Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (25,277)

Search Parameters:
Keywords = information technology (IT)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 837 KiB  
Review
Resetting Time: The Role of Exercise Timing in Circadian Reprogramming for Metabolic Health
by Stuart J. Hesketh
Obesities 2025, 5(3), 59; https://doi.org/10.3390/obesities5030059 (registering DOI) - 7 Aug 2025
Abstract
Circadian rhythms are intrinsic 24 h cycles that regulate metabolic processes across multiple tissues, with skeletal muscle emerging as a central node in this temporal network. Muscle clocks govern gene expression, fuel utilisation, mitochondrial function, and insulin sensitivity, thereby maintaining systemic energy homeostasis. [...] Read more.
Circadian rhythms are intrinsic 24 h cycles that regulate metabolic processes across multiple tissues, with skeletal muscle emerging as a central node in this temporal network. Muscle clocks govern gene expression, fuel utilisation, mitochondrial function, and insulin sensitivity, thereby maintaining systemic energy homeostasis. However, circadian misalignment, whether due to behavioural disruption, nutrient excess, or metabolic disease, impairs these rhythms and contributes to insulin resistance, and the development of obesity, and type 2 diabetes mellitus. Notably, the muscle clock remains responsive to non-photic cues, particularly exercise, which can reset and amplify circadian rhythms even in metabolically impaired states. This work synthesises multi-level evidence from rodent models, human trials, and in vitro studies to elucidate the role of skeletal muscle clocks in circadian metabolic health. It explores how exercise entrains the muscle clock via molecular pathways involving AMPK, SIRT1, and PGC-1α, and highlights the time-of-day dependency of these effects. Emerging data demonstrate that optimally timed exercise enhances glucose uptake, mitochondrial biogenesis, and circadian gene expression more effectively than time-agnostic training, especially in individuals with metabolic dysfunction. Finally, findings are integrated from multi-omic approaches that have uncovered dynamic, time-dependent molecular signatures that underpin circadian regulation and its disruption in obesity. These technologies are uncovering biomarkers and signalling nodes that may inform personalised, temporally targeted interventions. By combining mechanistic insights with translational implications, this review positions skeletal muscle clocks as both regulators and therapeutic targets in metabolic disease. It offers a conceptual framework for chrono-exercise strategies and highlights the promise of multi-omics in developing precision chrono-medicine approaches aimed at restoring circadian alignment and improving metabolic health outcomes. Full article
Show Figures

Figure 1

13 pages, 4728 KiB  
Article
Stereo Direct Sparse Visual–Inertial Odometry with Efficient Second-Order Minimization
by Chenhui Fu and Jiangang Lu
Sensors 2025, 25(15), 4852; https://doi.org/10.3390/s25154852 (registering DOI) - 7 Aug 2025
Abstract
Visual–inertial odometry (VIO) is the primary supporting technology for autonomous systems, but it faces three major challenges: initialization sensitivity, dynamic illumination, and multi-sensor fusion. In order to overcome these challenges, this paper proposes stereo direct sparse visual–inertial odometry with efficient second-order minimization. It [...] Read more.
Visual–inertial odometry (VIO) is the primary supporting technology for autonomous systems, but it faces three major challenges: initialization sensitivity, dynamic illumination, and multi-sensor fusion. In order to overcome these challenges, this paper proposes stereo direct sparse visual–inertial odometry with efficient second-order minimization. It is entirely implemented using the direct method, which includes a depth initialization module based on visual–inertial alignment, a stereo image tracking module, and a marginalization module. Inertial measurement unit (IMU) data is first aligned with a stereo image to initialize the system effectively. Then, based on the efficient second-order minimization (ESM) algorithm, the photometric error and the inertial error are minimized to jointly optimize camera poses and sparse scene geometry. IMU information is accumulated between several frames using measurement preintegration and is inserted into the optimization as an additional constraint between keyframes. A marginalization module is added to reduce the computation complexity of the optimization and maintain the information about the previous states. The proposed system is evaluated on the KITTI visual odometry benchmark and the EuRoC dataset. The experimental results demonstrate that the proposed system achieves state-of-the-art performance in terms of accuracy and robustness. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

