Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (492)

Search Parameters:
Keywords = infusion extraction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 932 KiB  
Article
Investigating Roasted Açaí (Euterpe oleracea) Seed Powder as a Coffee Substitute: Effects of Water Temperature, Milk Addition, and In Vitro Digestion on Phenolic Content and Antioxidant Capacity
by Rayssa Cruz Lima, Carini Aparecida Lelis, Jelmir Craveiro de Andrade and Carlos Adam Conte-Junior
Foods 2025, 14(15), 2696; https://doi.org/10.3390/foods14152696 (registering DOI) - 31 Jul 2025
Abstract
Açaí (Euterpe oleracea) seeds account for up to 95% of the fruit’s weight and are commonly discarded during pulp processing. Roasted açaí seed extract (RASE) has recently emerged as a caffeine-free coffee substitute, although its composition and functionality remain underexplored. This [...] Read more.
Açaí (Euterpe oleracea) seeds account for up to 95% of the fruit’s weight and are commonly discarded during pulp processing. Roasted açaí seed extract (RASE) has recently emerged as a caffeine-free coffee substitute, although its composition and functionality remain underexplored. This study characterized commercial açaí seed powder and evaluated the effect of temperature on the recovery of total phenolic content (TPC) in the aqueous extract using a Central Composite Rotatable Design (CCRD). An intermediate extraction condition (6.0 ± 0.5 g 100 mL−1 at 100 °C) was selected, resulting in 21.78 mg GAE/g TPC, 36.23 mg QE/g total flavonoids, and notable antioxidant capacity (FRAP: 183.33 µmol TE/g; DPPH: 23.06 mg TE/g; ABTS: 51.63 mg TE/g; ORAC: 31.46 µmol TE/g). Proton Nuclear Magnetic Resonance (1H NMR) analysis suggested the presence of amino acids, carbohydrates, and organic acids. During in vitro digestion, TPC decreased from 54.31 to 17.48 mg GAE 100 mL−1 when RASE was combined with goat milk. However, higher bioaccessibility was observed with skimmed (33%) and semi-skimmed (35%) cow milk. These findings highlight RASE as a phenolic-rich, antioxidant beverage with functional stability when prepared with boiling water. This is the first study to report the phytochemical profile of RASE and its interactions with different milk types, supporting its potential as a coffee alternative. Full article
(This article belongs to the Special Issue Fruit By-Products and Their Applications in Food Industry)
Show Figures

Graphical abstract

22 pages, 1090 KiB  
Article
Functional Properties of Campomanesia xanthocarpa Infusions: Phenolic Profile, Digestive Stability, Enzyme Inhibition, and Glycemic Effects
by Cristiane Maria Chitolina Tremea, Vanessa Ruana Ferreira da Silva, Larissa Cunico, Vinícius Gottardo Boff, Carolina Turnes Pasini Deolindo, Aleksandro Shafer da Silva and Aniela Pinto Kempka
Foods 2025, 14(14), 2469; https://doi.org/10.3390/foods14142469 - 14 Jul 2025
Viewed by 282
Abstract
This study investigated the functional potential of Campomanesia xanthocarpa leaf and fruit infusions through phytochemical profiling, simulated gastrointestinal digestion, enzyme inhibition assays, and in vivo evaluation of glycemic markers. Leaf infusions exhibited a more diverse phenolic profile, higher total phenolic content, and greater [...] Read more.
This study investigated the functional potential of Campomanesia xanthocarpa leaf and fruit infusions through phytochemical profiling, simulated gastrointestinal digestion, enzyme inhibition assays, and in vivo evaluation of glycemic markers. Leaf infusions exhibited a more diverse phenolic profile, higher total phenolic content, and greater antioxidant capacity compared to fruit infusions. Simulated digestion confirmed the bioaccessibility of key phenolic compounds, particularly glycosylated flavonoids such as quercetin-3-glucoside and kaempferol derivatives, with leaf extracts showing superior gastrointestinal stability. In vitro assays revealed a strong inhibitory activity of leaf infusions against α-amylase and β-glucosidase. In a 32-day trial with healthy dogs, the consumption of biscuits enriched with leaf infusion did not alter fasting glucose or amylase levels but resulted in a significant treatment × time interaction for serum fructosamine, indicating a delayed modulation of glycemic control, potentially associated with antioxidant or anti-glycation activity. These findings highlight the potential of C. xanthocarpa leaves as a functional ingredient in foods aimed at supporting glycemic regulation and metabolic health. Full article
Show Figures

