Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (615)

Search Parameters:
Keywords = industrial maintenance management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1621 KiB  
Article
Integration of Data Analytics and Data Mining for Machine Failure Mitigation and Decision Support in Metal–Mechanical Industry
by Sidnei Alves de Araujo, Silas Luiz Bomfim, Dimitria T. Boukouvalas, Sergio Ricardo Lourenço, Ugo Ibusuki and Geraldo Cardoso de Oliveira Neto
Logistics 2025, 9(3), 109; https://doi.org/10.3390/logistics9030109 (registering DOI) - 7 Aug 2025
Abstract
Background: The growing complexity of production processes in the metal–mechanical industry demands ever more effective strategies for managing machine and equipment maintenance, as unexpected failures can incur high operational costs and compromise productivity by interrupting workflows and delaying deliveries. However, few studies [...] Read more.
Background: The growing complexity of production processes in the metal–mechanical industry demands ever more effective strategies for managing machine and equipment maintenance, as unexpected failures can incur high operational costs and compromise productivity by interrupting workflows and delaying deliveries. However, few studies have combined end-to-end data analytics and data mining methods to proactively predict and mitigate such failures. This study aims to develop and validate a comprehensive framework combining data analytics and data mining to prevent machine failures and support decision-making in a metal–mechanical manufacturing environment. Methods: First, exploratory data analytics were performed on the sensor and logistics data to identify significant relationships and trends between variables. Next, a preprocessing pipeline including data cleaning, data transformation, feature selection, and resampling was applied. Finally, a decision tree model was trained to identify conditions prone to failures, enabling not only predictions but also the explicit representation of knowledge in the form of decision rules. Results: The outstanding performance of the decision tree (82.1% accuracy and a Kappa index of 78.5%), which was modeled from preprocessed data and the insights produced by data analytics, demonstrates its ability to generate reliable rules for predicting failures to support decision-making. The implementation of the proposed framework enables the optimization of predictive maintenance strategies, effectively reducing unplanned downtimes and enhancing the reliability of production processes in the metal–mechanical industry. Full article
29 pages, 3542 KiB  
Review
Digital Twins, AI, and Cybersecurity in Additive Manufacturing: A Comprehensive Review of Current Trends and Challenges
by Md Sazol Ahmmed, Laraib Khan, Muhammad Arif Mahmood and Frank Liou
Machines 2025, 13(8), 691; https://doi.org/10.3390/machines13080691 - 6 Aug 2025
Abstract
The development of Industry 4.0 has accelerated the adoption of sophisticated technologies, including Digital Twins (DTs), Artificial Intelligence (AI), and cybersecurity, within Additive Manufacturing (AM). Enabling real-time monitoring, process optimization, predictive maintenance, and secure data management can redefine conventional manufacturing paradigms. Although their [...] Read more.
The development of Industry 4.0 has accelerated the adoption of sophisticated technologies, including Digital Twins (DTs), Artificial Intelligence (AI), and cybersecurity, within Additive Manufacturing (AM). Enabling real-time monitoring, process optimization, predictive maintenance, and secure data management can redefine conventional manufacturing paradigms. Although their individual importance is increasing, a consistent understanding of how these technologies interact and collectively improve AM procedures is lacking. Focusing on the integration of digital twins (DTs), modular AI, and cybersecurity in AM, this review presents a comprehensive analysis of over 137 research publications from Scopus, Web of Science, Google Scholar, and ResearchGate. The publications are categorized into three thematic groups, followed by an analysis of key findings. Finally, the study identifies research gaps and proposes detailed recommendations along with a framework for future research. The study reveals that traditional AM processes have undergone significant transformations driven by digital threads, digital threads (DTs), and AI. However, this digitalization introduces vulnerabilities, leaving AM systems prone to cyber-physical attacks. Emerging advancements in AI, Machine Learning (ML), and Blockchain present promising solutions to mitigate these challenges. This paper is among the first to comprehensively summarize and evaluate the advancements in AM, emphasizing the integration of DTs, Modular AI, and cybersecurity strategies. Full article
(This article belongs to the Special Issue Neural Networks Applied in Manufacturing and Design)
Show Figures

