Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,080)

Search Parameters:
Keywords = industrial green transformation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 398 KiB  
Article
Analyzing Regional Disparities in China’s Green Manufacturing Transition
by Xuejuan Wang, Qi Deng, Riccardo Natoli, Li Wang, Wei Zhang and Catherine Xiaocui Lou
Sustainability 2025, 17(15), 7127; https://doi.org/10.3390/su17157127 - 6 Aug 2025
Abstract
China has identified the high-quality development of its green manufacturing transition as the top priority for upgrading their industrial structure system which will lead to the sustainable development of an innovation ecosystem. To assess their progress in this area, this study selects the [...] Read more.
China has identified the high-quality development of its green manufacturing transition as the top priority for upgrading their industrial structure system which will lead to the sustainable development of an innovation ecosystem. To assess their progress in this area, this study selects the panel data of 31 provinces in China from 2011 to 2021 and constructs an evaluation index system for the green transformation of the manufacturing industry from four dimensions: environment, resources, economy, and industrial structure. This not only comprehensively and systematically reflects the dynamic changes in the green transformation of the manufacturing industry but also addresses the limitations of currently used indices. The entropy value method is used to calculate the comprehensive score of the green transformation of the manufacturing industry, while the key factors influencing the convergence of the green transformation of the manufacturing industry are further explored. The results show that first, the overall level of the green transformation of the manufacturing industry has significantly improved as evidenced by an approximate 32% increase. Second, regional differences are significant with the eastern region experiencing significantly higher levels of transformation compared to the central and western regions, along with a decreasing trend from the east to the central and western regions. From a policy perspective, the findings suggest that tailored production methods for each region should be adopted with a greater emphasis on knowledge exchanges to promote green transition in less developed regions. In addition, further regulations are required which, in part, focus on increasing the degree of openness to the outside world to promote the level of green manufacturing transition. Full article
(This article belongs to the Section Sustainable Management)
Show Figures

Figure 1

23 pages, 3036 KiB  
Article
Research on the Synergistic Mechanism Design of Electricity-CET-TGC Markets and Transaction Strategies for Multiple Entities
by Zhenjiang Shi, Mengmeng Zhang, Lei An, Yan Lu, Daoshun Zha, Lili Liu and Tiantian Feng
Sustainability 2025, 17(15), 7130; https://doi.org/10.3390/su17157130 - 6 Aug 2025
Abstract
In the context of the global response to climate change and the active promotion of energy transformation, a number of low-carbon policies coupled with the development of synergies to help power system transformation is an important initiative. However, the insufficient articulation of the [...] Read more.
In the context of the global response to climate change and the active promotion of energy transformation, a number of low-carbon policies coupled with the development of synergies to help power system transformation is an important initiative. However, the insufficient articulation of the green power market, tradable green certificate (TGC) market, and carbon emission trading (CET) mechanism, and the ambiguous policy boundaries affect the trading decisions made by its market participants. Therefore, this paper systematically analyses the composition of the main players in the electricity-CET-TGC markets and their relationship with each other, and designs the synergistic mechanism of the electricity-CET-TGC markets, based on which, it constructs the optimal profit model of the thermal power plant operators, renewable energy manufacturers, power grid enterprises, power users and load aggregators under the electricity-CET-TGC markets synergy, and analyses the behavioural decision-making of the main players in the electricity-CET-TGC markets as well as the electric power system to optimise the trading strategy of each player. The results of the study show that: (1) The synergistic mechanism of electricity-CET-TGC markets can increase the proportion of green power grid-connected in the new type of power system. (2) In the selection of different environmental rights and benefits products, the direct participation of green power in the market-oriented trading is the main way, followed by applying for conversion of green power into China certified emission reduction (CCER). (3) The development of independent energy storage technology can produce greater economic and environmental benefits. This study provides policy support to promote the synergistic development of the electricity-CET-TGC markets and assist the low-carbon transformation of the power industry. Full article
Show Figures