Graphical abstract

20 pages, 1130 KiB  
Review
Biology, Antioxidant Activity, and Therapeutic Potential of Cistus sp.—A Comprehensive Review
by Patrycja Kielar, Zofia Kobylińska, Marek Biesiadecki, Mateusz Mołoń and Sabina Galiniak
Int. J. Mol. Sci. 2025, 26(13), 6400; https://doi.org/10.3390/ijms26136400 - 3 Jul 2025
Viewed by 490
Abstract
For centuries, traditional medical systems have utilized Cistus leaf infusions, extracts, and essential oils in the treatment of inflammatory conditions, respiratory infections, febrile illnesses, and gastrointestinal disorders. Contemporary research has increasingly focused on the identification and characterization of biologically active constituents—particularly polyphenols and [...] Read more.
For centuries, traditional medical systems have utilized Cistus leaf infusions, extracts, and essential oils in the treatment of inflammatory conditions, respiratory infections, febrile illnesses, and gastrointestinal disorders. Contemporary research has increasingly focused on the identification and characterization of biologically active constituents—particularly polyphenols and other antioxidants—that may modulate key physiological and cellular processes in the human body. These include mechanisms related to oxidative stress, inflammation, aging, and carcinogenesis. The therapeutic relevance of Cistus-derived compounds is further supported by their generally favorable safety profile and high tolerability, which distinguishes them from many synthetic pharmaceuticals. Moreover, the accessibility of Cistus preparations as dietary supplements or herbal infusions allows for their regular consumption without the need for complex therapeutic regimens. This positions Cistus as a promising candidate for integrative health strategies aimed at disease prevention and health maintenance. This review provides a comprehensive overview of the pharmacological potential and therapeutic applications of Cistus extracts, with particular emphasis on their antioxidant and bioactive properties. Full article
(This article belongs to the Special Issue New Perspective on Inflammatory Diseases: Role of Natural Compounds)
Show Figures

Figure 1

23 pages, 3357 KiB  
Article
Enhancing the Thermostability of a New Tannase Through Rational Design and Site-Directed Mutagenesis: A Quality Improvement Strategy for Green Tea Infusion
by Hai-Xiang Zhou, Shi-Ning Cao, Chu-Shu Zhang, Mian Wang, Yue-Yi Tang, Jing Chen, Li-Fei Zhu, Jie Sun, Qing-Biao Meng, Jing Chen and Jian-Cheng Zhang
Beverages 2025, 11(4), 99; https://doi.org/10.3390/beverages11040099 - 1 Jul 2025
Viewed by 439
Abstract
Tea has become one of the most popular drinks worldwide thanks to its pleasant sensory attributes and diverse health benefits. However, tannin-rich compositions have several negative effects and significantly impact the quality of tea beverages. Among various detannification methods, tannase treatment appears to [...] Read more.
Tea has become one of the most popular drinks worldwide thanks to its pleasant sensory attributes and diverse health benefits. However, tannin-rich compositions have several negative effects and significantly impact the quality of tea beverages. Among various detannification methods, tannase treatment appears to be the most secure and environmentally friendly strategy. Although numerous microbial tannases have been identified and used in food processing, they are predominantly mesophilic with compromised heat tolerance, which limit their application in high-temperature tea extraction processing. Computer-assisted rational design and site-directed mutagenesis has emerged as a promising strategy in enzyme engineering to improve the thermostability of industrial enzymes. Nevertheless, relevant studies for tannase thermostability improvement remain lacking. In the present study, a novel thermophilic tannase called TanPL1 from marine fungus Penicillium longicatenatum strain SM102 was expressed in the food-grade host Yarrowia lipolytica. After purification and characterization, the thermostability of this enzyme was improved through site-directed mutagenesis guided by computer-aided rational design and molecular dynamics simulations. Then the thermostable mutant MuTanPL1 was applied in green tea processing for both polyphenol extraction and ester catechin hydrolysis. The tannase yield and specific activity values of 166.4 U/mL and 1059.3 U/mg, respectively, were achieved. The optimum pH and temperature of recombinant TanPL1 were determined to be 5.5 and 55 °C, respectively, and the enzyme exhibited high activity toward various gallic acid ester substrates. The site-directed mutagenesis method successfully generated a single-point mutant, MuTanPL1, with significantly enhanced thermostability and a higher optimum temperature of 60 °C. After 2 h of detannification by MuTanPL1, nearly all gallated catechins in green tea infusion were biotransformed. This resulted in a 202.4% and 12.1-fold increase in non-ester catechins and gallic acid levels, respectively. Meanwhile, the quality of the tea infusion was also markedly improved. Sensory evaluation and antioxidant activity assays revealed notable enhancements in these properties, while turbidity was reduced considerably. Additionally, the α-amylase inhibition activity of the tannase-treated tea infusion declined from 50.49% to 8.56%, revealing a significantly lower anti-nutritional effect. These findings suggest that the thermostable tannase MuTanPL1 holds strong application prospects in tea beverage processing. Full article
Show Figures

