Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (772)

Search Parameters:
Keywords = industrial coating test

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 15471 KiB  
Article
Tribology of EDM Recast Layers Vis-À-Vis TIG Cladding Coatings: An Experimental Investigation
by Muhammad Adnan, Waqar Qureshi and Muhammad Umer
Micromachines 2025, 16(8), 913; https://doi.org/10.3390/mi16080913 - 7 Aug 2025
Abstract
Tribological performance is critical for the longevity and efficiency of machined components in industries such as aerospace, automotive, and biomedical. This study investigates whether electrical discharge machining recast layers can serve as a cost-effective and time-efficient alternative to conventional tungsten inert gas cladding [...] Read more.
Tribological performance is critical for the longevity and efficiency of machined components in industries such as aerospace, automotive, and biomedical. This study investigates whether electrical discharge machining recast layers can serve as a cost-effective and time-efficient alternative to conventional tungsten inert gas cladding coatings for enhancing surface properties. The samples were prepared using electrical discharge machining and tungsten inert gas cladding. For electrical discharge machining, various combinations of electrical and non-electrical parameters were applied using Taguchi’s L18 orthogonal array. Similarly, tungsten inert gas cladding coatings were prepared using a suitable combination of current, voltage, powder size, and speed. The samples were characterized using, scanning electron microscopy, optical microscopy, microhardness testing, tribological testing, energy-dispersive X-ray spectroscopy, X-ray diffraction analysis and profilometry. The electrical discharge machining recast layers exhibited superior tribological performance compared to tungsten inert gas cladding coatings. This improvement is attributed to the formation of carbides, such as TiC and Ti6C3.75. The coefficient of friction and specific wear rate were reduced by 11.11% and 1.57%, respectively, while microhardness increased by 10.93%. Abrasive wear was identified as the predominant wear mechanism. This study systematically compares electrical discharge machining recast layers with tungsten inert gas cladding coatings. The findings suggest that optimized electrical discharge machining recast layers can serve as effective coatings, offering cost and time savings. Full article
(This article belongs to the Special Issue Recent Developments in Electrical Discharge Machining Technology)
Show Figures

Figure 1

16 pages, 7134 KiB  
Article
The Impact of an Object’s Surface Material and Preparatory Actions on the Accuracy of Optical Coordinate Measurement
by Danuta Owczarek, Ksenia Ostrowska, Jerzy Sładek, Adam Gąska, Wiktor Harmatys, Krzysztof Tomczyk, Danijela Ignjatović and Marek Sieja
Materials 2025, 18(15), 3693; https://doi.org/10.3390/ma18153693 - 6 Aug 2025
Abstract
Optical coordinate measurement is a universal technique that aligns with the rapid development of industrial technologies and new materials. Nevertheless, can this technique be consistently effective when applied to the precise measurement of all types of materials? As shown in this article, an [...] Read more.
Optical coordinate measurement is a universal technique that aligns with the rapid development of industrial technologies and new materials. Nevertheless, can this technique be consistently effective when applied to the precise measurement of all types of materials? As shown in this article, an analysis of optical measurement systems reveals that some materials cause difficulties during the scanning process. This article details the matting process, resulting, as demonstrated, in lower measurement uncertainty values compared to the pre-matting state, and identifies materials for which applying a matting spray significantly improves the measurement quality. The authors propose a classification of materials into easy-to-scan and hard-to-scan groups, along with specific procedures to improve measurements, especially for the latter. Tests were conducted in an accredited Laboratory of Coordinate Metrology using an articulated arm with a laser probe. Measured objects included spheres made of ceramic, tungsten carbide (including a matte finish), aluminum oxide, titanium nitride-coated steel, and photopolymer resin, with reference diameters established by a high-precision Leitz PMM 12106 coordinate measuring machine. Diameters were determined from point clouds obtained via optical measurements using the best-fit method, both before and after matting. Color measurements using a spectrocolorimeter supplemented this study to assess the effect of matting on surface color. The results revealed correlations between the material type and measurement accuracy. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