Figure 1

35 pages, 782 KiB  
Systematic Review
A Systematic Literature Review on PHM Strategies for (Hydraulic) Primary Flight Control Actuation Systems
by Leonardo Baldo, Andrea De Martin, Giovanni Jacazio and Massimo Sorli
Actuators 2025, 14(8), 382; https://doi.org/10.3390/act14080382 - 2 Aug 2025
Viewed by 126
Abstract
Prognostic and Health Management (PHM) strategies are gaining increasingly more traction in almost every field of engineering, offering stakeholders advanced capabilities in system monitoring, anomaly detection, and predictive maintenance. Primary flight control actuators are safety-critical elements within aircraft flight control systems (FCSs), and [...] Read more.
Prognostic and Health Management (PHM) strategies are gaining increasingly more traction in almost every field of engineering, offering stakeholders advanced capabilities in system monitoring, anomaly detection, and predictive maintenance. Primary flight control actuators are safety-critical elements within aircraft flight control systems (FCSs), and currently, they are mainly based on Electro-Hydraulic Actuators (EHAs) or Electro-Hydrostatic Actuators (EHSAs). Despite the widespread diffusion of PHM methodologies, the application of these technologies for EHAs is still somewhat limited, and the available information is often restricted to the industrial sector. To fill this gap, this paper provides an in-depth analysis of state-of-the-art EHA PHM strategies for aerospace applications, as well as their limitations and further developments through a Systematic Literature Review (SLR). An objective and clear methodology, combined with the use of attractive and informative graphics, guides the reader towards a thorough investigation of the state of the art, as well as the challenges in the field that limit a wider implementation. It is deemed that the information presented in this review will be useful for new researchers and industry engineers as it provides indications for conducting research in this specific and still not very investigated sector. Full article
Show Figures

Figure 1

36 pages, 5053 KiB  
Systematic Review
Prescriptive Maintenance: A Systematic Literature Review and Exploratory Meta-Synthesis
by Marko Orošnjak, Felix Saretzky and Slawomir Kedziora
Appl. Sci. 2025, 15(15), 8507; https://doi.org/10.3390/app15158507 - 31 Jul 2025
Viewed by 218
Abstract
Prescriptive Maintenance (PsM) transforms industrial asset management by enabling autonomous decisions through simultaneous failure anticipation and optimal maintenance recommendations. Yet, despite increasing research interest, the conceptual clarity, technological maturity, and practical deployment of PsM remains fragmented. Here, we conduct a comprehensive and application-oriented [...] Read more.
Prescriptive Maintenance (PsM) transforms industrial asset management by enabling autonomous decisions through simultaneous failure anticipation and optimal maintenance recommendations. Yet, despite increasing research interest, the conceptual clarity, technological maturity, and practical deployment of PsM remains fragmented. Here, we conduct a comprehensive and application-oriented Systematic Literature Review of studies published between 2013–2024. We identify key enablers—artificial intelligence and machine learning, horizontal and vertical integration, and deep reinforcement learning—that map the functional space of PsM across industrial sectors. The results from our multivariate meta-synthesis uncover three main thematic research clusters, ranging from decision-automation of technical (multi)component-level systems to strategic and organisational-support strategies. Notably, while predictive models are widely adopted, the translation of these capabilities to PsM remains limited. Primary reasons include semantic interoperability, real-time optimisation, and deployment scalability. As a response, a structured research agenda is proposed to emphasise hybrid architectures, context-aware prescription mechanisms, and alignment with Industry 5.0 principles of human-centricity, resilience, and sustainability. The review establishes a critical foundation for future advances in intelligent, explainable, and action-oriented maintenance systems. Full article
Show Figures