21 pages, 767 KiB  
Article
Promoting Sustainable Mobility on Campus: Uncovering the Behavioral Mechanisms Behind Non-Compliant E-Bike Use Among University Students
by Huihua Chen, Yongqi Guo and Lei Li
Sustainability 2025, 17(15), 7147; https://doi.org/10.3390/su17157147 (registering DOI) - 7 Aug 2025
Abstract
Electric bikes (e-bikes) offer a low-carbon, space-efficient solution for campus mobility, yet their sustainable potential is increasingly challenged by patterns of non-compliant use, including speeding, informal parking, and unauthorized charging. This study integrates the Theory of Planned Behavior (TPB) and the Technology Acceptance [...] Read more.
Electric bikes (e-bikes) offer a low-carbon, space-efficient solution for campus mobility, yet their sustainable potential is increasingly challenged by patterns of non-compliant use, including speeding, informal parking, and unauthorized charging. This study integrates the Theory of Planned Behavior (TPB) and the Technology Acceptance Model (TAM) to examine the cognitive and contextual factors that shape such behaviors among university students. Drawing on a survey of 408 e-bike users and structural equation modeling, the results show that non-compliance is primarily driven by perceived usefulness, ease of action, and behavioral feasibility, with affective and normative factors playing indirect, reinforcing roles. Importantly, actual behavior is influenced not only by intention but also by students’ perceived capacity to act within low-enforcement environments. These findings highlight the need to align behavioral perceptions with sustainability goals. The study contributes to sustainable mobility governance by clarifying key psychological pathways and offering targeted insights for designing perception-sensitive interventions in campus transport systems. Furthermore, by promoting compliance-oriented campus mobility, this research highlights a pathway toward enhancing the resilience of transport systems through behavioral adaptation within semi-regulated environments. Full article
Show Figures