Figure 1

22 pages, 322 KiB  
Article
The Impact of Green Finance on Energy Transition Under Climate Change
by Zhengwei Ma and Xiangli Jiang
Sustainability 2025, 17(15), 7112; https://doi.org/10.3390/su17157112 - 6 Aug 2025
Abstract
In recent years, growing concerns over environmental degradation and deepening awareness of the necessity of sustainable development have propelled green and low-carbon energy transition into a focal issue for both academia and policymakers. By decomposing energy transition into the transformation of energy structure [...] Read more.
In recent years, growing concerns over environmental degradation and deepening awareness of the necessity of sustainable development have propelled green and low-carbon energy transition into a focal issue for both academia and policymakers. By decomposing energy transition into the transformation of energy structure and the upgrading of energy efficiency, this study investigates the impact and mechanisms of green finance on energy transition across 30 provinces (municipalities and autonomous regions) in China, with the exception of Tibet. In addition, the impact of climate change is incorporated into the analytical framework. Empirical results demonstrate that green finance development significantly accelerates energy transition, a conclusion robust to rigorous validation. Analysis of the mechanism shows that green finance promotes energy transition through the facilitation of technological innovation and the upgrade of industrial structures. Moreover, empirical evidence reveals that climate change undermines the promotional influence of sustainable finance on energy system transformation. The magnitude of this suppression varies nonlinearly across provincial jurisdictions with differing energy transition progress. Regional heterogeneity analyses further uncover marked discrepancies in climate–finance interactions, demonstrating amplified effects in coastal economic hubs, underdeveloped western provinces, and regions with mature eco-financial markets. According to these findings, actionable policy suggestions are put forward to strengthen green finance and accelerate energy transition. Full article
(This article belongs to the Special Issue Analysis of Energy Systems from the Perspective of Sustainability)
22 pages, 715 KiB  
Article
Research on the Development of the New Energy Vehicle Industry in the Context of ASEAN New Energy Policy
by Yalin Mo, Lu Li and Haihong Deng
Sustainability 2025, 17(15), 7073; https://doi.org/10.3390/su17157073 - 4 Aug 2025
Abstract
The green transformation of traditional energy structures and the development of the new energy industry are crucial drivers of sustainable development in the country. The ASEAN Plan of Action for Energy Cooperation (2016–2025; APAEC [2016–2025]), established in 2016, has significantly promoted the growth [...] Read more.
The green transformation of traditional energy structures and the development of the new energy industry are crucial drivers of sustainable development in the country. The ASEAN Plan of Action for Energy Cooperation (2016–2025; APAEC [2016–2025]), established in 2016, has significantly promoted the growth of the new energy sector and enhanced energy structures across Association of Southeast Asian Nations (ASEAN). This initiative has also inspired these countries to develop corresponding industrial policies aimed at supporting the new energy vehicle (NEV) industry, resulting in significant growth in this sector within the ASEAN region. This paper analyzes the factors influencing the development of the NEV industry in the context of ASEAN’s new energy policies, drawing empirical insights from data collected across six ASEAN countries from 2013 to 2024. Following the implementation of the APAEC (2016–2025), it was observed that ASEAN countries reached a consensus on energy development and cooperation, collaboratively advancing the NEV industry through regional policies. Furthermore, factors such as national governance, financial development, education levels, and the size of the automotive market positively contribute to the growth of the NEV industry in ASEAN. Conversely, high energy consumption can hinder its progress. Additionally, further research indicates that the APAEC (2016–2025) has exerted a more pronounced impact on countries with robust automotive industry foundations or those prioritizing relevant policies. The findings of this paper offer valuable insights for ASEAN countries in the formulating policies for the NEV industry, optimizing energy structures, and achieving low-carbon energy transition and sustainable development. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