Figure 1

17 pages, 692 KiB  
Article
Unveiling Synergistic Antioxidant Effects of Green Tea and Peppermint: Role of Polyphenol Interactions and Blend Preparation
by Elena Kurin, Marianna Hajská, Ema Kostovčíková, Kamila Dokupilová, Pavel Mučaji, Milan Nagy, Branislav Novotný and Silvia Bittner Fialová
Int. J. Mol. Sci. 2025, 26(13), 6257; https://doi.org/10.3390/ijms26136257 - 28 Jun 2025
Viewed by 396
Abstract
This study explores the antioxidant activity of green tea (Camellia sinensis, GT) and peppermint (Mentha × piperita, PM) infusions, individually and in combination, focusing on how preparation methods affect their efficacy. Antiradical and intracellular antioxidant activity was assessed using [...] Read more.
This study explores the antioxidant activity of green tea (Camellia sinensis, GT) and peppermint (Mentha × piperita, PM) infusions, individually and in combination, focusing on how preparation methods affect their efficacy. Antiradical and intracellular antioxidant activity was assessed using DPPH, ABTS, and DCF assays, alongside interaction analysis via combination index (CI) and dose reduction index (DRI). HPLC analysis determined the polyphenolic profiles of GT and PM. GT showed the strongest antioxidant activity, with the lowest IC50 values (4.81 µg/mL in DPPH, 2.70 µg/mL in ABTS, 3.71 µg/mL in DCF), indicating potent radical-scavenging potential. PM exhibited moderate antiradical capacity but similar intracellular activity (IC50 = 3.80 µg/mL). Co-maceration followed by lyophilization of GT:PM extracts led to nearly additive interactions (CI~1.0) and allowed significant dose reduction (DRI up to 4.44). In contrast, post-mixed extracts showed assay-dependent effects, including antagonism in intracellular ROS inhibition (CI = 1.83). Equimolar mixtures of model polyphenols: EGCG, quercetin, and rosmarinic acid demonstrated enhanced effects, with the strongest synergy in ternary mixtures (CI = 0.67–0.86), potentially achievable in GT:PM combinations. These findings highlight that extract preparation critically influences antioxidant efficacy, supporting co-maceration as a promising strategy for developing effective functional formulations based on plant extract combinations. Full article
Show Figures

Figure 1

9 pages, 672 KiB  
Communication
A Cascara-Infused Caffeine Drink as a Social Beverage
by Magdalena Słowik-Borowiec, Bernadetta Oklejewicz and Maciej Wnuk
Molecules 2025, 30(13), 2749; https://doi.org/10.3390/molecules30132749 - 26 Jun 2025
Viewed by 427
Abstract
Specialty coffee commercialization has experienced a consistent upward trend over the past several years. The prevalence of specialty coffee consumption has increased considerably, particularly among younger demographics and people who engage in physical activities. Sellers are actively involved in the development of innovative [...] Read more.
Specialty coffee commercialization has experienced a consistent upward trend over the past several years. The prevalence of specialty coffee consumption has increased considerably, particularly among younger demographics and people who engage in physical activities. Sellers are actively involved in the development of innovative formulas and modifications to maintain the competitiveness of their product in the market. Here, we propose a naturally infused caffeine drink with cascara extract as an alternative social beverage. This beverage was formulated using extracts derived from Arabica Ethiopia coffee beans and coffee cherry shells. The final cascara-infused caffeine drink comprises a 50% Ethiopian Arabica coffee infusion and a 50% coffee cherry shell infusion. This beverage is characterized by an average caffeine content of 0.28 mg/mL, a caffeic acid content of 0.24 mg/mL, and a chlorogenic acid content of 0.13 mg/mL. Furthermore, 100 mL of the cascara-infused coffee drink is enriched with polyphenol compounds at an amount of 80.6 mg of Gallic Acid Equivalents per liter (mg GAE/L), including 67.6 mg of catechin equivalent per liter (mg CAE/L) flavonoids. The formulation of the infused caffeine drink contains natural sugars such as glucose, sucrose, and fructose, in amounts of 0.17 mg/mL, 0.97 mg/mL, and 1.66 mg/mL, respectively. The developed procedure has the potential to enhance the coffee-sale market. Full article
Show Figures