Figure 1

19 pages, 1090 KiB  
Article
Inbound Truck Scheduling for Workload Balancing in Cross-Docking Terminals
by Younghoo Noh, Seokchan Lee, Jeongyoon Hong, Jeongeum Kim and Sung Won Cho
Mathematics 2025, 13(15), 2533; https://doi.org/10.3390/math13152533 - 6 Aug 2025
Abstract
The rapid growth of e-commerce and advances in information and communication technologies have placed increasing pressure on last-mile delivery companies to enhance operational productivity. As investments in logistics infrastructure require long-term planning, maximizing the efficiency of existing terminal operations has become a critical [...] Read more.
The rapid growth of e-commerce and advances in information and communication technologies have placed increasing pressure on last-mile delivery companies to enhance operational productivity. As investments in logistics infrastructure require long-term planning, maximizing the efficiency of existing terminal operations has become a critical priority. This study proposes a mathematical model for inbound truck scheduling that simultaneously minimizes truck waiting times and balances workload across temporary inventory storage located at outbound chutes in cross-docking terminals. The model incorporates a dynamic rescheduling strategy that updates the assignment of inbound trucks in real time, based on the latest terminal conditions. Numerical experiments, based on real operational data, demonstrate that the proposed approach significantly outperforms conventional strategies such as First-In First-Out (FIFO) and Random assignment in terms of both load balancing and truck turnaround efficiency. In particular, the proposed model improves workload balance by approximately 10% and 12% compared to the FIFO and Random strategies, respectively, and it reduces average truck waiting time by 17% and 18%, thereby contributing to more efficient workflow and alleviating bottlenecks. The findings highlight the practical potential of the proposed strategy for improving the responsiveness and efficiency of parcel distribution centers operating under fixed infrastructure constraints. Future research may extend the proposed approach by incorporating realistic operational factors, such as cargo heterogeneity, uncertain arrivals, and terminal shutdowns due to limited chute storage. Full article
27 pages, 8913 KiB  
Article
Laser Radar and Micro-Light Polarization Image Matching and Fusion Research
by Jianling Yin, Gang Li, Bing Zhou and Leilei Cheng
Electronics 2025, 14(15), 3136; https://doi.org/10.3390/electronics14153136 - 6 Aug 2025
Abstract
Aiming at addressing the defect of the data blindness of a LiDAR point cloud in transparent media such as glass in low illumination environments, a new method is proposed to realize covert target reconnaissance, identification and ranging using the fusion of a shimmering [...] Read more.
Aiming at addressing the defect of the data blindness of a LiDAR point cloud in transparent media such as glass in low illumination environments, a new method is proposed to realize covert target reconnaissance, identification and ranging using the fusion of a shimmering polarized image and a laser LiDAR point cloud, and the corresponding system is constructed. Based on the extraction of pixel coordinates from the 3D LiDAR point cloud, the method adds information on the polarization degree and polarization angle of the micro-light polarization image, as well as on the reflective intensity of each point of the LiDAR. The mapping matrix of the radar point cloud to the pixel coordinates is made to contain depth offset information and show better fitting, thus optimizing the 3D point cloud converted from the micro-light polarization image. On this basis, algorithms such as 3D point cloud fusion and pseudo-color mapping are used to further optimize the matching and fusion procedures for the micro-light polarization image and the radar point cloud, so as to successfully realize the alignment and fusion of the 2D micro-light polarization image and the 3D LiDAR point cloud. The experimental results show that the alignment rate between the 2D micro-light polarization image and the 3D LiDAR point cloud reaches 74.82%, which can effectively detect the target hidden behind the glass under the low illumination condition and fill the blind area of the LiDAR point cloud data acquisition. This study verifies the feasibility and advantages of “polarization + LiDAR” fusion in low-light glass scene reconnaissance, and it provides a new technological means of covert target detection in complex environments. Full article
(This article belongs to the Special Issue Image and Signal Processing Techniques and Applications)
Show Figures

Figure 1

14 pages, 982 KiB  
Article
Effectiveness of a Learning Pathway on Food and Nutrition in Amyotrophic Lateral Sclerosis
by Karla Mônica Dantas Coutinho, Humberto Rabelo, Felipe Fernandes, Karilany Dantas Coutinho, Ricardo Alexsandro de Medeiros Valentim, Aline de Pinho Dias, Janaína Luana Rodrigues da Silva Valentim, Natalia Araújo do Nascimento Batista, Manoel Honorio Romão, Priscila Sanara da Cunha, Aliete Cunha-Oliveira, Susana Henriques, Luciana Protásio de Melo, Sancha Helena de Lima Vale, Lucia Leite-Lais and Kenio Costa de Lima
Nutrients 2025, 17(15), 2562; https://doi.org/10.3390/nu17152562 (registering DOI) - 6 Aug 2025
Abstract
Background/Objectives: Health education plays a vital role in training health professionals and caregivers, supporting both prevention and the promotion of self-care. In this context, technology serves as a valuable ally by enabling continuous and flexible learning. Among the various domains of health education, [...] Read more.
Background/Objectives: Health education plays a vital role in training health professionals and caregivers, supporting both prevention and the promotion of self-care. In this context, technology serves as a valuable ally by enabling continuous and flexible learning. Among the various domains of health education, nutrition stands out as a key element in the management of Amyotrophic Lateral Sclerosis (ALS), helping to prevent malnutrition and enhance patient well-being. Accordingly, this study aimed to evaluate the effectiveness of the teaching and learning processes within a learning pathway focused on food and nutrition in the context of ALS. Methods: This study adopted a longitudinal, quantitative design. The learning pathway, titled “Food and Nutrition in ALS,” consisted of four self-paced and self-instructional Massive Open Online Courses (MOOCs), offered through the Virtual Learning Environment of the Brazilian Health System (AVASUS). Participants included health professionals, caregivers, and patients from all five regions of Brazil. Participants had the autonomy to complete the courses in any order, with no prerequisites for enrollment. Results: Out of 14,263 participants enrolled nationwide, 182 were included in this study after signing the Informed Consent Form. Of these, 142 (78%) completed at least one course and participated in the educational intervention. A significant increase in knowledge was observed, with mean pre-test scores rising from 7.3 (SD = 1.8) to 9.6 (SD = 0.9) on the post-test across all courses (p < 0.001). Conclusions: The self-instructional, technology-mediated continuing education model proved effective in improving participants’ knowledge about nutrition in ALS. Future studies should explore knowledge retention, behavior change, and the impact of such interventions on clinical outcomes, especially in multidisciplinary care settings. Full article
(This article belongs to the Section Geriatric Nutrition)
Show Figures

