Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (162)

Search Parameters:
Keywords = information flow propagation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 487 KB  
Article
Trust-Aware Causal Consistency Routing for Quantum Key Distribution Networks Against Malicious Nodes
by Yi Luo and Qiong Li
Entropy 2025, 27(11), 1100; https://doi.org/10.3390/e27111100 - 24 Oct 2025
Viewed by 113
Abstract
Quantum key distribution (QKD) networks promise information-theoretic security for multiple nodes by leveraging the fundamental laws of quantum mechanics. In practice, QKD networks require dedicated routing protocols to coordinate secure key distribution among distributed nodes. However, most existing routing protocols operate under the [...] Read more.
Quantum key distribution (QKD) networks promise information-theoretic security for multiple nodes by leveraging the fundamental laws of quantum mechanics. In practice, QKD networks require dedicated routing protocols to coordinate secure key distribution among distributed nodes. However, most existing routing protocols operate under the assumption that all relay nodes are honest and fully trustworthy, an assumption that may not hold in realistic scenarios. Malicious nodes may tamper with routing updates, causing inconsistent key-state views or divergent routing plans across the network. Such inconsistencies increase routing failure rates and lead to severe wastage of valuable secret keys. To address these challenges, we propose a distributed routing framework that combines two key components: (i) Causal Consistency Key-State Update, which prevents malicious nodes from propagating inconsistent key states and routing plans; and (ii) Trust-Aware Multi-path Flow Optimization, which incorporates trust metrics derived from discrepancies in reported states into the path-selection objective, penalizing suspicious links and filtering fabricated demands. Across 50-node topologies with up to 30% malicious relays and under all three attack modes, our protocol sustains a high demand completion ratio (DCR) (mean 0.90, range 0.810.98) while keeping key utilization low (16.6 keys per demand), decisively outperforming the baselines—Multi-Path Planned (DCR 0.48, 30.8 keys per demand) and OSPF (DCR 0.12, 296 keys per demand; max 1601). These results highlight that our framework balances reliability and efficiency, providing a practical and resilient foundation for secure QKD networking in adversarial environments. Full article
(This article belongs to the Section Quantum Information)
Show Figures

Figure 1

21 pages, 2891 KB  
Article
A Community Detection Model Based on Dynamic Propagation-Aware Multi-Hop Feature Aggregation
by Chao Lei, Yuzhi Xiao, Sheng Jin, Tao Huang, Chuang Zhang and Meng Cheng
Entropy 2025, 27(10), 1053; https://doi.org/10.3390/e27101053 - 10 Oct 2025
Viewed by 311
Abstract
Community detection is a crucial technique for uncovering latent network structures, analyzing group behaviors, and understanding information dissemination pathways. Existing methods predominantly rely on static graph structural features, while neglecting the intrinsic dynamic patterns of information diffusion and nonlinear attenuation within static networks. [...] Read more.
Community detection is a crucial technique for uncovering latent network structures, analyzing group behaviors, and understanding information dissemination pathways. Existing methods predominantly rely on static graph structural features, while neglecting the intrinsic dynamic patterns of information diffusion and nonlinear attenuation within static networks. To address these limitations, we propose DAMA, a community detection model that integrates dynamic propagation-aware feature modeling with adaptive multi-hop structural aggregation. First, an Information Flow Matrix (IFM) is constructed to quantify the nonlinear attenuation of information propagation between nodes, thereby enriching static structural representations with nonlinear propagation dynamics. Second, we propose an Adaptive Sparse Sampling Module that adaptively retains influential neighbors by applying multi-level propagation thresholds, improving structural denoising and preserving essential diffusion pathways. Finally, we design a Hierarchical Multi-Hop Aggregation Framework, which employs a dual-gating mechanism to adaptively integrate neighborhood representations across multiple hops. This approach enables more expressive structural embeddings by progressively combining local and extended topological information. Experimental results demonstrate that DAMA achieves better performance in community detection tasks across multiple real-world networks and LFR-generated synthetic networks. Full article
(This article belongs to the Section Complexity)
Show Figures