16 pages, 1207 KiB  
Article
Study of Multi-Stakeholder Mechanism in Inter-Provincial River Basin Eco-Compensation: Case of the Inland Rivers of Eastern China
by Zhijie Cao and Xuelong Chen
Sustainability 2025, 17(15), 7057; https://doi.org/10.3390/su17157057 - 4 Aug 2025
Viewed by 37
Abstract
Based on a comprehensive review of the current research status of ecological compensation both domestically and internationally, combined with field survey data, this study delves into the issue of multi-stakeholder participation in the ecological compensation mechanisms of the Xin’an River Basin. This research [...] Read more.
Based on a comprehensive review of the current research status of ecological compensation both domestically and internationally, combined with field survey data, this study delves into the issue of multi-stakeholder participation in the ecological compensation mechanisms of the Xin’an River Basin. This research reveals that the joint participation of multiple stakeholders is crucial to achieving the goals of ecological compensation in river basins. The government plays a significant role in macro-guidance, financial support, policy guarantees, supervision, and management. It promotes the comprehensive implementation of ecological environmental protection by formulating relevant laws and regulations, guiding the public to participate in ecological conservation, and supervising and punishing pollution behaviors. The public, serving as the main force, forms strong awareness and behavioral habits of ecological protection through active participation in environmental protection, monitoring, and feedback. As participants, enterprises contribute to industrial transformation and green development by improving resource utilization efficiency, reducing pollution emissions, promoting green industries, and participating in ecological restoration projects. Scientific research institutions, as technology enablers, have effectively enhanced governance efficiency through technological research and innovation, ecosystem value accounting to provide decision-making support, and public education. Social organizations, as facilitators, have injected vitality and innovation into watershed governance by extensively mobilizing social forces and building multi-party collaboration platforms. Communities, as supporters, have transformed ecological value into economic benefits by developing characteristic industries such as eco-agriculture and eco-tourism. Based on the above findings, further recommendations are proposed to mobilize the enthusiasm of upstream communities and encourage their participation in ecological compensation, promote the market-oriented operation of ecological compensation mechanisms, strengthen cross-regional cooperation to establish joint mechanisms, enhance supervision and evaluation, and establish a sound benefit-sharing mechanism. These recommendations provide theoretical support and practical references for ecological compensation worldwide. Full article
Show Figures

Figure 1

27 pages, 3470 KiB  
Article
Spatiotemporal Evolution and Influencing Factors of Carbon Emission Efficiency of Apple Production in China from 2003 to 2022
by Dejun Tan, Juanjuan Cheng, Jin Yu, Qian Wang and Xiaonan Chen
Agriculture 2025, 15(15), 1680; https://doi.org/10.3390/agriculture15151680 - 2 Aug 2025
Viewed by 261
Abstract
Understanding the carbon emission efficiency of apple production (APCEE) is critical for promoting green and low-carbon agricultural development. However, the spatiotemporal dynamics and driving factors of APCEE in China remain inadequately explored. This study employs life cycle assessment, super-efficiency slacks-based measures, [...] Read more.
Understanding the carbon emission efficiency of apple production (APCEE) is critical for promoting green and low-carbon agricultural development. However, the spatiotemporal dynamics and driving factors of APCEE in China remain inadequately explored. This study employs life cycle assessment, super-efficiency slacks-based measures, and a panel Tobit model to evaluate the carbon footprint, APCEE, and its determinants in China’s two major production regions from 2003 to 2022. The results reveal that: (1) Producing one ton of apples in China results in 0.842 t CO2e emissions. Land carbon intensity and total carbon emissions peaked in 2010 (28.69 t CO2e/ha) and 2014 (6.52 × 107 t CO2e), respectively, exhibiting inverted U-shaped trends. Carbon emissions from various production areas show significant differences, with higher pressure on carbon emission reduction in the Loess Plateau region, especially in Gansu Province. (2) The APCEE in China exhibits a W-shaped trend (mean: 0.645), with overall low efficiency loss. The Bohai Bay region outperforms the Loess Plateau and national averages. (3) The structure of the apple industry, degree of agricultural mechanization, and green innovation positively influence APCEE, while the structure of apple cultivation, education level, and agricultural subsidies negatively impact it. Notably, green innovation and agricultural subsidies display lagged effects. Moreover, the drivers of APCEE differ significantly between the two major production regions. These findings provide actionable pathways for the green and low-carbon transformation of China’s apple industry, emphasizing the importance of spatially tailored green policies and technology-driven decarbonization strategies. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