Figure 1

22 pages, 1187 KiB  
Article
Linking Leadership and Retention: Emotional Exhaustion and Creativity as Mechanisms in the Information Technology Sector
by Amra Džambić, Nereida Hadziahmetovic, Navya Gubbi Sateeshchandra, Kaddour Chelabi and Anastasios Fountis
Adm. Sci. 2025, 15(8), 309; https://doi.org/10.3390/admsci15080309 - 6 Aug 2025
Abstract
Employee turnover remains a critical challenge for organizations, prompting an examination of how leadership approaches influence employees’ intentions to leave. This study investigates the impact of transformational leadership on turnover intention, focusing on emotional exhaustion and creativity as potential mediators. The study employs [...] Read more.
Employee turnover remains a critical challenge for organizations, prompting an examination of how leadership approaches influence employees’ intentions to leave. This study investigates the impact of transformational leadership on turnover intention, focusing on emotional exhaustion and creativity as potential mediators. The study employs a quantitative design grounded in leadership and organizational psychology theory and surveys 182 professionals working in the information technology sector across Bosnia and Herzegovina, Croatia, Serbia, and Montenegro. Structural equation modeling reveals that transformational leadership reduces turnover intention by alleviating emotional exhaustion, highlighting the importance of psychological well-being in employee retention. While transformational leadership enhances employee creativity, creativity did not significantly mediate turnover intention in this context. These findings suggest that strategies that foster engagement and reduce burnout in knowledge-intensive industries can strengthen organizational commitment and improve retention. This study contributes to the understanding of behavioral mechanisms linking leadership to employee outcomes and offers actionable insights for modern organizations aiming to address turnover through supportive, empowering leadership practices. Additional mediators and contextual variables should be explored in further research. Full article
(This article belongs to the Section Leadership)
Show Figures

Graphical abstract

29 pages, 7038 KiB  
Article
Developing a Practice-Based Guide to Terrestrial Laser Scanning (TLS) for Heritage Documentation
by Junshan Liu, Danielle Willkens and Russell Gentry
Heritage 2025, 8(8), 313; https://doi.org/10.3390/heritage8080313 - 6 Aug 2025
Abstract
This research advances the integration of terrestrial laser scanning (TLS) in heritage documentation, targeting the development of holistic and practical guidance for practitioners to adopt the technology effectively. Acknowledging the pivotal role of TLS in capturing detailed and accurate representations of cultural heritage, [...] Read more.
This research advances the integration of terrestrial laser scanning (TLS) in heritage documentation, targeting the development of holistic and practical guidance for practitioners to adopt the technology effectively. Acknowledging the pivotal role of TLS in capturing detailed and accurate representations of cultural heritage, the study emerges against a backdrop of technological progression and the evolving needs of heritage conservation. Through a comprehensive literature review, critical case studies of heritage sites in the U.S., expert interviews, and the development of a TLS for Heritage Documentation Best Practice Guide (the guide), the paper addresses the existing gaps in streamlined practices in the domain of TLS’s applications in heritage documentation. While recognizing and building upon foundational efforts such as international guidelines developed over the past decades, this study contributes a practice-oriented perspective grounded in field experience and case-based analysis. The developed guide seeks to equip practitioners with structured methods and practical tools to optimize the use of TLS, ultimately enhancing the quality and accessibility of heritage documentation. It also sets a foundation for integrating TLS datasets with other technologies, such as Building Information Modeling (BIM), virtual reality (VR), and augmented reality (AR) for heritage preservation, tourism, education, and interpretation, ultimately enhancing access to and engagement with cultural heritage sites. The paper also critically situates this guidance within the evolving theoretical discourse on digital heritage practices, highlighting its alignment with and divergence from existing methodologies. Full article
Show Figures