Figure 1

21 pages, 8249 KB  
Article
Short-Term Passenger Flow Forecasting for Rail Transit Inte-Grating Multi-Scale Decomposition and Deep Attention Mechanism
by Youpeng Lu and Jiming Wang
Sustainability 2025, 17(19), 8880; https://doi.org/10.3390/su17198880 - 6 Oct 2025
Viewed by 496
Abstract
Short-term passenger flow prediction provides critical data-driven support for optimizing resource allocation, guiding passenger mobility, and enhancing risk response capabilities in urban rail transit systems. To further improve prediction accuracy, this study proposes a hybrid SMA-VMD-Informer-BiLSTM prediction model. Addressing the challenge of error [...] Read more.
Short-term passenger flow prediction provides critical data-driven support for optimizing resource allocation, guiding passenger mobility, and enhancing risk response capabilities in urban rail transit systems. To further improve prediction accuracy, this study proposes a hybrid SMA-VMD-Informer-BiLSTM prediction model. Addressing the challenge of error propagation caused by non-stationary components (e.g., noise and abrupt fluctuations) in conventional passenger flow signals, the Variational Mode Decomposition (VMD) method is introduced to decompose raw flow data into multiple intrinsic mode functions (IMFs). A Slime Mould Algorithm (SMA)-based optimization mechanism is designed to adaptively tune VMD parameters, effectively mitigating mode redundancy and information loss. Furthermore, to circumvent error accumulation inherent in serial modeling frameworks, a parallel prediction architecture is developed: the Informer branch captures long-term dependencies through its ProbSparse self-attention mechanism, while the Bidirectional Long Short-Term Memory (BiLSTM) network extracts localized short-term temporal patterns. The outputs of both branches are fused via a fully connected layer, balancing global trend adherence and local fluctuation characterization. Experimental validation using historical entry flow data from Weihouzhuang Station on Xi’an Metro demonstrated the superior performance of the SMA-VMD-Informer-BiLSTM model. Compared to benchmark models (CNN-BiLSTM, CNN-BiGRU, Transformer-LSTM, ARIMA-LSTM), the proposed model achieved reductions of 7.14–53.33% in fmse, 3.81–31.14% in frmse, and 8.87–38.08% in fmae, alongside a 4.11–5.48% improvement in R2. Cross-station validation across multiple Xi’an Metro hubs further confirmed robust spatial generalizability, with prediction errors bounded within fmse: 0.0009–0.01, frmse: 0.0303–0.1, fmae: 0.0196–0.0697, and R2: 0.9011–0.9971. Furthermore, the model demonstrated favorable predictive performance when applied to forecasting passenger inflows at multiple stations in Nanjing and Zhengzhou, showcasing its excellent spatial transferability. By integrating multi-level, multi-scale data processing and adaptive feature extraction mechanisms, the proposed model significantly mitigates error accumulation observed in traditional approaches. These findings collectively indicate its potential as a scientific foundation for refined operational decision-making in urban rail transit management, thereby significantly promoting the sustainable development and long-term stable operation of urban rail transit systems. Full article
Show Figures

Figure 1

13 pages, 724 KB  
Article
Research on the Development and Application of the GDELT Event Database
by Dengxi Hong, Zexin Fu, Xin Zhang and Yan Pan
Data 2025, 10(10), 158; https://doi.org/10.3390/data10100158 - 1 Oct 2025
Viewed by 1228
Abstract
This study investigates the development and application of the GDELT (Global Database of Events, Language, and Tone) news database. Through experiments, we conducted a quantitative statistical analysis of the GDELT event database to evaluate its practical characteristics. The results indicate that although the [...] Read more.
This study investigates the development and application of the GDELT (Global Database of Events, Language, and Tone) news database. Through experiments, we conducted a quantitative statistical analysis of the GDELT event database to evaluate its practical characteristics. The results indicate that although the database achieves comprehensive coverage across all countries and regions and includes most major global media outlets, the accuracy rate of its key fields is only approximately 55%, with a data redundancy as high as 20%. Based on these findings, while the GDELT data demonstrates good coverage and data integrity, data correction and deduplication are recommended before its use in research contexts and industrial applications. Subsequently, a survey of the existing literature reveals that current studies using GDELT primarily focused on event-related metrics, such as event quantity, tone, and GoldsteinScale, for application in international relations analysis, crisis event prediction, policy effectiveness testing, and public opinion impact analysis. Nevertheless, news constitutes a fundamental channel of information dissemination in media networks, and the propagation of news events through these networks represents a critical area of study for information recommendation, public opinion guidance, and crisis intervention. Existing research has employed the Event, GKG, and Mentions tables to construct cross-national news flow network models. However, the informational correlations across different data table fields have not been fully leveraged in preliminary data selection, leading to substantial computational overhead. To advance research in this field, this study employs chained list queries on the Event and Mentions tables within GDELT. Using social network analysis, we constructed a media co-occurrence network of event reports, through which core hubs and associative relationships within the event dissemination network are identified. Full article
Show Figures