Figure 1

21 pages, 1368 KiB  
Article
Green Extraction Combined with Chemometric Approach: Profiling Phytochemicals and Antioxidant Properties of Ten Species of the Lamiaceae Family
by Branislava Teofilović, Emilia Gligorić, Martina Ninić, Saša Vukmirović, Žarko Gagić, Nebojša Mandić-Kovačević, Biljana Tubić, Đorđe Đukanović and Nevena Grujić-Letić
Separations 2025, 12(6), 155; https://doi.org/10.3390/separations12060155 - 8 Jun 2025
Viewed by 413
Abstract
The pharmacological potential of Lamiaceae plants is primarily linked to their high content of phenolic acids and flavonoids, known for strong antioxidant properties. This study investigated the antioxidant activity of ten widely used Lamiaceae herbs—oregano, lavender, basil, savory, garden thyme, wild thyme, sage, [...] Read more.
The pharmacological potential of Lamiaceae plants is primarily linked to their high content of phenolic acids and flavonoids, known for strong antioxidant properties. This study investigated the antioxidant activity of ten widely used Lamiaceae herbs—oregano, lavender, basil, savory, garden thyme, wild thyme, sage, rosemary, lemon balm, and mint—prepared as traditional infusions and microwave-assisted extracts. The antioxidant capacity was evaluated using spectrophotometric assays, and total phenolics and flavonoids were quantified via spectrophotometry and HPLC. Chemometric analysis (PCA) was applied to explore correlations among antioxidant parameters. The results demonstrated excellent antioxidant activity across all samples. The IC50 for DPPH radicals was in the range from 3.73(0.13) to 8.03(0.17) μg/mL and that for ABTS radicals was from 2.89(0.12) to 8.55(0.34). The CUPRAC antioxidant assay delivered values in the range from 351.93(11.85) to 1129.68(44.46) μg TE/mg DE. The FRAP method produced values from 1.27(0.03) to 6.60(0.26) μmol Fe/mg DE. The presence of gallic acid was detected in all examined samples, with lemon balm and lavender exhibiting the highest concentrations across both applied extraction methods. Notably, lavender showed especially high levels of p-hydroxybenzoic acid and chlorogenic acid. Microwave-assisted extraction generally yielded higher levels of bioactive compounds compared to infusion. These findings highlight the potential of Lamiaceae herbal extracts, particularly those obtained through microwave-assisted extraction, as valuable sources of dietary antioxidants for everyday use. Full article
Show Figures

Figure 1

14 pages, 4002 KiB  
Article
Two-Step Hydrothermal Reaction Enhances Removal of Cr(VI) from Wastewater Using Nitrogen-Doped Starch-Based Hydrothermal Carbon
by Borui Zhang, Xinyu Wan, Chenghong Li, Kaiyue Ma, Xinyu Wu, Hongxu Liang and Hongxiang Hu
Sustainability 2025, 17(11), 4982; https://doi.org/10.3390/su17114982 - 29 May 2025
Viewed by 541
Abstract
Extracting Cr(VI), a heavy metal known for its carcinogenic properties, from water poses a significant challenge. This research involved synthesizing nitrogen-infused starch-derived hydrothermal carbon (NS-HCS) from starch using a dual-phase hydrothermal method, aimed at removing Cr(VI) from industrial wastewater. N-doping increased the N [...] Read more.
Extracting Cr(VI), a heavy metal known for its carcinogenic properties, from water poses a significant challenge. This research involved synthesizing nitrogen-infused starch-derived hydrothermal carbon (NS-HCS) from starch using a dual-phase hydrothermal method, aimed at removing Cr(VI) from industrial wastewater. N-doping increased the N content from 0.27% to 3.64%, providing active sites for enhanced Cr(VI) adsorption and reduction. Experimental data demonstrated 149.21 mg/g contaminant uptake capacity with 49.74% removal efficiency under specified conditions. Analysis of the kinetic and isotherm models revealed that the adsorption mechanism was characterized primarily by multilayer adsorption. Furthermore, after six cycles of use, NS-HCS demonstrated good reusability, with its Cr(VI) adsorption capacity remaining at approximately 79.05%. Additionally, NS-HCS exhibited strong resistance to interference in complex aqueous environments. This study provides new insights into the use of green and sustainable adsorbents, offering an economical and efficient solution for treating Cr(VI)-contaminated wastewater. Full article
Show Figures