Figure 1

22 pages, 1048 KiB  
Article
Forests and Green Transition Policy Frameworks: How Do Forest Carbon Stocks Respond to Bioenergy and Green Agricultural Technologies?
by Nguyen Hoang Dieu Linh and Liang Lizhi
Forests 2025, 16(8), 1283; https://doi.org/10.3390/f16081283 - 6 Aug 2025
Abstract
Forests play a crucial role in storing excess carbon released into the atmosphere. By mitigating climate change, forest carbon stocks play a vital role in achieving green transitions. However, limited information is available regarding the factors that affect forest carbon stocks. The primary [...] Read more.
Forests play a crucial role in storing excess carbon released into the atmosphere. By mitigating climate change, forest carbon stocks play a vital role in achieving green transitions. However, limited information is available regarding the factors that affect forest carbon stocks. The primary objective of this analysis is to investigate the impact of green agricultural technologies and bioenergy on forest carbon stocks. The empirical investigation was conducted using the method of moments quantile regression (MMQR) technique. Results using the MMQR approach indicate that bioenergy is beneficial in augmenting forest carbon stores at all levels. A 1% increase in bioenergy is associated with an increase in forest carbon stocks ranging from 3.100 at the 10th quantile to 1.599 at the 90th quantile. In the context of developing economies, similar findings are observed; however, in developed economies, bioenergy only fosters forest carbon stocks at lower and middle quantiles. In contrast, green agricultural technologies have an adverse effect on forest carbon stocks. Green agricultural technologies have a significant negative impact on forest carbon stocks, particularly between the 10th and 80th quantiles, with their influence declining in magnitude from −2.398 to −0.619. This negative connection is observed in both developed and developing countries at most quantiles, except for higher quantiles in developed economies. Gross domestic product (GDP) has an adverse effect on forest carbon stores only in developing countries, whereas human capital diminishes forest carbon stocks in both developed and developing nations. Governments should provide support for the creators of bioenergy and agroforestry technologies so that forest carbon stocks can be increased. Full article
Show Figures

Figure 1

28 pages, 930 KiB  
Review
Financial Development and Energy Transition: A Literature Review
by Shunan Fan, Yuhuan Zhao and Sumin Zuo
Energies 2025, 18(15), 4166; https://doi.org/10.3390/en18154166 - 6 Aug 2025
Abstract
Under the global context of climate governance and sustainable development, low-carbon energy transition has become a strategic imperative. As a critical force in resource allocation, the financial system’s impact on energy transition has attracted extensive academic attention. This paper presents the first comprehensive [...] Read more.
Under the global context of climate governance and sustainable development, low-carbon energy transition has become a strategic imperative. As a critical force in resource allocation, the financial system’s impact on energy transition has attracted extensive academic attention. This paper presents the first comprehensive literature review on energy transition research in the context of financial development. We develop a “Financial Functions-Energy Transition Dynamics” analytical framework to comprehensively examine the theoretical and empirical evidence regarding the relationship between financial development (covering both traditional finance and emerging finance) and energy transition. The understanding of financial development’s impact on energy transition has progressed from linear to nonlinear perspectives. Early research identified a simple linear promoting effect, whereas current studies reveal distinctly nonlinear and multidimensional effects, dynamically driven by three fundamental factors: economy, technology, and resources. Emerging finance has become a crucial driver of transition through technological innovation, risk diversification, and improved capital allocation efficiency. Notable disagreements persist in the existing literature on conceptual frameworks, measurement approaches, and empirical findings. By synthesizing cutting-edge empirical evidence, we identify three critical future research directions: (1) dynamic coupling mechanisms, (2) heterogeneity of financial instruments, and (3) stage-dependent evolutionary pathways. Our study provides a theoretical foundation for understanding the complex finance-energy transition relationship and informs policy-making and interdisciplinary research. Full article
Show Figures