Figure 1

22 pages, 3966 KB  
Article
Broadband Acoustic Modal Identification by Combined Sensor Array Measurements
by Kunbo Xu, Dongjun Liu, Zekai Zong, Chenzhe Xiang, Weiyang Qiao and Liang Yu
Acoustics 2025, 7(4), 60; https://doi.org/10.3390/acoustics7040060 - 23 Sep 2025
Viewed by 380
Abstract
This paper proposes a synchronous measurement method for broadband acoustic modal identification based on a combined microphone array, which is capable of overcoming the acoustic modal aliasing issue arising from a limited number of microphones. In the proposed method, the cross-correlation combination of [...] Read more.
This paper proposes a synchronous measurement method for broadband acoustic modal identification based on a combined microphone array, which is capable of overcoming the acoustic modal aliasing issue arising from a limited number of microphones. In the proposed method, the cross-correlation combination of axial and circumferential arrays is performed by utilizing the relevant characteristics of turbulent noise modes, thereby realizing modal identification of turbulent noise in a wide range with a small number of acoustic measurement points. For fast iteration, the modal cross terms are optimized by leveraging the relevant characteristics of turbulent noise modes. This method can effectively distinguish the distribution information of forward- and backward-propagating acoustic modes. The accuracy of the identified acoustic modes is verified through numerical simulations, and the method is experimentally validated using experimental results from an axial flow compressor. The results show that this method can effectively suppress the aliasing problem. Compared with the traditional rotating axial array method, it has higher testing efficiency in circumferential and radial modal identification, requires fewer sound-pressure measurement points, and is more suitable for rapid evaluation of noise reduction designs. Full article
Show Figures

Figure 1

21 pages, 1275 KB  
Article
Graph Neural Networks for Fault Diagnosis in Photovoltaic-Integrated Distribution Networks with Weak Features
by Junhao Liu, Yuteng Huang, Ke Chen, Guojin Liu, Jiaxiang Yan, Shan Chen, Yuqing Xie, Yantao Yu and Tiancong Huang
Sensors 2025, 25(18), 5691; https://doi.org/10.3390/s25185691 - 12 Sep 2025
Viewed by 559
Abstract
Effective diagnosis of distribution network faults is crucial to ensuring the reliability of power systems. However, the bidirectional power flow caused by the integration of new energy limits the effectiveness of traditional detection methods. Although data-driven approaches are not restricted by power flow [...] Read more.
Effective diagnosis of distribution network faults is crucial to ensuring the reliability of power systems. However, the bidirectional power flow caused by the integration of new energy limits the effectiveness of traditional detection methods. Although data-driven approaches are not restricted by power flow direction, their performance is heavily dependent on the quantity and quality of training samples. In addition, factors such as measurement noise, variable fault impedance, and volatile photovoltaic output complicate fault information. To address this, we present a new fault diagnosis model named the dynamic, adaptive, and coupled dual-field-encoding graph neural network (DACDFE-GNN), which introduces a dynamic aggregation module to assign different weights to reduce noise interference and fully integrates information from observable nodes. On this basis, the coupled dual-field-encoding module is proposed, which encodes topological information and physical–electrical domain information as part of the initial features, thereby capturing fault features and learning the law of feature propagation. The experimental results for the IEEE 34- and IEEE 123-node feeder systems indicate that the proposed model surpasses recent fault diagnosis methods in detection performance, particularly regarding its low training sample rate. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

