated from the human peripheral blood of healthy donors. After priming with TNFα (10 ng/mL) for 3 h, cultures were treated for 24 h with DCF001 (1 μg/mL) dissolved in a proliferative (PM) or chondrogenic (CM) medium. Cell proliferation was analyzed using a Corning® Cell Counter and trypan blue exclusion technique. To evaluate the potentialities of DCF001 in counteracting the inflammatory response to TNFα, we measured the amount of extracellular ATP (eATP) and the expression of adenosine-generating enzymes CD39/CD73, TNFα receptors, and NF-κB inhibitor IκBα using flow cytometry. Finally, total RNA was extracted to perform a gene expression study of some chondrogenic differentiation markers (COL2A1, RUNX2, and MMP13). Our analysis has shed light on the ability of DCF001 to (a) regulate the expression of CD39, CD73, and TNF receptors; (b) modulate eATP under differentiative induction; (c) enhance the inhibitory activity of IκBα, reducing its phosphorylation after TNFα stimulation; and (d) preserve the chondrogenic potentialities of stem cells. Although preliminary, these results suggest that DCF001 could be a valuable supplement for ameliorating the outcome of cartilage repair interventions, enhancing the efficacy of endogenous stem cells under inflammatory stimuli. Full article
(This article belongs to the Special Issue Regulation of Inflammatory Reactions in Health and Disease 2.0)
Show Figures

Figure 1

13 pages, 3312 KB  
Article
Effects of 4′-Demethylnobiletin and 4′-Demethyltangeretin on Osteoclast Differentiation In Vitro and in a Mouse Model of Estrogen-Deficient Bone Resorption
by Michiko Hirata, Tsukasa Tominari, Ryota Ichimaru, Naruhiko Takiguchi, Yuki Tanaka, Masaru Takatoya, Daichi Arai, Shosei Yoshinouchi, Chisato Miyaura, Chiho Matsumoto, Sihui Ma, Katsuhiko Suzuki, Florian M. W. Grundler and Masaki Inada
Nutrients 2023, 15(6), 1403; https://doi.org/10.3390/nu15061403 - 14 Mar 2023
Cited by 4 | Viewed by 2349
Abstract
Citrus nobiletin (NOB) and tangeretin (TAN) show protective effects against disease-related bone destruction. We achieved demethylation of NOB and TAN into 4′-demethylnobiletin (4′-DN) and 4′-demethyltangeretin (4′-DT) using enzyme-manufacturing methods. In this study, we examined the effects of 4′-DN and 4′-DT on in vitro [...] Read more.
Citrus nobiletin (NOB) and tangeretin (TAN) show protective effects against disease-related bone destruction. We achieved demethylation of NOB and TAN into 4′-demethylnobiletin (4′-DN) and 4′-demethyltangeretin (4′-DT) using enzyme-manufacturing methods. In this study, we examined the effects of 4′-DN and 4′-DT on in vitro osteoclast differentiation, and on in vivo osteoporotic bone loss in ovariectomized (OVX) mice. 4′-DN and 4′-DT clearly suppressed the osteoclast differentiation induced by interleukin IL-1 or RANKL treatment. 4′-DN and 4′-DT treatments resulted in higher inhibitory activity in osteoclasts in comparison to NOB or TAN treatments. RANKL induced the increased expression of its marker genes and the degradation of IκBα in osteoclasts, while these were perfectly attenuated by the treatment with 4′-MIX: a mixture of 4′-DN and 4′-DT. In an in silico docking analysis, 4′-DN and 4′-DT directly bound to the ATP-binding pocket of IKKβ for functional inhibition. Finally, the intraperitoneal administration of 4′-MIX significantly protected against bone loss in OVX mice. In conclusion, 4′-DN, 4′-DT and 4′-MIX inhibited the differentiation and function of bone-resorbing osteoclasts via suppression of the NF-κB pathway. Novel 4′-DN, 4′-DT and 4′-MIX are candidates for maintaining bone health, which may be applied in the prevention of metabolic bone diseases, such as osteoporosis. Full article
(This article belongs to the Special Issue Bone Metabolism and Plant-Derived Pharmaceuticals)
Show Figures