Figure 1

35 pages, 2713 KiB  
Article
Leveraging the Power of Human Resource Management Practices for Workforce Empowerment in SMEs on the Shop Floor: A Study on Exploring and Resolving Issues in Operations Management
by Varun Tripathi, Deepshi Garg, Gianpaolo Di Bona and Alessandro Silvestri
Sustainability 2025, 17(15), 6928; https://doi.org/10.3390/su17156928 - 30 Jul 2025
Viewed by 300
Abstract
Operations management personnel emphasize the maintenance of workforce empowerment on the shop floor. This is made possible by implementing effective operations and human resource management practices. However, organizations are adept at controlling the workforce empowerment domain within operational scenarios. In the current industry [...] Read more.
Operations management personnel emphasize the maintenance of workforce empowerment on the shop floor. This is made possible by implementing effective operations and human resource management practices. However, organizations are adept at controlling the workforce empowerment domain within operational scenarios. In the current industry revolution scenario, industry personnel often face failure due to a laggard mindset in the face of industry revolutions. There are higher possibilities of failure because of standardized operations controlling the shop floor. Organizations utilize well-established human resource concepts, including McClelland’s acquired needs theory, Herzberg’s two-factor theory, and Maslow’s hierarchy of needs, in order to enhance the workforce’s performance on the shop floor. Current SME individuals require fast-paced approaches for tracking the performance and idleness of a workforce in order to control them more efficiently in both flexible and transformational stages. The present study focuses on investigating the parameters and factors that contribute to workforce empowerment in an industrial revolution scenario. The present research is used to develop a framework utilizing operations and human resource management approaches in order to identify and address the issues responsible for deteriorating workforce contributions. The framework includes HRM and operations management practices, including Herzberg’s two-factor theory, Maslow’s theory, and lean and smart approaches. The developed framework contains four phases for achieving desired outcomes on the shop floor. The developed framework is validated by implementing it in a real-life electric vehicle manufacturing organization, where the human resources and operations team were exhausted and looking to resolve employee-related issues instantly and establish a sustainable work environment. The current industry is transforming from Industry 3.0 to Industry 4.0, and seeks future-ready innovations in operations, control, and monitoring of shop floor setups. The operations management and human resource management practices teams reviewed the results over the next three months after the implementation of the developed framework. The results revealed an improvement in workforce empowerment within the existing work environment, as evidenced by reductions in the number of absentees, resignations, transfer requests, and medical issues, by 30.35%, 94.44%, 95.65%, and 93.33%, respectively. A few studies have been conducted on workforce empowerment by controlling shop floor scenarios through modifications in operations and human resource management strategies. The results of this study can be used to fulfil manufacturers’ needs within confined constraints and provide guidelines for efficiently controlling workforce performance on the shop floor. Constraints refer to barriers that have been decided, including production time, working time, asset availability, resource availability, and organizational policy. The study proposes a decision-making plan for enhancing shop floor performance by providing suitable guidelines and an action plan, taking into account both workforce and operational performance. Full article
(This article belongs to the Section Sustainable Management)
Show Figures

Figure 1

16 pages, 1870 KiB  
Review
Recent Advances in the Development and Industrial Applications of Wax Inhibitors: A Comprehensive Review of Nano, Green, and Classic Materials Approaches
by Parham Joolaei Ahranjani, Hamed Sadatfaraji, Kamine Dehghan, Vaibhav A. Edlabadkar, Prasant Khadka, Ifeanyi Nwobodo, VN Ramachander Turaga, Justin Disney and Hamid Rashidi Nodeh
J. Compos. Sci. 2025, 9(8), 395; https://doi.org/10.3390/jcs9080395 - 26 Jul 2025
Viewed by 364
Abstract
Wax deposition, driven by the crystallization of long-chain n-alkanes, poses severe challenges across industries such as petroleum, oil and natural gas, food processing, and chemical manufacturing. This phenomenon compromises flow efficiency, increases energy demands, and necessitates costly maintenance interventions. Wax inhibitors, designed to [...] Read more.
Wax deposition, driven by the crystallization of long-chain n-alkanes, poses severe challenges across industries such as petroleum, oil and natural gas, food processing, and chemical manufacturing. This phenomenon compromises flow efficiency, increases energy demands, and necessitates costly maintenance interventions. Wax inhibitors, designed to mitigate these issues, operate by altering wax crystallization, aggregation, and adhesion over the pipelines. Classic wax inhibitors, comprising synthetic polymers and natural compounds, have been widely utilized due to their established efficiency and scalability. However, synthetic inhibitors face environmental concerns, while natural inhibitors exhibit reduced performance under extreme conditions. The advent of nano-based wax inhibitors has revolutionized wax management strategies. These advanced materials, including nanoparticles, nanoemulsions, and nanocomposites, leverage their high surface area and tunable interfacial properties to enhance efficiency, particularly in harsh environments. While offering superior performance, nano-based inhibitors are constrained by high production costs, scalability challenges, and potential environmental risks. In parallel, the development of “green” wax inhibitors derived from renewable resources such as vegetable oils addresses sustainability demands. These eco-friendly formulations introduce functionalities that reinforce inhibitory interactions with wax crystals, enabling effective deposition control while reducing reliance on synthetic components. This review provides a comprehensive analysis of the mechanisms, applications, and comparative performance of classic and nano-based wax inhibitors. It highlights the growing integration of sustainable and hybrid approaches that combine the reliability of classic inhibitors with the advanced capabilities of nano-based systems. Future directions emphasize the need for cost-effective, eco-friendly solutions through innovations in material science, computational modeling, and biotechnology. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