28 pages, 68775 KB  
Article
Machine Learning Approaches for Predicting Lithological and Petrophysical Parameters in Hydrocarbon Exploration: A Case Study from the Carpathian Foredeep
by Drozd Arkadiusz, Topór Tomasz, Lis-Śledziona Anita and Sowiżdżał Krzysztof
Energies 2025, 18(17), 4521; https://doi.org/10.3390/en18174521 - 26 Aug 2025
Viewed by 760
Abstract
This study presents a novel approach to the parametrization of 3D PETRO FACIES and SEISMO FACIES using supervised and unsupervised learning, supported by a coherent structural and stratigraphic framework, to enhance understanding of the presence of hydrocarbons in the Dzików–Uszkowce region. The prediction [...] Read more.
This study presents a novel approach to the parametrization of 3D PETRO FACIES and SEISMO FACIES using supervised and unsupervised learning, supported by a coherent structural and stratigraphic framework, to enhance understanding of the presence of hydrocarbons in the Dzików–Uszkowce region. The prediction relies on selected seismic attributes and well logging data, which are essential in hydrocarbon exploration. Three-dimensional seismic data, a crucial source of information, reflect the propagation velocity of elastic waves influenced by lithological formations and reservoir fluids. However, seismic response similarities complicate accurate seismic image interpretation. Three-dimensional seismic data were also used to build a structural–stratigraphic model that partitions the study area into coeval strata, enabling spatial analysis of the machine learning results. In the 3D seismic model, PETRO FACIES classification achieved an overall accuracy of 80% (SD = 0.01), effectively distinguishing sandstone- and mudstone-dominated facies (RT1–RT4) with F1 scores between 0.65 and 0.85. RESERVOIR FACIES prediction, covering seven hydrocarbon system classes, reached an accuracy of 70% (SD = 0.01). However, class-level performance varied substantially. Non-productive zones such as HNF (No Flow) were identified with high precision (0.82) and recall (0.84, F1 = 0.83), while mixed-saturation facies (HWGS, BSWGS) showed moderate performance (F1 = 0.74–0.81). In contrast, gas-saturated classes (BSGS and HGS) suffered from extremely low F1 scores (0.08 and 0.12, respectively), with recalls as low as 5–7%, highlighting the model’s difficulty in discriminating these units from water-saturated or mixed facies due to overlapping seismic responses and limited training data for gas-rich intervals. To enhance reservoir characterization, SEISMO FACIES analysis identified 12 distinct seismic facies using key attributes. An additional facies (facies 13) was defined to characterize gas-saturated sandstones with high reservoir quality and accumulation potential. Refinements were performed using borehole data on hydrocarbon-bearing zones and clay volume (VCL), applying a 0.3 VCL cutoff and filtering specific facies to isolate zones with confirmed gas presence. The same approach was applied to PETRO FACIES and a new RT facie was extracted. This integrated approach improved mapping of lithological variability and hydrocarbon saturation in complex geological settings. The results were validated against two blind wells that were excluded from the machine learning process. Knowledge of the presence of gas in well N-1 and its absence in well D-24 guided verification of the models within the structural–stratigraphic framework. Full article
(This article belongs to the Section H1: Petroleum Engineering)
Show Figures