Figure 1

24 pages, 1449 KiB  
Systematic Review
Identification of Factors Influencing Fluoride Content in Tea Infusions: A Systematic Review
by Agata Małyszek, Sylwia Kiryk, Julia Kensy, Agnieszka Kotela, Mateusz Michalak, Jan Kiryk, Maciej Janeczek, Jacek Matys and Maciej Dobrzyński
Appl. Sci. 2025, 15(11), 5974; https://doi.org/10.3390/app15115974 - 26 May 2025
Cited by 2 | Viewed by 1006
Abstract
Tea is one of the most widely consumed beverages globally and a significant dietary source of fluoride. This systematic review aimed to identify and evaluate the factors influencing fluoride concentration in tea infusions. A comprehensive literature search was conducted in March 2025 across [...] Read more.
Tea is one of the most widely consumed beverages globally and a significant dietary source of fluoride. This systematic review aimed to identify and evaluate the factors influencing fluoride concentration in tea infusions. A comprehensive literature search was conducted in March 2025 across PubMed, Scopus, and Web of Science databases, following PRISMA guidelines (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines and the PICO framework. Eligible studies investigated fluoride release in tea infusions, published in English from the year 2000 onward. Thirty articles met the inclusion criteria, and the risk of bias in the articles was assessed using the Joanna Briggs Institute (JBI) quality checklist. Fluoride concentration in tea infusions varied widely across studies, ranging from 0.008 to over 8 mg/L. Key factors influencing fluoride release included tea type (with black and green teas showing the highest values), leaf form (powdered and bagged teas released more fluoride than loose leaves), brewing time and temperature, water composition, and the presence of additives such as spices. A longer brewing time and higher temperature consistently increased fluoride extraction. Lower pH or water hardness also significantly affected fluoride availability. Regional origin of tea and production methods were additional sources of variation. Fluoride release in tea is influenced by a complex interplay of botanical, environmental, and preparation-related factors. These findings are clinically relevant, particularly for populations at risk of fluoride overexposure. Further standardized research is needed to inform safe consumption guidelines and public health recommendations. Full article
Show Figures