21 pages, 300 KiB  
Article
Research on the Mechanisms and Pathways of Digital Economy—Driven Agricultural Green Development: Evidence from Sichuan Province, China
by Changhong Chen and Yule Wang
Sustainability 2025, 17(15), 6980; https://doi.org/10.3390/su17156980 - 31 Jul 2025
Viewed by 202
Abstract
This study endeavors to elucidate the mechanisms and pathways through which the digital economy shapes agricultural green development, providing theoretical underpinnings and practical guidance for the green transformation of regional agriculture. (1) Using panel data from 18 prefecture-level cities in Sichuan Province (2013–2022), [...] Read more.
This study endeavors to elucidate the mechanisms and pathways through which the digital economy shapes agricultural green development, providing theoretical underpinnings and practical guidance for the green transformation of regional agriculture. (1) Using panel data from 18 prefecture-level cities in Sichuan Province (2013–2022), a comprehensive evaluation index system for agricultural green development was formulated. Fixed-effects, mediating-effects, and threshold-effects models were employed to systematically analyze the direct effects, transmission pathways, and nonlinear characteristics of the digital economy on agricultural green development. (2) The fixed-effects model shows that the digital economy markedly propels agricultural green development in Sichuan Province. The mediating-effects model verifies two transmission pathways: “digital economy → technological progression → agricultural green development” and “digital economy → industrial structure upgrading → agricultural green development”. The threshold-effects model suggests that when the digital economy is in the low-threshold interval, it exerts a suppressive impact on agricultural green development; however, once the threshold is surpassed, its promoting effect strengthens significantly. (3) The results demonstrate the following findings: First, the digital economy exerts a significant positive effect on agricultural green development. Second, this promoting effect exhibits significant nonlinear characteristics that vary with the level of digital economy development. Third, the impact manifests remarkable regional heterogeneity, necessitating context-specific development strategies. (4) Five optimization recommendations are proposed: promote the categorized development of agricultural digital technologies and industrial upgrading; advance digital infrastructure and technology adaptation in phases; design differentiated regional policies; establish a hierarchical and classified long-term guarantee mechanism; and strengthen the “industry-university-research-application” collaborative innovation and dynamic monitoring system. Full article
27 pages, 1637 KiB  
Article
Collaborative Industrial Agglomeration and a Green Low-Carbon Circular Development Economy: A Study Based on Provincial Panel Data in China
by Mengqi Gong, Gege He, Yizi Wang, Yiyue Yang and Xinru Li
Sustainability 2025, 17(15), 6950; https://doi.org/10.3390/su17156950 - 31 Jul 2025
Viewed by 323
Abstract
As an important direction in industrial evolution, the synergistic agglomeration of manufacturing and productive service industries has become a key path to promote the green transformation of the economy. Based on China’s provincial panel data, this study utilizes a variety of econometric methods [...] Read more.
As an important direction in industrial evolution, the synergistic agglomeration of manufacturing and productive service industries has become a key path to promote the green transformation of the economy. Based on China’s provincial panel data, this study utilizes a variety of econometric methods to explore in depth the mechanisms, spatial effects and regional differences in the impact of the synergistic agglomeration of manufacturing and productive service industries on the green, low-carbon and recycling development of the economy. The empirical results show that the synergistic agglomeration of manufacturing and productive services not only directly promotes the green, low-carbon and recycling development of the economy, but also generates an indirect impact through the intermediary channel and exhibits significant spillover characteristics in the spatial dimension. This conclusion holds firm after a series of robustness tests. In addition, environmental regulations and the level of regional industrialization play a moderating role on the impact of industrial synergistic agglomeration and green, low-carbon and recycling development of the economy, and the effect of the role varies across regions and levels of economic development. This paper provides a decision-making reference for further optimizing the regional layout of China’s industries and enhancing the green, low-carbon and recycling development of the economy in each province. Full article
Show Figures

Figure 1

24 pages, 771 KiB  
Article
The Impact of Preferential Policy on Corporate Green Innovation: A Resource Dependence Perspective
by Chenshuo Li, Shihan Feng, Qingyu Yuan, Jiahui Wei, Shiqi Wang and Dongdong Huang
Sustainability 2025, 17(15), 6834; https://doi.org/10.3390/su17156834 - 28 Jul 2025
Viewed by 525
Abstract
Government support has long been viewed as a key driver of sustainable transformation and green technological progress. However, the underlying mechanisms (“how”) through which preferential policies influence green innovation, as well as the contextual conditions (“when”) that shape their [...] Read more.
Government support has long been viewed as a key driver of sustainable transformation and green technological progress. However, the underlying mechanisms (“how”) through which preferential policies influence green innovation, as well as the contextual conditions (“when”) that shape their effectiveness, remain insufficiently understood. Drawing on resource dependence theory, this study develops a dual-mediation framework to investigate how preferential tax policies promote both the quantity and quality of green innovation—by enhancing R&D investment as an internal mechanism and alleviating financing constraints as an external mechanism. These effects are especially salient among non-state-owned enterprises, firms in resource-constrained industries, and those situated in environmentally challenged regions—contexts that entail higher dependence on external support for sustainable development. Leveraging China’s 2017 R&D tax reduction policy as a quasi-natural experiment, this study uses a sample of high-tech small- and medium-sized enterprises (SMEs) to test the hypotheses. The findings provide robust evidence on how preferential policies contribute to corporate sustainability through green innovation and identify the conditions under which policy tools are most effective. This research offers important implications for designing targeted, sustainability-oriented innovation policies that support SMEs in transitioning toward more sustainable practices. Full article
Show Figures