21 pages, 3814 KiB  
Article
Features of the Structure of Layered Epoxy Composite Coatings Formed on a Metal-Ceramic-Coated Aluminum Base
by Volodymyr Korzhyk, Volodymyr Kopei, Petro Stukhliak, Olena Berdnikova, Olga Kushnarova, Oleg Kolisnichenko, Oleg Totosko, Danylo Stukhliak and Liubomyr Ropyak
Materials 2025, 18(15), 3620; https://doi.org/10.3390/ma18153620 - 1 Aug 2025
Viewed by 280
Abstract
Difficult, extreme operating conditions of parabolic antennas under precipitation and sub-zero temperatures require the creation of effective heating systems. The purpose of the research is to develop a multilayer coating containing two metal-ceramic layers, epoxy composite layers, carbon fabric, and an outer layer [...] Read more.
Difficult, extreme operating conditions of parabolic antennas under precipitation and sub-zero temperatures require the creation of effective heating systems. The purpose of the research is to develop a multilayer coating containing two metal-ceramic layers, epoxy composite layers, carbon fabric, and an outer layer of basalt fabric, which allows for effective heating of the antenna, and to study the properties of this coating. The multilayer coating was formed on an aluminum base that was subjected to abrasive jet processing. The first and second metal-ceramic layers, Al2O3 + 5% Al, which were applied by high-speed multi-chamber cumulative detonation spraying (CDS), respectively, provide maximum adhesion strength to the aluminum base and high adhesion strength to the third layer of the epoxy composite containing Al2O3. On this not-yet-polymerized layer of epoxy composite containing Al2O3, a layer of carbon fabric (impregnated with epoxy resin) was formed, which serves as a resistive heating element. On top of this carbon fabric, a layer of epoxy composite containing Cr2O3 and SiO2 was applied. Next, basalt fabric was applied to this still-not-yet-polymerized layer. Then, the resulting layered coating was compacted and dried. To study this multilayer coating, X-ray analysis, light and raster scanning microscopy, and transmission electron microscopy were used. The thickness of the coating layers and microhardness were measured on transverse microsections. The adhesion strength of the metal-ceramic coating layers to the aluminum base was determined by both bending testing and peeling using the adhesive method. It was established that CDS provides the formation of metal-ceramic layers with a maximum fraction of lamellae and a microhardness of 7900–10,520 MPa. In these metal-ceramic layers, a dispersed subgrain structure, a uniform distribution of nanoparticles, and a gradient-free level of dislocation density are observed. Such a structure prevents the formation of local concentrators of internal stresses, thereby increasing the level of dispersion and substructural strengthening of the metal-ceramic layers’ material. The formation of materials with a nanostructure increases their strength and crack resistance. The effectiveness of using aluminum, chromium, and silicon oxides as nanofillers in epoxy composite layers was demonstrated. The presence of structures near the surface of these nanofillers, which differ from the properties of the epoxy matrix in the coating, was established. Such zones, specifically the outer surface layers (OSL), significantly affect the properties of the epoxy composite. The results of industrial tests showed the high performance of the multilayer coating during antenna heating. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

21 pages, 14595 KiB  
Article
Synchronous Improvement of Mechanical and Room-Temperature Damping Performance in Light-Weight Polyurethane Composites by a Simple Carbon-Coating Strategy
by Qitan Zheng, Zhongzheng Zhu, Junyi Yao, Qinyu Sun, Qunfu Fan, Hezhou Liu, Qiuxia Dong and Hua Li
Polymers 2025, 17(15), 2115; https://doi.org/10.3390/polym17152115 - 31 Jul 2025
Viewed by 279
Abstract
In order to address vibration and noise challenges in modern industry while satisfying the lightweighting requirements for aerospace and transportation applications, the development of polymer elastomers integrating both lightweight and high-damping properties holds substantial significance. This study developed polyurethane (PU) with optimized damping [...] Read more.
In order to address vibration and noise challenges in modern industry while satisfying the lightweighting requirements for aerospace and transportation applications, the development of polymer elastomers integrating both lightweight and high-damping properties holds substantial significance. This study developed polyurethane (PU) with optimized damping and mechanical properties at room temperature through monomer composition optimization. Hollow glass microspheres (HGMs) were introduced into the PU matrix to increase stiffness and reduce density, though this resulted in decreased tensile strength (Rm) and loss factor (tanδ). To further improve mechanical and damping properties, we applied a carbon coating to the surface of the HGMs to optimize the interface between the HGMs and the PU matrix, and systematically investigated the energy dissipation and load-bearing behavior of PU composites. The effect of enhanced interface damping of HGM@C/PU resulted in broadening of the effective damping temperature range (tanδ ≥ 0.3) and higher maximum loss factor (tanδmax) compared to HGM/PU at equivalent filler loading. The tensile and dynamic properties significantly improved due to optimized interfacial adhesion. In PU composites reinforced with 10 wt% HGM and HGM@C, a 46.8% improvement in Rm and 11.0% improvement in tanδmax occurred after carbon coating. According to acoustic testing, average transmission loss of HGM/PU and HGM@C/PU with the same filler content showed a difference of 0.3–0.5 dB in 500–6300 Hz, confirming that the hollow structure of the HGMs was preserved during carbon coating. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