Figure 1

14 pages, 3000 KB  
Article
Essential Oil from Glossogyne tenuifolia Inhibits Lipopolysaccharide-Induced Inflammation-Associated Genes in Macro-Phage Cells via Suppression of NF-κB Signaling Pathway
by Wan-Teng Lin, Yen-Hua He, Yun-Hsin Lo, Yu-Ting Chiang, Sheng-Yang Wang, Ismail Bezirganoglu and K. J. Senthil Kumar
Plants 2023, 12(6), 1241; https://doi.org/10.3390/plants12061241 - 9 Mar 2023
Cited by 9 | Viewed by 2274
Abstract
Glossogyne tenuifolia Cassini (Hsiang-Ju in Chinese) is a perennial herb native to Taiwan. It was used in traditional Chinese medicine (TCM) as an antipyretic, anti-inflammatory, and hepatoprotective agent. Recent studies have shown that extracts of G. tenuifolia possess various bioactivities, including anti-oxidant, [...] Read more.
Glossogyne tenuifolia Cassini (Hsiang-Ju in Chinese) is a perennial herb native to Taiwan. It was used in traditional Chinese medicine (TCM) as an antipyretic, anti-inflammatory, and hepatoprotective agent. Recent studies have shown that extracts of G. tenuifolia possess various bioactivities, including anti-oxidant, anti-inflammatory, immunomodulation, and anti-cancer properties. However, the pharmacological activities of G. tenuifolia essential oils have not been studied. In this study, we extracted essential oil from air-dried G. tenuifolia plants, then investigated the anti-inflammatory potential of G. tenuifolia essential oil (GTEO) on lipopolysaccharide (LPS)-induced inflammation in murine macrophage cells (RAW 264.7) in vitro. Treatment with GTEO (25, 50, and 100 μg/mL) significantly as well as dose-dependently inhibited LPS-induced pro-inflammatory molecules, such as nitric oxide (NO) and prostaglandin E2 (PGE2) production, without causing cytotoxicity. Q-PCR and immunoblotting analysis revealed that the inhibition of NO and PGE2 was caused by downregulation of their corresponding mediator genes, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2), respectively. Immunofluorescence and luciferase reporter assays revealed that the inhibition of iNOS and COX-2 genes by GTEO was associated with the suppression of nuclear export and transcriptional activation of the redox-sensitive transcription factor, nuclear factor -κB (NF-κB). In addition, GTEO treatment significantly inhibited phosphorylation and proteosomal degradation of the inhibitor of NF-κB (I-κBα), an endogenous repressor of NF-κB. Moreover, treatment with GTEO significantly blocked the LPS-mediated activation of inhibitory κB kinase α (IKKα), an upstream kinase of the I-κBα. Furthermore, p-cymene, β-myrcene, β-cedrene, cis-β-ocimene, α-pinene, and D-limonene were represented as major components of GTEO. We found that treatment with p-cymene, α-pinene, and D-limonene were significantly inhibiting LPS-induced NO production in RAW 264.7 cells. Taken together, these results strongly suggest that GTEO inhibits inflammation through the downregulation of NF-κB-mediated inflammatory genes and pro-inflammatory molecules in macrophage cells. Full article
(This article belongs to the Special Issue Biosynthesis, Function, and Application of Plant Volatiles II)
Show Figures

Figure 1

15 pages, 2786 KB  
Article
Xanthohumol Interferes with the Activation of TGF-β Signaling in the Process Leading to Intestinal Fibrosis
by Sun-Mi Yun, Young-Min Han, Moon-Young Song, Da-Young Lee, Hyun Su Kim, Seok-Ho Kim and Eun-Hee Kim
Nutrients 2023, 15(1), 99; https://doi.org/10.3390/nu15010099 - 25 Dec 2022
Cited by 7 | Viewed by 2891
Abstract
Fibrosis has various biological processes and affects almost every organ, especially in patients with inflammatory bowel disease, including Crohn’s disease, who experience discomfort caused by intestinal fibrosis, which is a problem that needs to be resolved. TGF-β signaling is known to act as [...] Read more.
Fibrosis has various biological processes and affects almost every organ, especially in patients with inflammatory bowel disease, including Crohn’s disease, who experience discomfort caused by intestinal fibrosis, which is a problem that needs to be resolved. TGF-β signaling is known to act as a key regulator of intestinal fibrosis, and its modulation could be an excellent candidate for fibrosis therapy. Xanthohumol (XN) has various effects, including anti-inflammation and anti-cancer; however, the detailed mechanism of TGF-β signaling has not yet been studied. The purpose of this study was to investigate the mechanism underlying the anti-fibrotic effect of XN on TGF-β1-induced intestinal fibrosis using primary human intestinal fibroblasts (HIFs). In this study, to check the anti-fibrotic effects of XN on intestinal fibrosis, we assessed the expression of fibrosis-related genes in TGF-β1-stimulated HIFs by qPCR, immunoblotting, and immunofluorescence staining. As a result, XN showed the ability to reduce the expression of fibrosis-associated genes increased by TGF-β1 treatment in HIFs and restored the cell shape altered by TGF-β1. In particular, XN repressed both NF-κB- and Smad-binding regions in the α-SMA promoter, which is important in fibrosis. In addition, XN inhibited NF-κB signaling, including phosphorylated-IkBα and cyclooxygenase-2 expression, and TNF-α-stimulated transcriptional activity of NF-κB. XN attenuated TGF-β1-induced phosphorylation of Smad2 and Smad3, and the transcriptional activity of CAGA. Particularly, XN interfered with the binding of TGF-Receptor I (TβRI) and Smad3 by binding to the kinase domain of the L45 loop of TβRI, thereby confirming that the fibrosis mechanism did not proceed further. In conclusion, XN has an inhibitory effect on TGF-β1-induced intestinal fibrosis in HIFs, significantly affecting TGF-β/Smad signaling. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