Figure 1

20 pages, 937 KiB  
Article
Timber Industrial Policies and Export Competitiveness: Evidence from China’s Wood-Processing Sector in the Context of Sustainable Development
by Yulan Sun, Fangzheng Wang, Weiming Lin, Yongwu Dai and Jiajun Lin
Forests 2025, 16(8), 1232; https://doi.org/10.3390/f16081232 - 26 Jul 2025
Viewed by 312
Abstract
In the era of climate change, the strategic importance of forestry products for sustainable development is increasingly recognized. Amid a global resurgence of industrial policy aimed at addressing environmental challenges, this study investigates the impact of China’s central and provincial green industrial policies [...] Read more.
In the era of climate change, the strategic importance of forestry products for sustainable development is increasingly recognized. Amid a global resurgence of industrial policy aimed at addressing environmental challenges, this study investigates the impact of China’s central and provincial green industrial policies on the export competitiveness of wood-processing enterprises. Utilizing firm-level data from the China Industrial Enterprise Database and China Customs Export Database (2000–2013), we apply a double machine learning (DML) approach and construct a heterogeneous competitiveness model to evaluate policy effects along two dimensions: export quantity (volume and intensity) and export quality (product complexity and consumer-perceived quality). Our findings reveal a clear dichotomy in policy outcomes. While industrial policies have significantly improved export product complexity—reflecting China’s comparative advantage in labor-intensive production—they have had limited or even negative effects on export volume, intensity, and product quality. This suggests that current policy frameworks disproportionately reward horizontal innovation (product diversification) while neglecting vertical upgrading (quality enhancement), thereby hindering comprehensive export performance gains. Those results highlight the need for more balanced and targeted policy design. By aligning industrial policy instruments with both complexity and quality objectives, policymakers can better support the sustainable transformation of China’s forestry sector and enhance its competitiveness in global value chains. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Show Figures

Figure 1

43 pages, 1282 KiB  
Review
Process Intensification Strategies for Esterification: Kinetic Modeling, Reactor Design, and Sustainable Applications
by Kim Leonie Hoff and Matthias Eisenacher
Int. J. Mol. Sci. 2025, 26(15), 7214; https://doi.org/10.3390/ijms26157214 - 25 Jul 2025
Viewed by 680
Abstract
Esterification is a key transformation in the production of lubricants, pharmaceuticals, and fine chemicals. Conventional processes employing homogeneous acid catalysts suffer from limitations such as corrosive byproducts, energy-intensive separation, and poor catalyst reusability. This review provides a comprehensive overview of heterogeneous catalytic systems, [...] Read more.
Esterification is a key transformation in the production of lubricants, pharmaceuticals, and fine chemicals. Conventional processes employing homogeneous acid catalysts suffer from limitations such as corrosive byproducts, energy-intensive separation, and poor catalyst reusability. This review provides a comprehensive overview of heterogeneous catalytic systems, including ion exchange resins, zeolites, metal oxides, mesoporous materials, and others, for improved ester synthesis. Recent advances in membrane-integrated reactors, such as pervaporation and nanofiltration, which enable continuous water removal, shifting equilibrium and increasing conversion under milder conditions, are reviewed. Dual-functional membranes that combine catalytic activity with selective separation further enhance process efficiency and reduce energy consumption. Enzymatic systems using immobilized lipases present additional opportunities for mild and selective reactions. Future directions emphasize the integration of pervaporation membranes, hybrid catalyst systems combining biocatalysts and metals, and real-time optimization through artificial intelligence. Modular plug-and-play reactor designs are identified as a promising approach to flexible, scalable, and sustainable esterification. Overall, the interaction of catalyst development, membrane technology, and digital process control offers a transformative platform for next-generation ester synthesis aligned with green chemistry and industrial scalability. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