22 pages, 7391 KiB  
Article
Advanced Sustainable Epoxy Composites from Biogenic Fillers: Mechanical and Thermal Characterization of Seashell-Reinforced Composites
by Celal Kıstak, Cenk Yanen and Ercan Aydoğmuş
Appl. Sci. 2025, 15(15), 8498; https://doi.org/10.3390/app15158498 - 31 Jul 2025
Viewed by 148
Abstract
Tidal seashell waste represents an abundant, underutilized marine resource that poses environmental disposal challenges but offers potential as a sustainable bio-filler in epoxy composites. This study investigates its incorporation into bio-based epoxy systems to reduce reliance on non-renewable materials and promote circular economy [...] Read more.
Tidal seashell waste represents an abundant, underutilized marine resource that poses environmental disposal challenges but offers potential as a sustainable bio-filler in epoxy composites. This study investigates its incorporation into bio-based epoxy systems to reduce reliance on non-renewable materials and promote circular economy objectives. Processed seashell powder was blended into epoxy formulations, and response surface methodology was applied to optimize filler loading and resin composition. Comprehensive characterization included tensile strength, impact resistance, hardness, density, and thermal conductivity testing, along with microscopy analysis to evaluate filler dispersion and interfacial bonding. The optimized composites demonstrated improved hardness, density, and thermal stability while maintaining acceptable tensile and impact strength. Microscopy confirmed uniform filler distribution at optimal loadings but revealed agglomeration and void formation at higher contents, which can reduce interfacial bonding efficiency. These findings highlight the feasibility of valorizing marine waste as a reinforcing filler in sustainable composite production, supporting environmental goals and offering a scalable approach for the development of durable, lightweight materials suitable for structural, coating, and industrial applications. Full article
Show Figures

Figure 1

16 pages, 7201 KiB  
Article
Carnauba Wax Coatings Enriched with Essential Oils or Fruit By-Products Reduce Decay and Preserve Postharvest Quality in Organic Citrus
by Lorena Martínez-Zamora, Rosa Zapata, Marina Cano-Lamadrid and Francisco Artés-Hernández
Foods 2025, 14(15), 2616; https://doi.org/10.3390/foods14152616 - 25 Jul 2025
Viewed by 377
Abstract
This research analyzes the innovative development of carnauba wax coatings enriched with essential oils (EOs: lemon, orange, grapefruit, clove, oregano, and cinnamon) or fruit by-products (FBPs: avocado, tomato, carrot, orange, lemon, and grapefruit) to improve postharvest preservation of organic oranges and lemons. Six [...] Read more.
This research analyzes the innovative development of carnauba wax coatings enriched with essential oils (EOs: lemon, orange, grapefruit, clove, oregano, and cinnamon) or fruit by-products (FBPs: avocado, tomato, carrot, orange, lemon, and grapefruit) to improve postharvest preservation of organic oranges and lemons. Six EOs and six FBPs were evaluated for total phenolic content (TPC) and in vitro antifungal activity against Penicillium digitatum. Based on results, grapefruit, oregano, and clove EOs were selected for lemons, while avocado, orange, and grapefruit FBPs were selected for oranges. An in vivo test at 20 °C for 15 days with carnauba wax coatings assessed antifungal performance. Clove EO and avocado FBP showed strong in vitro inhibition and consistent hyphal suppression (~100 and ~82%, respectively). In vivo, coatings with grapefruit EO and avocado FBP significantly reduced fungal decay and sporulation (~75%) in lemons and oranges, respectively. Coated fruits also retained weight losses by ~25% compared to uncoated ones. These findings suggest that phenolic-rich natural extracts, especially from agro-industrial residues like avocado peels, offer a promising and sustainable strategy for postharvest citrus disease control. Further studies should test coating effectiveness in large-scale trials under refrigeration combined with other preservation strategies. Full article
Show Figures