Figure 1

18 pages, 5865 KB  
Article
Multi-Lane Congestion Control Model for Intelligent Connected Vehicles Integrating Optimal Traffic Flow Difference Information in V2X Environment
by Li Zhou, Chuan Tian and Shuhong Yang
World Electr. Veh. J. 2025, 16(8), 457; https://doi.org/10.3390/wevj16080457 - 11 Aug 2025
Viewed by 532
Abstract
In the V2X environment, intelligent connected vehicles can obtain multi-dimensional traffic flow data in real time through the vehicle–road collaborative cyber–physical fusion system. Based on this, this study proposes a multi-lane traffic flow lattice model integrating optimal traffic flow difference estimation information to [...] Read more.
In the V2X environment, intelligent connected vehicles can obtain multi-dimensional traffic flow data in real time through the vehicle–road collaborative cyber–physical fusion system. Based on this, this study proposes a multi-lane traffic flow lattice model integrating optimal traffic flow difference estimation information to effectively suppress traffic congestion. The linear stability criterion of the system is derived through linear stability analysis, proving that the optimal traffic flow difference estimation can significantly expand the stable region and suppress traffic fluctuations caused by small disturbances. Furthermore, the perturbation method is used to derive the mKdV equation near the critical stability point of the system, revealing the nonlinear characteristics of traffic congestion propagating in the form of kink solitary waves, and indicating that the new consideration effect can effectively slow down the congestion propagation speed by adjusting the parameters of solitary waves (such as wave speed and amplitude). The numerical simulation results show that compared to the traditional model, the improved model exhibits enhanced traffic flow stability and robustness. Meanwhile, it reveals the nonlinear relationship between the increase of the number of lanes and the alleviation of congestion, and there is an optimal lane configuration threshold. The research results not only provide theoretical support for the optimization of traffic flow efficiency in intelligent transportation systems, but also provide a decision-making basis for dynamic lane management strategies in the V2X environment. Full article
Show Figures

Figure 1

23 pages, 8003 KB  
Article
Study on Meso-Mechanical Evolution Characteristics and Numerical Simulation of Deep Soft Rock
by Anying Yuan, Hao Huang and Tang Li
Processes 2025, 13(8), 2358; https://doi.org/10.3390/pr13082358 - 24 Jul 2025
Viewed by 456
Abstract
To reveal the meso-mechanical essence of deep rock mass failure and capture precursor information, this study focuses on soft rock failure mechanisms. Based on the discontinuous medium discrete element method (DEM), we employed digital image correlation (DIC) technology, acoustic emission (AE) monitoring, and [...] Read more.
To reveal the meso-mechanical essence of deep rock mass failure and capture precursor information, this study focuses on soft rock failure mechanisms. Based on the discontinuous medium discrete element method (DEM), we employed digital image correlation (DIC) technology, acoustic emission (AE) monitoring, and particle flow code (PFC) numerical simulation to investigate the failure evolution characteristics and AE quantitative representation of soft rocks. Key findings include the following: Localized high-strain zones emerge on specimen surfaces before macroscopic crack visualization, with crack tip positions guiding both high-strain zones and crack propagation directions. Strong force chain evolution exhibits high consistency with the macroscopic stress response—as stress increases and damage progresses, force chains concentrate near macroscopic fracture surfaces, aligning with crack propagation directions, while numerous short force chains coalesce into longer chains. The spatial and temporal distribution characteristics of acoustic emissions were explored, and the damage types were quantitatively characterized, with ring-down counts demonstrating four distinct stages: sporadic, gradual increase, stepwise growth, and surge. Shear failures predominantly occurred along macroscopic fracture surfaces. At the same time, there is a phenomenon of acoustic emission silence in front of the stress peak in the surrounding rock of deep soft rock roadway, as a potential precursor indicator for engineering disaster early warning. These findings provide critical theoretical support for deep engineering disaster prediction. Full article
Show Figures

Figure 1

26 pages, 663 KB  
Article
An Information-Theoretic Framework for Retrieval-Augmented Generation Systems
by Semih Yumuşak
Electronics 2025, 14(15), 2925; https://doi.org/10.3390/electronics14152925 - 22 Jul 2025
Viewed by 1273
Abstract
Retrieval-Augmented Generation (RAG) systems have emerged as a critical approach for enhancing large language models with external knowledge, yet the field lacks systematic theoretical analysis for understanding their fundamental characteristics and optimization principles. A novel information-theoretic approach for analyzing and optimizing RAG systems [...] Read more.
Retrieval-Augmented Generation (RAG) systems have emerged as a critical approach for enhancing large language models with external knowledge, yet the field lacks systematic theoretical analysis for understanding their fundamental characteristics and optimization principles. A novel information-theoretic approach for analyzing and optimizing RAG systems is introduced in this paper by modeling them as cascading information channel systems where each component (query encoding, retrieval, context integration, and generation) functions as a distinct information-theoretic channel with measurable capacity. Following established practices in information theory research, theoretical insights are evaluated through systematic experimentation on controlled synthetic datasets that enable precise manipulation of schema entropy and isolation of information flow dynamics. Through this controlled experimental approach, the following key theoretical insights are supported: (1) RAG performance is bounded by the minimum capacity across constituent channels, (2) the retrieval channel represents the primary information bottleneck, (3) errors propagate through channel-dependent mechanisms with specific interaction patterns, and (4) retrieval capacity is fundamentally limited by the minimum of embedding dimension and schema entropy. Both quantitative metrics for evaluating RAG systems and practical design principles for optimization are provided by the proposed approach. Retrieval improvements yield 58–85% performance gains and generation improvements yield 58–110% gains, substantially higher than context integration improvements (∼9%) and query encoding modifications, as shown by experimental results on controlled synthetic environments, supporting the theoretical approach. A systematic theoretical analysis for understanding RAG system dynamics is provided by this work, with real-world validation and practical implementation refinements representing natural next phases for this research. Full article
(This article belongs to the Special Issue Advanced Natural Language Processing Technology and Applications)
Show Figures