20 pages, 392 KiB  
Article
Digital Economy and Chinese-Style Modernization: Unveiling Nonlinear Threshold Effects and Inclusive Policy Frameworks for Global Sustainable Development
by Tao Qi, Wenhui Liu and Xiao Chang
Economies 2025, 13(8), 215; https://doi.org/10.3390/economies13080215 - 25 Jul 2025
Viewed by 351
Abstract
This study focuses on the impact of China’s digital economy on sustainable modernization from 2011 to 2021, using provincial panel data for empirical analysis. By applying threshold and mediation models, we find that the digital economy promotes modernization through industrial upgrading (with a [...] Read more.
This study focuses on the impact of China’s digital economy on sustainable modernization from 2011 to 2021, using provincial panel data for empirical analysis. By applying threshold and mediation models, we find that the digital economy promotes modernization through industrial upgrading (with a mediating effect of 38%) and trade openness (coefficient = 0.234). The research reveals “U-shaped” nonlinear threshold effects at specific levels of digital development (2.218), market efficiency (9.212), and technological progress (12.224). Eastern provinces benefit significantly (coefficient ranging from 0.12 to 0.15 ***), while western regions initially experience some inhibition (coefficient = −0.08 *). Industrial digitalization (coefficient = 0.13 ***) and innovation ecosystems (coefficient = 0.09 ***) play crucial roles in driving eco-efficiency and equity, in line with Sustainable Development Goals 9 and 13. Meanwhile, the impacts of infrastructure (coefficient = 0.07) and industrialization (coefficient = 0.085) are delayed. Economic modernization improves (coefficient = 0.37 ***), yet social modernization declines (coefficient = −0.12 *). This study not only enriches economic theory but also extends the environmental Kuznets curve to the digital economy domain. We propose tiered policy recommendations, including the construction of green digital infrastructure, carbon pricing, and rural digital transformation, which are applicable to China and offer valuable references for emerging economies aiming to achieve inclusive low-carbon growth in the digital era. Future research could further explore the differentiated mechanisms of various digital technologies in the modernization process across different regions and how to optimize policy combinations to better balance digital innovation with sustainable development goals. Full article
Show Figures

Figure 1

72 pages, 2617 KiB  
Review
Obtaining and Characterization of Nutraceuticals Based on Linoleic Acid Derivatives Obtained by Green Synthesis and Their Valorization in the Food Industry
by Cristina Adriana Dehelean, Casiana Boru, Ioana Gabriela Macașoi, Ștefania-Irina Dumitrel, Cristina Trandafirescu and Alexa Ersilia
Nutrients 2025, 17(15), 2416; https://doi.org/10.3390/nu17152416 - 24 Jul 2025
Viewed by 684
Abstract
Background/Objectives: As an essential polyunsaturated fatty acid, linoleic acid (LA) plays an important role in maintaining the integrity of cellular membranes, modulating inflammatory responses, and mediating intracellular signaling. This review explores the structure, properties, and nutritional significance of LA and its bioactive derivatives, [...] Read more.
Background/Objectives: As an essential polyunsaturated fatty acid, linoleic acid (LA) plays an important role in maintaining the integrity of cellular membranes, modulating inflammatory responses, and mediating intracellular signaling. This review explores the structure, properties, and nutritional significance of LA and its bioactive derivatives, with particular attention to sustainable production methods and their potential applications. Methods: A comprehensive review of the recent literature was conducted, emphasizing the use of green synthesis techniques, such as enzyme-catalyzed biocatalysis and microbiological transformations, in order to obtain LA-derived nutraceuticals. Analyses were conducted on the key aspects related to food industry applications, regulatory frameworks, and emerging market trends. Results: Through green synthesis strategies, LA derivatives with antioxidant, anti-inflammatory, and antimicrobial properties have been developed. There is potential for these compounds to be incorporated into health-oriented food products. In spite of this, challenges remain regarding their stability and bioavailability. Furthermore, there are inconsistencies in international regulatory standards which prevent these compounds from being widely adopted. Conclusions: The development of functional and sustainable food products based on linoleic acid derivatives obtained using ecological methods offers significant potential. Research is required to optimize production processes, enhance compound stability, and clinically validate health effects. The integration of the market and the safety of consumers will be supported by addressing regulatory harmonization. Full article
(This article belongs to the Section Lipids)
Show Figures