15 pages, 3403 KB  
Article
Anti-Inflammatory Effect of Korean Propolis on Helicobacter pylori-Infected Gastric Mucosal Injury Mice Model
by Moon-Young Song, Da-Young Lee, Young-Min Han and Eun-Hee Kim
Nutrients 2022, 14(21), 4644; https://doi.org/10.3390/nu14214644 - 3 Nov 2022
Cited by 11 | Viewed by 3172
Abstract
Propolis, a natural resinous substance obtained from a variety of buds and plants, has been reported to possess various biological functions. Several recent studies have demonstrated the inhibitory effects of propolis on the growth of Helicobacter pylori (H. pylori) in vitro; however, [...] Read more.
Propolis, a natural resinous substance obtained from a variety of buds and plants, has been reported to possess various biological functions. Several recent studies have demonstrated the inhibitory effects of propolis on the growth of Helicobacter pylori (H. pylori) in vitro; however, current research efforts on Korean propolis (KP) remain insufficient especially in vivo. Our study aims to investigate the anti-inflammatory effect and molecular mechanism of KP on mouse gastric mucosa during H. pylori infection. We examined an in vivo H. pylori-induced gastric mucosal injury mice model. We found that KP inhibited the growth of H. pylori and attenuated the expression of H. pylori virulence factors such as cytotoxin-associated gene A, encoding urease A subunit, surface antigen gene and neutrophil-activating protein A. Moreover, KP reduced both gross lesions and pathological scores in H. pylori-challenged mice. In addition, KP markedly restrained the production of pro-inflammatory cytokines and nitric oxide levels compared with an untreated H. pylori-infected group. In particular, we found that KP repressed the phosphorylation of IκBα and NF-κB p65 subunit, and subsequently suppressed their downstream target genes. Taken together, these findings demonstrate the beneficial effects of KP on inflammation through the inhibition of NF-κB signaling as well as inhibition of H. pylori growth in a mouse model infected with H. pylori. This suggests the potential application of KP as a natural supplement for patient’s suffering from gastric mucosal injury caused by H. pylori infection. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

17 pages, 5010 KB  
Article
Antibacterial and Anti-Inflammatory Properties of Peptide KN-17
by Qian Zhang, Shuipeng Yu, Meilin Hu, Zhiyang Liu, Pei Yu, Changyi Li and Xi Zhang
Microorganisms 2022, 10(11), 2114; https://doi.org/10.3390/microorganisms10112114 - 26 Oct 2022
Cited by 6 | Viewed by 2398
Abstract
Peri-implantitis, an infectious disease originating from dental biofilm that forms around dental implants, which causes the loss of both osseointegration and bone tissue. KN-17, a truncated cecropin B peptide, demonstrated efficacy against certain bacterial strains associated with peri-implantitis. This study aimed to assess [...] Read more.
Peri-implantitis, an infectious disease originating from dental biofilm that forms around dental implants, which causes the loss of both osseointegration and bone tissue. KN-17, a truncated cecropin B peptide, demonstrated efficacy against certain bacterial strains associated with peri-implantitis. This study aimed to assess the antibacterial and anti-inflammatory properties and mechanisms of KN-17. The effects of KN-17 on oral pathogenic bacteria were assessed by measuring its minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Moreover, the cytotoxicity and anti-inflammatory effects of KN-17 were evaluated. KN-17 inhibited the growth of Streptococcus gordonii and Fusobacterium nucleatum during in vitro biofilm formation and possessed low toxicity to hBMSCs cells. KN-17 also caused RAW264.7 macrophages to transform from M1 to M2 by downregulating pro-inflammatory and upregulating anti-inflammatory factors. It inhibited the NF-κB signaling pathway by reducing IκBα and P65 protein phosphorylation while promoting IκBα degradation and nuclear P65 translocation. KN-17 might be an efficacious prophylaxis against peri-implant inflammation. Full article
(This article belongs to the Special Issue Research on New Antimicrobial Agents)
Show Figures

Figure 1

Back to TopTop