Figure 1

18 pages, 640 KiB  
Article
Fine-Tuning Methods and Dataset Structures for Multilingual Neural Machine Translation: A Kazakh–English–Russian Case Study in the IT Domain
by Zhanibek Kozhirbayev and Zhandos Yessenbayev
Electronics 2025, 14(15), 3126; https://doi.org/10.3390/electronics14153126 - 6 Aug 2025
Abstract
This study explores fine-tuning methods and dataset structures for multilingual neural machine translation using the No Language Left Behind model, with a case study on Kazakh, English, and Russian. We compare single-stage and two-stage fine-tuning approaches, as well as triplet versus non-triplet dataset [...] Read more.
This study explores fine-tuning methods and dataset structures for multilingual neural machine translation using the No Language Left Behind model, with a case study on Kazakh, English, and Russian. We compare single-stage and two-stage fine-tuning approaches, as well as triplet versus non-triplet dataset configurations, to improve translation quality. A high-quality, 50,000-triplet dataset in information technology domain, manually translated and expert-validated, serves as the in-domain benchmark, complemented by out-of-domain corpora like KazParC. Evaluations using BLEU, chrF, METEOR, and TER metrics reveal that single-stage fine-tuning excels for low-resource pairs (e.g., 0.48 BLEU, 0.77 chrF for Kazakh → Russian), while two-stage fine-tuning benefits high-resource pairs (Russian → English). Triplet datasets improve cross-linguistic consistency compared with non-triplet structures. Our reproducible framework offers practical guidance for adapting neural machine translation to technical domains and low-resource languages. Full article
Show Figures

Figure 1

7 pages, 208 KiB  
Proceeding Paper
Post-Quantum Crystal-Kyber Group-Oriented Encryption Scheme for Cloud Security in Personal Health Records
by Zhen-Yu Wu and Chia-Hui Liu
Eng. Proc. 2025, 103(1), 6; https://doi.org/10.3390/engproc2025103006 - 6 Aug 2025
Abstract
As medical technology develops and digital demands grow, personal health records (PHRs) are becoming more patient-centered than before based on cloud-based health information exchanges. While enhancing data accessibility and sharing, these systems present privacy and security issues, including data breaches and unauthorized access. [...] Read more.
As medical technology develops and digital demands grow, personal health records (PHRs) are becoming more patient-centered than before based on cloud-based health information exchanges. While enhancing data accessibility and sharing, these systems present privacy and security issues, including data breaches and unauthorized access. We developed a post-quantum, group-oriented encryption scheme using the Crystal-Kyber Key encapsulation mechanism (KEM). Leveraging lattice-based post-quantum cryptography, this scheme ensures quantum resilience and chosen ciphertext attack security for layered cloud PHR environments. It supports four encryption modes: individual, group, subgroup-specific, and authorized subgroup decryption, meeting diverse data access needs. With efficient key management requiring only one private key per user, the developed scheme strengthens the privacy and security of PHRs in a future-proof, flexible, and scalable manner. Full article
20 pages, 589 KiB  
Article
Intelligent Queue Scheduling Method for SPMA-Based UAV Networks
by Kui Yang, Chenyang Xu, Guanhua Qiao, Jinke Zhong and Xiaoning Zhang
Drones 2025, 9(8), 552; https://doi.org/10.3390/drones9080552 - 6 Aug 2025
Abstract
Static Priority-based Multiple Access (SPMA) is an emerging and promising wireless MAC protocol which is widely used in Unmanned Aerial Vehicle (UAV) networks. UAV (Unmanned Aerial Vehicle) networks, also known as drone networks, refer to a system of interconnected UAVs that communicate and [...] Read more.
Static Priority-based Multiple Access (SPMA) is an emerging and promising wireless MAC protocol which is widely used in Unmanned Aerial Vehicle (UAV) networks. UAV (Unmanned Aerial Vehicle) networks, also known as drone networks, refer to a system of interconnected UAVs that communicate and collaborate to perform tasks autonomously or semi-autonomously. These networks leverage wireless communication technologies to share data, coordinate movements, and optimize mission execution. In SPMA, traffic arriving at the UAV network node can be divided into multiple priorities according to the information timeliness, and the packets of each priority are stored in the corresponding queues with different thresholds to transmit packet, thus guaranteeing the high success rate and low latency for the highest-priority traffic. Unfortunately, the multi-priority queue scheduling of SPMA deprives the packet transmitting opportunity of low-priority traffic, which results in unfair conditions among different-priority traffic. To address this problem, in this paper we propose the method of Adaptive Credit-Based Shaper with Reinforcement Learning (abbreviated as ACBS-RL) to balance the performance of all-priority traffic. In ACBS-RL, the Credit-Based Shaper (CBS) is introduced to SPMA to provide relatively fair packet transmission opportunity among multiple traffic queues by limiting the transmission rate. Due to the dynamic situations of the wireless environment, the Q-learning-based reinforcement learning method is leveraged to adaptively adjust the parameters of CBS (i.e., idleslope and sendslope) to achieve better performance among all priority queues. The extensive simulation results show that compared with traditional SPMA protocol, the proposed ACBS-RL can increase UAV network throughput while guaranteeing Quality of Service (QoS) requirements of all priority traffic. Full article
Show Figures