Figure 1

13 pages, 4246 KB  
Article
Study on the Characteristics of CO2 Displacing Non-Newtonian Fluids
by Yu-Ting Wu, Sung-Ki Lyu, Zhen Qin, Yanjun Qin, Hua Qiao and Bing Li
Lubricants 2025, 13(7), 300; https://doi.org/10.3390/lubricants13070300 - 8 Jul 2025
Viewed by 578
Abstract
CO2 displacement is a key technique that was examined through numerical methods in a 3D Hele–Shaw cell, with CO2 as the displacing phase and shear-thinning fluids as the displaced phase. Without interfacial tension effects, the displacement shows branching patterns forming two [...] Read more.
CO2 displacement is a key technique that was examined through numerical methods in a 3D Hele–Shaw cell, with CO2 as the displacing phase and shear-thinning fluids as the displaced phase. Without interfacial tension effects, the displacement shows branching patterns forming two vertically symmetric fingers, regardless of whether the displacing fluid is air or CO2. Under CO2 displacement, viscous fingering propagates farther and achieves higher displacement efficiency than air. Compared with air displacement, the finger advancing distance increases by 0.0035 m, and the displacement efficiency is 15.2% higher than that of air displacement. Shear-thinning behavior significantly influences the process; stronger shear thinning enhances interfacial stability and suppresses fingering. As the power-law index n increases (reducing shear thinning), the fingering length extends. Variations in interfacial tension reveal it notably affects fingering initiation and velocity in CO2 displacement of non-Newtonian fluids, but has a weaker impact on fingering formation. Interfacial tension suppresses short-wavelength perturbations, critical to interface stability, jet breakup, and flows, informing applications like foam-assisted oil recovery and microfluidics. Full article
Show Figures

Figure 1

23 pages, 25599 KB  
Article
Numerical Simulation and Risk Assessment of Debris Flows in Suyukou Gully, Eastern Helan Mountains, China
by Guorui Wang, Hui Wang, Zheng He, Shichang Gao, Gang Zhang, Zhiyong Hu, Xiaofeng He, Yongfeng Gong and Jinkai Yan
Sustainability 2025, 17(13), 5984; https://doi.org/10.3390/su17135984 - 29 Jun 2025
Viewed by 832
Abstract
Suyukou Gully, located on the eastern slope of the Helan Mountains in northwest China, is a typical debris-flow-prone catchment characterized by a steep terrain, fractured bedrock, and abundant loose colluvial material. The area is subject to intense short-duration convective rainfall events, which often [...] Read more.
Suyukou Gully, located on the eastern slope of the Helan Mountains in northwest China, is a typical debris-flow-prone catchment characterized by a steep terrain, fractured bedrock, and abundant loose colluvial material. The area is subject to intense short-duration convective rainfall events, which often trigger destructive debris flows that threaten the Suyukou Scenic Area. To investigate the dynamics and risks associated with such events, this study employed the FLO-2D two-dimensional numerical model to simulate debris flow propagation, deposition, and hazard distribution under four rainfall return periods (10-, 20-, 50-, and 100-year scenarios). The modeling framework integrated high-resolution digital elevation data (original 5 m DEM resampled to 20 m grid), land-use classification, rainfall design intensities derived from regional storm atlases, and detailed field-based sediment characterization. Rheological and hydraulic parameters, including Manning’s roughness coefficient, yield stress, dynamic viscosity, and volume concentration, were calibrated using post-event geomorphic surveys and empirical formulations. The model was validated against field-observed deposition limits and flow depths, achieving a spatial accuracy within 350 m. Results show that the debris flow mobility and hazard intensity increased significantly with rainfall magnitude. Under the 100-year scenario, the peak discharge reached 1195.88 m3/s, with a maximum flow depth of 20.15 m and velocities exceeding 8.85 m·s−1, while the runout distance surpassed 5.1 km. Hazard zoning based on the depth–velocity (H × V) product indicated that over 76% of the affected area falls within the high-hazard zone. A vulnerability assessment incorporated exposure factors such as tourism infrastructure and population density, and a matrix-based risk classification revealed that 2.4% of the area is classified as high-risk, while 74.3% lies within the moderate-risk category. This study also proposed mitigation strategies, including structural measures (e.g., check dams and channel straightening) and non-structural approaches (e.g., early warning systems and land-use regulation). Overall, the research demonstrates the effectiveness of physically based modeling combined with field observations and a GIS analysis in understanding debris flow hazards and supports informed risk management and disaster preparedness in mountainous tourist regions. Full article
Show Figures