Figure 1

16 pages, 1210 KiB  
Article
Effect of Thermal Processing by Spray Drying on Key Ginger Compounds
by Alina Warren-Walker, Manfred Beckmann, Alison Watson, Steffan McAllister and Amanda J. Lloyd
Metabolites 2025, 15(6), 350; https://doi.org/10.3390/metabo15060350 - 24 May 2025
Viewed by 776
Abstract
Background/Objectives: Spray drying is a technique widely employed in the food and nutraceutical industries to convert liquid extracts into stable powders, preserving their functional properties. Ginger (Zingiber officinale) is rich in bioactive compounds such as gingerols, shogaols, and zingerone, which contribute [...] Read more.
Background/Objectives: Spray drying is a technique widely employed in the food and nutraceutical industries to convert liquid extracts into stable powders, preserving their functional properties. Ginger (Zingiber officinale) is rich in bioactive compounds such as gingerols, shogaols, and zingerone, which contribute to its health benefits. This study aimed to investigate the impact of spray drying on the chemical profile of ginger, particularly focusing on the transformation of gingerols into shogaols and related compounds. Methods: Fresh ginger juice was spray-dried using various carrier agents, including Clear Gum (CO03), pea protein, and inulin. Mass spectra of the resulting powders were acquired using High-Resolution Flow Infusion Electrospray Ionisation Mass Spectrometry (HR-FIE-MS) to obtain fingerprint data. Key bioactive compounds were tentatively identified to Level 2, and their relative intensities were assessed to evaluate the effects of different carriers on the chemical composition of the ginger powders. Results: Spray drying with the commercial carrier CO03 resulted in an increase in shogaol analogues ([10]-, [8]-, and cis-[8]-shogaol), gingerenone B, and oxidation products such as 6-hydroxyshogaol, 6-dehydroshogaol, and zingerone. In contrast, natural carriers like pea protein and inulin led to lower relative intensities of these bioactives, suggesting limited capacity for promoting thermal transformations. Spray drying without a carrier produced a shogaol-dominant profile but resulted in powders with poor handling properties, such as stickiness and agglomeration. Antioxidant and total polyphenol assays showed that spray drying reduced antioxidant capacity, while total polyphenol content was more preserved; natural carriers such as inulin better maintained bioactivity compared to modified starch or pea protein. Conclusions: Among the five formulations evaluated—ginger juice with no carrier, with CO03 (two dilutions), pea protein, or inulin—CO03-based samples showed the greatest chemical transformation, while inulin and pea protein better preserved antioxidant capacity but induced fewer metabolite changes. Thus, choice of carrier in the spray-drying process influences the chemical profile and functional characteristics of resultant ginger powders. While CO03 effectively enhances the formation of bioactive shogaols and related compounds, its ultra-processed nature may not align with clean-label product trends. Natural carriers, although more label-friendly, may not create the desired chemical transformations. Therefore, optimising carrier selection is important to balance bioactivity, product stability, and consumer acceptability in the development of ginger-based functional products. Full article
Show Figures

Figure 1

14 pages, 1993 KiB  
Article
1H Nuclear Magnetic Resonance-Based Targeted and Untargeted Metabolomics Profiling of Retail Samples of Cuachalalate (Amphipterygium adstringens)
by Erick Alejandro Herrera-Jurado, Estefanía De Jesús Terán-Sánchez, José Iván Serrano-Contreras and L. Gerardo Zepeda-Vallejo
Molecules 2025, 30(10), 2185; https://doi.org/10.3390/molecules30102185 - 16 May 2025
Cited by 1 | Viewed by 864
Abstract
Amphipterygium adstringens (cuachalalate) is a medicinal plant widely used in traditional Mexican medicine for its anti-inflammatory, gastroprotective, and antimicrobial properties. In this study, we applied qualitative and quantitative NMR-based metabolomics profiling, combined with multivariate statistical analyses, including Principal Component Analysis (PCA), Partial Least [...] Read more.
Amphipterygium adstringens (cuachalalate) is a medicinal plant widely used in traditional Mexican medicine for its anti-inflammatory, gastroprotective, and antimicrobial properties. In this study, we applied qualitative and quantitative NMR-based metabolomics profiling, combined with multivariate statistical analyses, including Principal Component Analysis (PCA), Partial Least Squares Discriminant Analysis (PLS-DA), and S-plots, to evaluate the chemical composition and authenticity of A. adstringens samples collected from different commercial sources sold in Mexico City. Metabolomic profiles in organic and aqueous extracts revealed highly similar spectral patterns among all collected samples, supporting the consistency of commercially available A. adstringens in Mexico. The presence of 3α-hydroxy-masticadienoic acid (3α-HMDA) and anacardic acids, biomarkers of the genus, was confirmed by 1H NMR in hexane extracts; in the aqueous extract they were not observed with the same analytical platform. These findings suggest that the traditional infusion method may not effectively extract the above-mentioned key bioactive compounds. This approach enhances quality control and ensures the reliability of A. adstringens products in the commercial market. Full article
Show Figures