20 pages, 5571 KiB  
Proceeding Paper
A Forecasting Method Based on a Dynamical Approach and Time Series Data for Vehicle Service Parts Demand
by Vinh Long Phan, Makoto Taniguchi and Hidenori Yabushita
Eng. Proc. 2025, 101(1), 3; https://doi.org/10.3390/engproc2025101003 - 21 Jul 2025
Viewed by 187
Abstract
In the automotive industry, the supply of service parts—such as bumpers, batteries, and aero parts—is required even after the end of vehicle production, as customers need them for maintenance and repairs. To earn customer confidence, manufacturers must ensure timely availability of these parts [...] Read more.
In the automotive industry, the supply of service parts—such as bumpers, batteries, and aero parts—is required even after the end of vehicle production, as customers need them for maintenance and repairs. To earn customer confidence, manufacturers must ensure timely availability of these parts while managing inventory efficiently. An excess of inventory can increase warehousing costs, while stock shortages can lead to supply delays. Accurate demand forecasting is essential to balance these factors, considering the changing demand characteristics over time, such as long-term trends, seasonal fluctuations, and irregular variations. This paper introduces a novel method for time series forecasting that employs Ensemble Empirical Mode Decomposition (EEMD) and Dynamic Mode Decomposition (DMD) to analyze service part demand. EEMD decomposes historical order data into multiple modes, and DMD is used to predict transitions within these modes. The proposed method demonstrated an approximately 30% reduction in forecasting error compared to comparative methods, showcasing its effectiveness in accurately predicting service parts demand across various patterns. Full article
Show Figures

Figure 1

29 pages, 1852 KiB  
Review
Evaluating the Economic Impact of Digital Twinning in the AEC Industry: A Systematic Review
by Tharindu Karunaratne, Ikenna Reginald Ajiero, Rotimi Joseph, Eric Farr and Poorang Piroozfar
Buildings 2025, 15(14), 2583; https://doi.org/10.3390/buildings15142583 - 21 Jul 2025
Viewed by 707
Abstract
This study conducts a comprehensive systematic review of the economic impact of Digital Twin (DT) technology within the Architecture, Engineering, and Construction (AEC) industry, following the PRISMA methodology. While DT adoption has been accelerated by advancements in Building Information Modelling (BIM), the Internet [...] Read more.
This study conducts a comprehensive systematic review of the economic impact of Digital Twin (DT) technology within the Architecture, Engineering, and Construction (AEC) industry, following the PRISMA methodology. While DT adoption has been accelerated by advancements in Building Information Modelling (BIM), the Internet of Things (IoT), and data analytics, significant challenges persist—most notably, high initial investment costs and integration complexities. Synthesising the literature from 2016 onwards, this review identifies sector-specific barriers, regulatory burdens, and a lack of standardisation as key factors constituting DT implementation costs. Despite these hurdles, DTs demonstrate strong potential for enhancing construction productivity, optimising lifecycle asset management, and enabling predictive maintenance, ultimately reducing operational expenditures and improving long-term financial performance. Case studies reveal cost efficiencies achieved through DTs in modular construction, energy optimisation, and infrastructure management. However, limited financial resources and digital skills continue to constrain the uptake across the sector, with various extents of impact. This paper calls for the development of unified standards, innovative public–private funding mechanisms, and strategic collaborations to unlock and utilise DTs’ full economic value. It also recommends that future research explore theoretical frameworks addressing governance, data infrastructure, and digital equity—particularly through conceptualising DT-related data as public assets or collective goods in the context of smart cities and networked infrastructure systems. Full article
Show Figures