Figure 1

26 pages, 5143 KB  
Article
Lag-Specific Transfer Entropy for Root Cause Diagnosis and Delay Estimation in Industrial Sensor Networks
by Rui Chen, Shu Liang, Jian-Guo Wang, Yuan Yao, Jing-Ru Su and Li-Lan Liu
Sensors 2025, 25(13), 3980; https://doi.org/10.3390/s25133980 - 26 Jun 2025
Viewed by 710
Abstract
Industrial plants now stream thousands of temperature, pressure, flow rate, and composition measurements at minute-level intervals. These multi-sensor records often contain variable transport or residence time delays that hinder accurate disturbance analysis. This study applies lag-specific transfer entropy (LSTE) to historical sensor logs [...] Read more.
Industrial plants now stream thousands of temperature, pressure, flow rate, and composition measurements at minute-level intervals. These multi-sensor records often contain variable transport or residence time delays that hinder accurate disturbance analysis. This study applies lag-specific transfer entropy (LSTE) to historical sensor logs to identify the instrument that first deviates from normal operation and the time required for that deviation to appear at downstream points. A self-prediction optimization step removes each sensor’s own information storage, after which LSTE is computed at candidate lags and tested against time-shifted surrogates for statistical significance. The method is benchmarked on a nonlinear simulation, the Tennessee Eastman plant, a three-phase separator test rig, and a full-scale blast furnace line. Across all cases, LSTE locates the disturbance origin and reports propagation times that match known process physics, while significantly reducing false links compared to classical transfer entropy. Full article
Show Figures