Figure 1

25 pages, 2665 KiB  
Article
Chemical Profiling of Polyphenolic Fraction of Cannabis sativa L. vr. Kompolti Industrial Inflorescences: Insights into Cannabidiol Neuroprotective Effects in a Cellular Model of Parkinson’s Disease
by Francesca Fantasma, Gilda D’Urso, Noemi Martella, Alessandra Capuano, Eleonora Boccia, Vadym Samukha, Vincenzo De Felice, Gabriella Saviano, Federico Trombetta, Gianluigi Lauro, Marco Segatto, Maria Giovanna Chini, Giuseppe Bifulco, Agostino Casapullo and Maria Iorizzi
Plants 2025, 14(10), 1473; https://doi.org/10.3390/plants14101473 - 14 May 2025
Viewed by 801
Abstract
The ultra-high-performance liquid chromatography high-resolution mass spectrometry (LC-ESI-HR-MS/MS) technique was used to characterize the polyphenolic fraction of the hot water infusion (WI) of inflorescences of Cannabis sativa L. Kompolti variety, commercially used for food preparations or cosmetic purposes. On water infusion extract, we [...] Read more.
The ultra-high-performance liquid chromatography high-resolution mass spectrometry (LC-ESI-HR-MS/MS) technique was used to characterize the polyphenolic fraction of the hot water infusion (WI) of inflorescences of Cannabis sativa L. Kompolti variety, commercially used for food preparations or cosmetic purposes. On water infusion extract, we applied a multidisciplinary approach, where NMR, MS, in vitro cell-free and cell-based assays coupled with in silico studies, were used to rationalize at the molecular level the effects of the major component Cannabidiol (CBD), in a model of Parkinson’s disease (PD). The phytochemical analysis by LC-MS/MS led to the tentative identification of many components belonging to different classes of polyphenols, such as phenolic acids, flavonoids, and their glycosides. CBD and cannabidiolic acid (CBDA) were also detected in good amounts in the infusion, together with several minor cannabinoids. In addition, the water infusion WI was evaluated for mineral content, total phenolic content, flavonoid content, and antioxidant capacity by DPPH and FRAP methods. Notably, our results in a cellular model of PD highlight that CBD protects against rotenone-induced cell death without recovering neuronal morphology. These biological outcomes were rationalized by an in silico approach, where we hypothesize that CBD could influence the cellular response to oxidative stress via its interaction with the Keap1/Nrf2 pathway. In summary, these results enriched the nutraceutical profile of the water infusion of the inflorescences of the Kompolti cultivar, which demonstrated a high CBD content. This study could lead to the development of dietary supplements that could help in the management of clinical symptoms related to the antioxidant activity of CBD in the pathophysiology of PD, which remains poorly characterized. Full article
Show Figures

Graphical abstract

22 pages, 5867 KiB  
Article
Effect of 14-Week Supplementation of Highly Purified Policosanol (Raydel®) and a Sugar Cane Extract Powder (SCEP) on Dyslipidemia and Oxidative Variables in Hyperlipidemic Zebrafish: Insight into Liver, Kidney, and Brain Health
by Kyung-Hyun Cho, Ashutosh Bahuguna, Sang Hyuk Lee, Ji-Eun Kim, Yunki Lee and Cheolmin Jeon
Curr. Issues Mol. Biol. 2025, 47(5), 354; https://doi.org/10.3390/cimb47050354 - 13 May 2025
Viewed by 771
Abstract
The efficacy of Cuban sugarcane-extracted policosanol (Raydel®), a purified blend of eight long-chain aliphatic alcohols, was compared to copycat sugarcane-extract powder (SCEP) to assess their effects on dyslipidemia, oxidative stress, and vital organs of zebrafish under the influence of a high-cholesterol [...] Read more.
The efficacy of Cuban sugarcane-extracted policosanol (Raydel®), a purified blend of eight long-chain aliphatic alcohols, was compared to copycat sugarcane-extract powder (SCEP) to assess their effects on dyslipidemia, oxidative stress, and vital organs of zebrafish under the influence of a high-cholesterol diet (HCD). Zebrafish were fed with HCD (final 4%, w/w) or HCD infused with policosanol (PCO, final 1%, w/w) or SCEP (final 1%, w/w). Post 14-week consumption, blood and organs were harvested and processed for various biochemical, histological, and immunohistochemical (IHC) examinations, and fluorescent staining. Following 14-week consumption, the PCO-supplemented group exhibited higher zebrafish survival probability than the SCEP-supplemented group. Both PCO and SCEP substantially impacted the HCD-disrupted plasma lipid profile; however, PCO supplementation exhibited a significantly better effect than SCEP. Similarly, PCO supplementation significantly improved the blood glucose level, hepatic function biomarkers, and oxidative-antioxidant balance disturbed by HCD. PCO supplementation displayed a substantial inhibitory effect against HCD-induced fatty liver changes, nephromegaly, and cellular senescence. Likewise, PCO effectively protected the brain against HCD-induced apoptosis and accumulation of 4-hydroxynonenal (4-HNE); in contrast, SCEP supplementation showed almost no effect in reducing such adverse changes. The comparative findings between PCO and SCEP highlight the protective effects of PCO against HCD-induced oxidative stress and dyslipidemia via the enhancement of antioxidant markers, leading to protection of the liver, kidney, and brain, while SCEP failed to achieve similar outcomes. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Graphical abstract