Graphical abstract

20 pages, 6191 KiB  
Article
Functional Assessment of Microplasma-Sprayed Hydroxyapatite-Zirconium Bilayer Coatings: Mechanical and Biological Perspectives
by Sergii Voinarovych, Serhiy Maksimov, Sergii Kaliuzhnyi, Oleksandr Kyslytsia, Yuliya Safarova (Yantsen) and Darya Alontseva
Materials 2025, 18(14), 3405; https://doi.org/10.3390/ma18143405 - 21 Jul 2025
Viewed by 242
Abstract
Hydroxyapatite (HA) has become a widely used material for bone grafting and surface modification of titanium-based orthopedic implants due to its excellent biocompatibility. Among various coating techniques, microplasma spraying (MPS) has gained significant industrial relevance. However, the clinical success of HA coatings also [...] Read more.
Hydroxyapatite (HA) has become a widely used material for bone grafting and surface modification of titanium-based orthopedic implants due to its excellent biocompatibility. Among various coating techniques, microplasma spraying (MPS) has gained significant industrial relevance. However, the clinical success of HA coatings also depends on their adhesion to the implant substrate. Achieving durable fixation and reliable biological integration of orthopedic implants remains a major challenge due to insufficient coating adhesion and limited osseointegration. This study addresses challenges in dental and orthopedic implantology by evaluating the microstructure, mechanical properties, and biological behavior of bilayer coatings composed of a zirconium (Zr) sublayer and an HA top layer, applied via MPS onto titanium alloy. Surface roughness, porosity, and adhesion were characterized, and pull-off and shear tests were used to assess mechanical performance. In vitro biocompatibility was tested using rat mesenchymal stem cells (MSCs) to model osteointegration. The results showed that the MPS-fabricated Zr–HA bilayer coatings achieved a pull-off strength of 28.0 ± 4.2 MPa and a shear strength of 32.3 ± 3.2 MPa, exceeding standard requirements. Biologically, the HA top layer promoted a 45% increase in MSC proliferation over three days compared to the uncoated titanium substrate. Antibacterial testing also revealed suppression of E. coli growth after 14 h. These findings support the potential of MPS-applied Zr-HA coatings to enhance both the mechanical integrity and biological performance of titanium-based orthopedic implants. Full article
Show Figures

Figure 1

24 pages, 4099 KiB  
Article
Dynamic Control of Coating Accumulation Model in Non-Stationary Environment Based on Visual Differential Feedback
by Chengzhi Su, Danyang Yu, Wenyu Song, Huilin Tian, Haifeng Bao, Enguo Wang and Mingzhen Li
Coatings 2025, 15(7), 852; https://doi.org/10.3390/coatings15070852 - 19 Jul 2025
Viewed by 311
Abstract
To address the issue of coating accumulation model failure in unstable environments, this paper proposes a dynamic control method based on visual differential feedback. An image difference model is constructed through online image data modeling and real-time reference image feedback, enabling real-time correction [...] Read more.
To address the issue of coating accumulation model failure in unstable environments, this paper proposes a dynamic control method based on visual differential feedback. An image difference model is constructed through online image data modeling and real-time reference image feedback, enabling real-time correction of the coating accumulation model. Firstly, by combining the Arrhenius equation and the Hagen–Poiseuille equation, it is demonstrated that pressure regulation and temperature changes are equivalent under dataset establishment conditions, thereby reducing data collection costs. Secondly, online paint mist image acquisition and processing technology enables real-time modeling, overcoming the limitations of traditional offline methods. This approach reduces modeling time to less than 4 min, enhancing real-time parameter adjustability. Thirdly, an image difference model employing a CNN + MLP structure, combined with feature fusion and optimization strategies, achieved high prediction accuracy: R2 > 0.999, RMSE < 0.79 kPa, and σe < 0.74 kPa on the test set for paint A; and R2 > 0.997, RMSE < 0.67 kPa, and σe < 0.66 kPa on the test set for aviation paint B. The results show that the model can achieve good dynamic regulation for both types of typical aviation paint used in the experiment: high-viscosity polyurethane enamel (paint A, viscosity 22 s at 25 °C) and epoxy polyamide primer (paint B, viscosity 18 s at 25 °C). In summary, the image difference model can achieve dynamic regulation of the coating accumulation model in unstable environments, ensuring the stability of the coating accumulation model. This technology can be widely applied in industrial spraying scenarios with high requirements for coating uniformity and stability, especially in occasions with significant fluctuations in environmental parameters or complex process conditions, and has important engineering application value. Full article
Show Figures