Figure 1

22 pages, 7778 KiB  
Article
Gas Leak Detection and Leakage Rate Identification in Underground Utility Tunnels Using a Convolutional Recurrent Neural Network
by Ziyang Jiang, Canghai Zhang, Zhao Xu and Wenbin Song
Appl. Sci. 2025, 15(14), 8022; https://doi.org/10.3390/app15148022 - 18 Jul 2025
Viewed by 302
Abstract
An underground utility tunnel (UUT) is essential for the efficient use of urban underground space. However, current maintenance systems rely on patrol personnel and professional equipment. This study explores industrial detection methods for identifying and monitoring natural gas leaks in UUTs. Via infrared [...] Read more.
An underground utility tunnel (UUT) is essential for the efficient use of urban underground space. However, current maintenance systems rely on patrol personnel and professional equipment. This study explores industrial detection methods for identifying and monitoring natural gas leaks in UUTs. Via infrared thermal imaging gas experiments, data were acquired and a dataset established. To address the low-resolution problem of existing imaging devices, video super-resolution (VSR) was used to improve the data quality. Based on a convolutional recurrent neural network (CRNN), the image features at each moment were extracted, and the time series data were modeled to realize the risk-level classification mechanism based on the automatic classification of the leakage rate. The experimental results show that when the sliding window size was set to 10 frames, the classification accuracy of the CRNN was the highest, which could reach 0.98. This method improves early warning precision and response efficiency, offering practical technical support for UUT maintenance management. Full article
(This article belongs to the Special Issue Applications of Artificial Intelligence in Industrial Engineering)
Show Figures

Figure 1

24 pages, 2676 KiB  
Review
Biofouling on Offshore Wind Energy Structures: Characterization, Impacts, Mitigation Strategies, and Future Trends
by Poorya Poozesh, Felix Nieto, Pedro M. Fernández, Rosa Ríos and Vicente Díaz-Casás
J. Mar. Sci. Eng. 2025, 13(7), 1363; https://doi.org/10.3390/jmse13071363 - 17 Jul 2025
Viewed by 504
Abstract
Biofouling, the accumulation of marine organisms on submerged surfaces, presents a significant challenge to the design, performance, and maintenance of offshore wind turbines (OWTs). This work synthesizes current knowledge on the physical and operational impacts of biofouling on OWT marine substructures, with a [...] Read more.
Biofouling, the accumulation of marine organisms on submerged surfaces, presents a significant challenge to the design, performance, and maintenance of offshore wind turbines (OWTs). This work synthesizes current knowledge on the physical and operational impacts of biofouling on OWT marine substructures, with a particular focus on how it alters hydrodynamic loading, increases drag and mass, and affects fatigue and structural response. Drawing from experimental studies, computational modeling, and real-world observations, this paper highlights the critical need to integrate biofouling effects into design practices. Additionally, emerging mitigation strategies are explored, including advanced antifouling materials and AI-driven monitoring systems, which offer promising solutions for long-term biofouling management. By addressing both engineering and ecological perspectives, this paper underscores the importance of developing robust, adaptive approaches to biofouling that can support the durability, reliability, and environmental sustainability of the offshore wind industry. Full article
(This article belongs to the Section Marine Pollution)
Show Figures

Figure 1

16 pages, 944 KiB  
Article
Artificial Intelligence in the Oil and Gas Industry: Applications, Challenges, and Future Directions
by Marcelo dos Santos Póvoas, Jéssica Freire Moreira, Severino Virgínio Martins Neto, Carlos Antonio da Silva Carvalho, Bruno Santos Cezario, André Luís Azevedo Guedes and Gilson Brito Alves Lima
Appl. Sci. 2025, 15(14), 7918; https://doi.org/10.3390/app15147918 - 16 Jul 2025
Viewed by 1200
Abstract
This study aims to provide a comprehensive overview of the application of artificial intelligence (AI) methods to solve real-world problems in the oil and gas sector. The methodology involved a two-step process for analyzing AI applications. In the first step, an initial exploration [...] Read more.
This study aims to provide a comprehensive overview of the application of artificial intelligence (AI) methods to solve real-world problems in the oil and gas sector. The methodology involved a two-step process for analyzing AI applications. In the first step, an initial exploration of scientific articles in the Scopus database was conducted using keywords related to AI and computational intelligence, resulting in a total of 11,296 articles. The bibliometric analysis conducted using VOS Viewer version 1.6.15 software revealed an average annual growth of approximately 15% in the number of publications related to AI in the sector between 2015 and 2024, indicating the growing importance of this technology. In the second step, the research focused on the OnePetro database, widely used by the oil industry, selecting articles with terms associated with production and drilling, such as “production system”, “hydrate formation”, “machine learning”, “real-time”, and “neural network”. The results highlight the transformative impact of AI on production operations, with key applications including optimizing operations through real-time data analysis, predictive maintenance to anticipate failures, advanced reservoir management through improved modeling, image and video analysis for continuous equipment monitoring, and enhanced safety through immediate risk detection. The bibliometric analysis identified a significant concentration of publications at Society of Petroleum Engineers (SPE) events, which accounted for approximately 40% of the selected articles. Overall, the integration of AI into production operations has driven significant improvements in efficiency and safety, and its continued evolution is expected to advance industry practices further and address emerging challenges. Full article
Show Figures