Figure 1

24 pages, 2016 KiB  
Article
Is Digital Industry Agglomeration a New Engine for Firms’ Green Innovation? A New Micro-Evidence from China
by Yaru Yang, Yingming Zhu, Luxiu Zhang and Jiazhen Du
Systems 2025, 13(8), 627; https://doi.org/10.3390/systems13080627 - 24 Jul 2025
Viewed by 256
Abstract
The rapid development of the digital economy and the pursuit of green transformation are reshaping the innovation landscape of Chinese firms. However, limited attention has been paid to how digital industry agglomeration (DIA) influences corporate green innovation (CGI) at the firm level. Drawing [...] Read more.
The rapid development of the digital economy and the pursuit of green transformation are reshaping the innovation landscape of Chinese firms. However, limited attention has been paid to how digital industry agglomeration (DIA) influences corporate green innovation (CGI) at the firm level. Drawing on panel data from China’s A-share listed firms between 2017 and 2021, this study examines the differential effects of specialized agglomeration and diversified agglomeration of digital industry on CGI. The results indicate that DIA can promote CGI, with a 1% increase in DIA associated with a 1.503% increase in green innovation output. Further analysis reveals that specialized agglomeration exerts a significant positive effect, while diversified agglomeration has no evident impact. Our mechanism analysis indicates that knowledge spillovers serve as the key channel through which DIA fosters CGI. Moreover, heterogeneous effects analysis indicates that DIA exerts a stronger influence on non-high-tech enterprises and in regions where environmental regulation is less stringent. Drawing on these insights, fostering specialized digital clusters and strengthening knowledge-sharing mechanisms can help alleviate existing constraints on innovation diffusion, accelerating green innovation and supporting long-term sustainability. Full article
(This article belongs to the Section Systems Practice in Social Science)
Show Figures

Figure 1

29 pages, 2105 KiB  
Article
The Impact of Rural Digital Economy Development on Agricultural Carbon Emission Efficiency: A Study of the N-Shaped Relationship
by Yong Feng, Shuokai Wang and Fangping Cao
Agriculture 2025, 15(15), 1583; https://doi.org/10.3390/agriculture15151583 - 23 Jul 2025
Viewed by 243
Abstract
This study investigates the impact of rural digital economy development on agricultural carbon emission efficiency, aiming to elucidate the intrinsic mechanisms and pathways through which digital technology enables low-carbon transformation in agriculture, thereby contributing to the achievement of agricultural carbon neutrality goals. Based [...] Read more.
This study investigates the impact of rural digital economy development on agricultural carbon emission efficiency, aiming to elucidate the intrinsic mechanisms and pathways through which digital technology enables low-carbon transformation in agriculture, thereby contributing to the achievement of agricultural carbon neutrality goals. Based on provincial-level panel data from China spanning 2011 to 2022, this study examines the relationship between the rural digital economy and agricultural carbon emission efficiency, along with its underlying mechanisms, using bidirectional fixed effects models, mediation effect analysis, and Spatial Durbin Models. The results indicate the following: (1) A significant N-shaped-curve relationship exists between rural digital economy development and agricultural carbon emission efficiency. Specifically, agricultural carbon emission efficiency exhibits a three-phase trajectory of “increase, decrease, and renewed increase” as the rural digital economy advances, ultimately driving a sustained improvement in efficiency. (2) Industrial integration acts as a critical mediating mechanism. Rural digital economy development accelerates the formation of the N-shaped curve by promoting the integration between agriculture and other sectors. (3) Spatial spillover effects significantly influence agricultural carbon emission efficiency. Due to geographical proximity, regional diffusion, learning, and demonstration effects, local agricultural carbon emission efficiency fluctuates with changes in neighboring regions’ digital economy development levels. (4) The relationship between rural digital economy development and agricultural carbon emission efficiency exhibits a significant inverted N-shaped pattern in regions with higher marketization levels, planting-dominated areas of southeast China, and digital economy demonstration zones. Further analysis reveals that within rural digital economy development, production digitalization and circulation digitalization demonstrate a more pronounced inverted N-shaped relationship with agricultural carbon emission efficiency. This study proposes strategic recommendations to maximize the positive impact of the rural digital economy on agricultural carbon emission efficiency, unlock its spatially differentiated contribution potential, identify and leverage inflection points of the N-shaped relationship between digital economy development and emission efficiency, and implement tailored policy portfolios—ultimately facilitating agriculture’s green and low-carbon transition. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

Back to TopTop