Figure 1

25 pages, 4069 KiB  
Article
Forest Volume Estimation in Secondary Forests of the Southern Daxing’anling Mountains Using Multi-Source Remote Sensing and Machine Learning
by Penghao Ji, Wanlong Pang, Rong Su, Runhong Gao, Pengwu Zhao, Lidong Pang and Huaxia Yao
Forests 2025, 16(8), 1280; https://doi.org/10.3390/f16081280 - 5 Aug 2025
Abstract
Forest volume is an important information for assessing the economic value and carbon sequestration capacity of forest resources and serves as a key indicator for energy flow and biodiversity. Although remote sensing technology is applied to estimate volume, optical remote sensing data have [...] Read more.
Forest volume is an important information for assessing the economic value and carbon sequestration capacity of forest resources and serves as a key indicator for energy flow and biodiversity. Although remote sensing technology is applied to estimate volume, optical remote sensing data have limitations in capturing forest vertical height information and may suffer from reflectance saturation. While LiDAR data can provide more detailed vertical structural information, they come with high processing costs and limited observation range. Therefore, improving the accuracy of volume estimation through multi-source data fusion has become a crucial challenge and research focus in the field of forest remote sensing. In this study, we integrated Sentinel-2 multispectral data, Resource-3 stereoscopic imagery, UAV-based LiDAR data, and field survey data to quantitatively estimate the forest volume in Saihanwula Nature Reserve, located in Inner Mongolia, China, on the southern part of Daxing’anling Mountains. The study evaluated the performance of multi-source remote sensing features by using recursive feature elimination (RFE) to select the most relevant factors and applied four machine learning models—multiple linear regression (MLR), k-nearest neighbors (kNN), random forest (RF), and gradient boosting regression tree (GBRT)—to develop volume estimation models. The evaluation metrics include the coefficient of determination (R2), root mean square error (RMSE), and relative root mean square error (rRMSE). The results show that (1) forest Canopy Height Model (CHM) data were strongly correlated with forest volume, helping to alleviate the reflectance saturation issues inherent in spectral texture data. The fusion of CHM and spectral data resulted in an improved volume estimation model with R2 = 0.75 and RMSE = 8.16 m3/hm2, highlighting the importance of integrating multi-source canopy height information for more accurate volume estimation. (2) Volume estimation accuracy varied across different tree species. For Betula platyphylla, we obtained R2 = 0.71 and RMSE = 6.96 m3/hm2; for Quercus mongolica, R2 = 0.74 and RMSE = 6.90 m3/hm2; and for Populus davidiana, R2 = 0.51 and RMSE = 9.29 m3/hm2. The total forest volume in the Saihanwula Reserve ranges from 50 to 110 m3/hm2. (3) Among the four machine learning models, GBRT consistently outperformed others in all evaluation metrics, achieving the highest R2 of 0.86, lowest RMSE of 9.69 m3/hm2, and lowest rRMSE of 24.57%, suggesting its potential for forest biomass estimation. In conclusion, accurate estimation of forest volume is critical for evaluating forest management practices and timber resources. While this integrated approach shows promise, its operational application requires further external validation and uncertainty analysis to support policy-relevant decisions. The integration of multi-source remote sensing data provides valuable support for forest resource accounting, economic value assessment, and monitoring dynamic changes in forest ecosystems. Full article
(This article belongs to the Special Issue Mapping and Modeling Forests Using Geospatial Technologies)
Show Figures