Figure 1

31 pages, 3869 KiB  
Article
Evolutionary Game Analysis of Credit Supervision for Practitioners in the Water Conservancy Construction Market from the Perspective of Indirect Supervision
by Shijian Du, Song Xue and Quanhua Qu
Buildings 2025, 15(14), 2470; https://doi.org/10.3390/buildings15142470 - 14 Jul 2025
Viewed by 198
Abstract
Credit supervision of practitioners in the water conservancy construction market, a vital pillar of national infrastructure development, significantly impacts project safety and the maintenance of order in the industry. From the perspective of indirect supervision, this study constructs a tripartite evolutionary game model [...] Read more.
Credit supervision of practitioners in the water conservancy construction market, a vital pillar of national infrastructure development, significantly impacts project safety and the maintenance of order in the industry. From the perspective of indirect supervision, this study constructs a tripartite evolutionary game model involving government departments, enterprises, and practitioners to analyze the dynamic evolution mechanism of credit supervision. By examining the strategic interactions among the three parties under different regulatory scenarios, we identify key factors influencing the stable equilibrium of evolution and verify the theoretical conclusions through numerical simulations. The study yields several key insights. First, while government regulation and social supervision can substantially increase the likelihood of practitioners’ integrity, relying solely on administrative regulation has an efficiency limit. Second, the effectiveness of the reward and punishment mechanism of the direct manager plays a crucial leveraging role in credit evolution. Lastly, under differentiated regulatory strategies, high-credit practitioners respond more strongly to long-term cost optimization, while low-credit practitioners are more effectively deterred by short-term, high-intensity disciplinary actions. Based on these findings, this study proposes a systematic governance framework of “regulatory model innovation–corporate responsibility enhancement–social supervision deepening.” Unlike previous studies, this framework adopts a comprehensive approach from three dimensions: regulatory model innovation, corporate responsibility enhancement, and social supervision deepening. It offers a more holistic and systematic solution for refining the credit system in the water conservancy construction market, providing both theoretical support and practical approaches. Full article
Show Figures

Figure 1

18 pages, 588 KiB  
Review
Digital Twin for Energy-Intelligent Bakery Operations: Concepts and Applications
by Tsega Y. Melesse, Mohamed Shameer Peer, Suganthi Ramasamy, Vigneselvan Sivasubramaniyam, Mattia Braggio and Pier Francesco Orrù
Energies 2025, 18(14), 3660; https://doi.org/10.3390/en18143660 - 10 Jul 2025
Viewed by 370
Abstract
The bakery industry is undergoing a profound digital transformation driven by the increasing need for enhanced energy efficiency, operational resilience, and a commitment to environmental sustainability. Digital Twin (DT) technology, recognized as a fundamental component of Industry 4.0, provides advanced capabilities for intelligent [...] Read more.
The bakery industry is undergoing a profound digital transformation driven by the increasing need for enhanced energy efficiency, operational resilience, and a commitment to environmental sustainability. Digital Twin (DT) technology, recognized as a fundamental component of Industry 4.0, provides advanced capabilities for intelligent energy management across bakery operations. This paper utilizes a narrative and integrative review approach, conceptually integrating emerging developments in using DT with respect toenergy management in the baking industry, including real-time energy monitoring, predictive maintenance, dynamic optimization of production processes, and the seamless integration of renewable energy sources. The study underscores the transformative benefits of adopting DT technologies, such as improvements in energy utilization, greater equipment reliability, increased operational transparency, and stronger alignment with global sustainability objectives. It also critically examines the technical, organizational, and financial barriers limiting broader adoption, particularly among small and medium-sized enterprises (SMEs). Future research directions are identified, emphasizing the potential of artificial intelligence-driven DTs, the adoption of edge computing, the development of scalable and modular platforms, and the necessity of supportive policy frameworks. By integrating DT technologies, bakeries can shift from traditional reactive energy practices to proactive, data-driven strategies, paving the way for greater competitiveness, operational excellence, and a sustainable future. Full article
Show Figures