16 pages, 3753 KiB  
Article
Fusion YOLOv8s and Dynamic Convolution Algorithm for Steel Surface Defect Detection
by Chunyan Huang, Jingnan Cui, Yanling Li, Yao Lu and Chunyu Yang
Symmetry 2025, 17(5), 701; https://doi.org/10.3390/sym17050701 - 4 May 2025
Viewed by 685
Abstract
The detection of surface defects in steel is a prerequisite for improving steel quality. When detecting surface defects in steel, the texture features of defective areas often show significant differences from the symmetry patterns of normal areas. To address the issues of low [...] Read more.
The detection of surface defects in steel is a prerequisite for improving steel quality. When detecting surface defects in steel, the texture features of defective areas often show significant differences from the symmetry patterns of normal areas. To address the issues of low accuracy and slow recognition speed in existing steel surface defect detection methods, this study proposes an improved defect detection method based on YOLOv8s. To focus on the information of asymmetric areas in images and amplify the model’s capacity to learn target defects, we integrate the ODConv (Omni-Dimensional Dynamic Convolution) module into the backbone feature extraction network. This module infuses attention within the convolution process, augmenting the feature extraction capacity of the backbone network. Furthermore, to refine the regression speed of target boxes and enhance positioning accuracy, we adopt the WIoU (Wise Intersection over Union) bounding box loss function, featuring a dynamic non-monotonic focusing mechanism. Experimental results on the NEU-DET dataset reveal that the improved YOLOv8s-OD model achieves a 4.5% accuracy improvement compared to the original YOLOv8s, with an mAP of 78.9%. The model demonstrates robust performance in steel surface defect detection. With a modest size of only 21.5 MB, the model sustains a high detection speed of 89FPS, elevating detection accuracy while preserving real-time performance. This renders the model highly applicable in real-world industrial scenarios. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

14 pages, 3268 KiB  
Article
Metabolite Analysis of Hangzhou Gongmei White Tea of Different Varieties
by Cun Ao, Xiaojun Niu, Haitao Huang, Jizhong Yu and Zhiqiang Cheng
Foods 2025, 14(9), 1622; https://doi.org/10.3390/foods14091622 - 4 May 2025
Viewed by 615
Abstract
To comprehensively understand the quality characteristics and key characteristic metabolites of Hangzhou Gongmei white tea (HGW), an integrated approach involving sensory evaluation, chemical composition analysis, gas chromatography–mass spectrometry (GC-MS), and liquid chromatography–mass spectrometry (LC-MS) was employed to analyse the volatile and non-volatile metabolites [...] Read more.
To comprehensively understand the quality characteristics and key characteristic metabolites of Hangzhou Gongmei white tea (HGW), an integrated approach involving sensory evaluation, chemical composition analysis, gas chromatography–mass spectrometry (GC-MS), and liquid chromatography–mass spectrometry (LC-MS) was employed to analyse the volatile and non-volatile metabolites of tea samples from different varieties. Compared to the Fudingdabai (FD) variety, the Jiukeng (JK) and Longjing (LJ) varieties exhibited more pronounced fruity or floral aromas and stronger taste profiles. The elevated concentrations of water extracts, tea polyphenols, and complex catechins in the tea infusion contributed to its increased astringency. A multivariate analysis revealed that linalool, geraniol, 2-ethylhexanol, hexanal, methyl salicylate, linalool oxide I, (E)-hex-2-en-1-al, β-myrcene, (Z)-hex-3-en-1-ol, phenylethanol, benzaldehyde, (E)-citral, nonanal, and trans-β-ionone were the primary differential volatile metabolites in HGW. The non-volatile metabolomic analyses showed that flavonoids were the main differential metabolites in HGW from different varieties. The abundance levels of the differential non-volatile metabolites were higher in JK and LJ compared to those in FD. This study provides theoretical support for the breeding and quality improvement of Hangzhou white tea, as well as the development of flowery and fruity flavoured white tea products. Full article
Show Figures

Figure 1

Back to TopTop