Figure 1

42 pages, 5651 KiB  
Article
Towards a Trustworthy Rental Market: A Blockchain-Based Housing System Architecture
by Ching-Hsi Tseng, Yu-Heng Hsieh, Yen-Yu Chang and Shyan-Ming Yuan
Electronics 2025, 14(15), 3121; https://doi.org/10.3390/electronics14153121 - 5 Aug 2025
Abstract
This study explores the transformative potential of blockchain technology in overhauling conventional housing rental systems. It specifically addresses persistent issues, such as information asymmetry, fraudulent listings, weak Rental Agreements, and data breaches. A comprehensive review of ten academic publications highlights the architectural frameworks, [...] Read more.
This study explores the transformative potential of blockchain technology in overhauling conventional housing rental systems. It specifically addresses persistent issues, such as information asymmetry, fraudulent listings, weak Rental Agreements, and data breaches. A comprehensive review of ten academic publications highlights the architectural frameworks, underlying technologies, and myriad benefits of decentralized rental platforms. The intrinsic characteristics of blockchain—immutability, transparency, and decentralization—are pivotal in enhancing the credibility of rental information and proactively preventing fraudulent activities. Smart contracts emerge as a key innovation, enabling the automated execution of Rental Agreements, thereby significantly boosting efficiency and minimizing reliance on intermediaries. Furthermore, Decentralized Identity (DID) solutions offer a robust mechanism for securely managing identities, effectively mitigating risks associated with data leakage, and fostering a more trustworthy environment. The suitability of platforms such as Hyperledger Fabric for developing such sophisticated rental systems is also critically evaluated. Blockchain-based systems promise to dramatically increase market transparency, bolster transaction security, and enhance fraud prevention. They also offer streamlined processes for dispute resolution. Despite these significant advantages, the widespread adoption of blockchain in the rental sector faces several challenges. These include inherent technological complexity, adoption barriers, the need for extensive legal and regulatory adaptation, and critical privacy concerns (e.g., ensuring compliance with GDPR). Furthermore, blockchain scalability limitations and the intricate balance between data immutability and the necessity for occasional data corrections present considerable hurdles. Future research should focus on developing user-friendly DID solutions, enhancing blockchain performance and cost-efficiency, strengthening smart contract security, optimizing the overall user experience, and exploring seamless integration with emerging technologies. While current challenges are undeniable, blockchain technology offers a powerful suite of tools for fundamentally improving the rental market’s efficiency, transparency, and security, exhibiting significant potential to reshape the entire rental ecosystem. Full article
(This article belongs to the Special Issue Blockchain Technologies: Emerging Trends and Real-World Applications)
Show Figures

Figure 1

Back to TopTop