Figure 1

19 pages, 3187 KiB  
Article
Development of an Automated Crack Detection System for Port Quay Walls Using a Small General-Purpose Drone and Orthophotos
by Daiki Komi, Daisuke Yoshida and Tomohito Kameyama
Sensors 2025, 25(14), 4325; https://doi.org/10.3390/s25144325 - 10 Jul 2025
Viewed by 394
Abstract
Aging port infrastructure demands frequent and reliable inspections, yet the existing automated systems often require expensive industrial drones, posing significant adoption barriers for local governments with limited resources. To address this challenge, this study develops a low-cost, automated crack detection system for port [...] Read more.
Aging port infrastructure demands frequent and reliable inspections, yet the existing automated systems often require expensive industrial drones, posing significant adoption barriers for local governments with limited resources. To address this challenge, this study develops a low-cost, automated crack detection system for port quay walls utilizing orthophotos generated from a small general-purpose drone. The system employs the YOLOR (You Only Learn One Representation) object detection algorithm, enhanced by two novel image processing techniques—overlapping tiling and pseudo-altitude slicing—to overcome the resolution limitations of low-cost cameras. While official guidelines for port facilities designate 3 mm as an inspection threshold, our system is specifically designed to achieve a higher-resolution detection capability for cracks as narrow as 1 mm. This approach ensures reliable detection with a sufficient safety margin and enables the proactive monitoring of crack progression for preventive maintenance. The effectiveness of the proposed image processing techniques was validated, with an F1 score-based analysis revealing key trade-offs between maximizing detection recall and achieving a balanced performance depending on the chosen simulated altitude. Furthermore, evaluation using real-world inspection data demonstrated that the proposed system achieves a detection performance comparable to that of a well-established commercial system, confirming its practical applicability. Crucially, by mapping the detected cracks to real-world coordinates on georeferenced orthophotos, the system provides a foundation for advanced, data-driven asset management, allowing for the quantitative tracking of deterioration over time. These results confirm that the proposed workflow is a practical and sustainable solution for infrastructure monitoring. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

22 pages, 796 KiB  
Article
BIMCoder: A Comprehensive Large Language Model Fusion Framework for Natural Language-Based BIM Information Retrieval
by Bingru Liu and Hainan Chen
Appl. Sci. 2025, 15(14), 7647; https://doi.org/10.3390/app15147647 - 8 Jul 2025
Viewed by 349
Abstract
Building Information Modeling (BIM) has excellent potential to enhance building operation and maintenance. However, as a standardized data format in the architecture, engineering, and construction (AEC) industry, the retrieval of BIM information generally requires specialized software. Cumbersome software operations prevent its effective application [...] Read more.
Building Information Modeling (BIM) has excellent potential to enhance building operation and maintenance. However, as a standardized data format in the architecture, engineering, and construction (AEC) industry, the retrieval of BIM information generally requires specialized software. Cumbersome software operations prevent its effective application in the actual operation and management of buildings. This paper presents BIMCoder, a model designed to translate natural language queries into structured query statements compatible with professional BIM software (e.g., BIMserver v1.5). It serves as an intermediary component between users and various BIM platforms, facilitating access for users without specialized BIM knowledge. A dedicated BIM information query dataset was constructed, comprising 1680 natural language query and structured BIM query string pairs, categorized into 12 groups. Three classical pre-trained large language models (LLMs) (ERNIE 3.0, Llama-13B, and SQLCoder) were evaluated on this dataset. A fine-tuned model based on SQLCoder was then trained. Subsequently, a fusion model (BIMCoder) integrating ERNIE and SQLCoder was designed. Test results demonstrate that the proposed BIMCoder model achieves an outstanding accurate matching rate of 87.16% and an Execution Accuracy rate of 88.75% for natural language-based BIM information retrieval. This study confirms the feasibility of natural language-based BIM information retrieval and offers a novel solution to reduce the complexity of BIM system interaction. Full article
Show Figures

Figure 1

Back to TopTop