Figure 1

19 pages, 1594 KB  
Article
Leave as Fast as You Can: Using Generative AI to Automate and Accelerate Hospital Discharge Reports
by Alex Trejo Omeñaca, Esteve Llargués Rocabruna, Jonny Sloan, Michelle Catta-Preta, Jan Ferrer i Picó, Julio Cesar Alfaro Alvarez, Toni Alonso Solis, Eloy Lloveras Gil, Xavier Serrano Vinaixa, Daniela Velasquez Villegas, Ramon Romeu Garcia, Carles Rubies Feijoo, Josep Maria Monguet i Fierro and Beatriu Bayes Genis
Computers 2025, 14(6), 210; https://doi.org/10.3390/computers14060210 - 28 May 2025
Viewed by 2117
Abstract
Clinical documentation, particularly the hospital discharge report (HDR), is essential for ensuring continuity of care, yet its preparation is time-consuming and places a considerable clinical and administrative burden on healthcare professionals. Recent advancements in Generative Artificial Intelligence (GenAI) and the use of prompt [...] Read more.
Clinical documentation, particularly the hospital discharge report (HDR), is essential for ensuring continuity of care, yet its preparation is time-consuming and places a considerable clinical and administrative burden on healthcare professionals. Recent advancements in Generative Artificial Intelligence (GenAI) and the use of prompt engineering in large language models (LLMs) offer opportunities to automate parts of this process, improving efficiency and documentation quality while reducing administrative workload. This study aims to design a digital system based on LLMs capable of automatically generating HDRs using information from clinical course notes and emergency care reports. The system was developed through iterative cycles, integrating various instruction flows and evaluating five different LLMs combined with prompt engineering strategies and agent-based architectures. Throughout the development, more than 60 discharge reports were generated and assessed, leading to continuous system refinement. In the production phase, 40 pneumology discharge reports were produced, receiving positive feedback from physicians, with an average score of 2.9 out of 4, indicating the system’s usefulness, with only minor edits needed in most cases. The ongoing expansion of the system to additional services and its integration within a hospital electronic system highlights the potential of LLMs, when combined with effective prompt engineering and agent-based architectures, to generate high-quality medical content and provide meaningful support to healthcare professionals. Hospital discharge reports (HDRs) are pivotal for continuity of care but consume substantial clinician time. Generative AI systems based on large language models (LLMs) could streamline this process, provided they deliver accurate, multilingual, and workflow-compatible outputs. We pursued a three-stage, design-science approach. Proof-of-concept: five state-of-the-art LLMs were benchmarked with multi-agent prompting to produce sample HDRs and define the optimal agent structure. Prototype: 60 HDRs spanning six specialties were generated and compared with clinician originals using ROUGE with average scores compatible with specialized news summarizing models in Spanish and Catalan (lower scores). A qualitative audit of 27 HDR pairs showed recurrent divergences in medication dose (56%) and social context (52%). Pilot deployment: The AI-HDR service was embedded in the hospital’s electronic health record. In the pilot, 47 HDRs were autogenerated in real-world settings and reviewed by attending physicians. Missing information and factual errors were flagged in 53% and 47% of drafts, respectively, while written assessments diminished the importance of these errors. An LLM-driven, agent-orchestrated pipeline can safely draft real-world HDRs, cutting administrative overhead while achieving clinician-acceptable quality, not without errors that require human supervision. Future work should refine specialty-specific prompts to curb omissions, add temporal consistency checks to prevent outdated data propagation, and validate time savings and clinical impact in multi-center trials. Full article
(This article belongs to the Special Issue Natural Language Processing (NLP) and Large Language Modelling)
Show Figures

Figure 1

27 pages, 8009 KB  
Article
Electromagnetic–Mechanical–Acoustic Coupling Analysis of Transformers Under Geomagnetically Induced Current Interference
by Jingge An, Chao Pan and Xiaobo Shi
Machines 2025, 13(5), 437; https://doi.org/10.3390/machines13050437 - 21 May 2025
Viewed by 673
Abstract
During geomagnetic storms, a geomagnetically induced current (GIC) flows into grounding transformers, potentially causing anomalous vibrations and audible noise in internal components. This study establishes an electromagnetic–mechanical–acoustic coupling (EMAC) model to characterize the multi-physics interactions in transformers under GIC interference. Based on the [...] Read more.
During geomagnetic storms, a geomagnetically induced current (GIC) flows into grounding transformers, potentially causing anomalous vibrations and audible noise in internal components. This study establishes an electromagnetic–mechanical–acoustic coupling (EMAC) model to characterize the multi-physics interactions in transformers under GIC interference. Based on the measured data, the GIC is classified into fluctuating and constant components according to its fluctuation characteristics. A propagation-path-based coupling model is proposed to investigate the correlated interactions among physical fields, extracting critical parameters, including winding current, magnetic flux, electromagnetic force, vibration, and noise. Comparative simulations reveal that the fluctuating component induces more complex multi-physics variations, generating significantly higher vibration amplitudes and noise levels compared to those of the constant component. A dynamic experimental platform is built to obtain multi-physics field information in different modes, and the effectiveness of the model and the correctness of the conclusions are verified through virtual–physical consistency validation. On this basis, multimodal feature information domains are established to delineate the operational state intervals of the transformer under GIC interference. Stability threshold criteria are subsequently developed, providing a critical quantitative basis for the condition monitoring of power transformers. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

Back to TopTop