Figure 1

15 pages, 5516 KiB  
Article
Preparation of Barium Europium Phosphate and Its Performance in Acrylic Resin Anti-Corrosion Coating
by Xuying Deng, Jihu Wang, Shaoguo Wen, Jiale Zhao, Xue Zhang, Yicheng Zhao and Zhiying Deng
Polymers 2025, 17(14), 1966; https://doi.org/10.3390/polym17141966 - 17 Jul 2025
Viewed by 245
Abstract
Acrylic resin is a polymer with strong crosslinking density and strength, and it is commonly used as a matrix in water-based coatings. Barium europium phosphate (Ba3Eu(PO4)3) is a novel functional filler that is expected to provide anti-corrosive [...] Read more.
Acrylic resin is a polymer with strong crosslinking density and strength, and it is commonly used as a matrix in water-based coatings. Barium europium phosphate (Ba3Eu(PO4)3) is a novel functional filler that is expected to provide anti-corrosive effects to coatings. In this study, Ba3Eu(PO4)3 was prepared by the high-temperature solid-phase method and applied to acrylic anti-corrosion coatings. The influence of the molar ratio of reactants on Ba3Eu(PO4)3 purity was studied. The anti-corrosion performance of the coating was investigated. It was found that, when BaCO3:Eu2O3:(NH4)H2PO4 = 3:0.5:3 and the reaction was carried out at 950 °C for 1000 min, high-purity Ba3Eu(PO4)3 can be obtained, according to XRD and EDS tests. SEM shows that Ba3Eu(PO4)3 has good crystal morphology and a porous morphology. TEM revealed that its structure was intact. When Ba3Eu(PO4)3 was added to a relative resin content of 5 wt%, the anti-corrosion performance of the coating was the best after 168 h, with the lowest Tafel current density of 9.616 μA/cm2 and the largest capacitance arc curvature radius. The salt spray resistance test showed that the corrosion resistance of the 5 wt% Ba3Eu(PO4)3 coating was also the best, which is consistent with the results of the electrochemical test. Ba3Eu(PO4)3 as a pigment and filler can effectively improve the anti-corrosion performance of water-based industrial coatings. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

17 pages, 3443 KiB  
Article
Influence of Dissipated Energy on the Bonding Strength of Cold-Sprayed Titanium Coatings on Selected Metallic Substrates
by Medard Makrenek
Materials 2025, 18(14), 3355; https://doi.org/10.3390/ma18143355 - 17 Jul 2025
Viewed by 263
Abstract
Modern nanoindentation equipment allows for highly precise measurements of mechanical properties such as hardness and elastic modulus, generating detailed load–unload curves using advanced techniques and specialised software. In this study, titanium coatings were deposited on various metallic substrates using cold gas spraying. Before [...] Read more.
Modern nanoindentation equipment allows for highly precise measurements of mechanical properties such as hardness and elastic modulus, generating detailed load–unload curves using advanced techniques and specialised software. In this study, titanium coatings were deposited on various metallic substrates using cold gas spraying. Before deposition, the spraying parameters (temperature, pressure, velocity, and distance) were statistically optimised using the Taguchi method, reducing the number of experiments required from 81 to 9. This approach allowed the identification of optimal spray conditions (T = 731.0 °C, p = 33.0 bar, V = 343.6 mm/s, d = 35.5 mm), which were then applied to substrates including brass, steel, titanium, Al7075, copper, magnesium, and Al2024. Mechanical characterisation included hardness (H), reduced modulus (E), coating adhesion, and dissipated energy, calculated from the area of the load–unload hysteresis loop. Each coating–substrate combination underwent 36 nanoindentation tests, and adhesion was evaluated by pull-off tests. The initial results showed a poor correlation between adhesion and conventional mechanical properties (χ2 of 17.1 for hardness and 16.2 for modulus, both with R2 < 0.24). In contrast, the dissipated energy showed an excellent correlation with adhesion (χ2 = 0.52, R2 = 0.92), suggesting that dynamic deformation mechanisms better describe bonding. This introduces a new perspective to predict and optimise cold-spray adhesion in industrial applications. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

22 pages, 4837 KiB  
Article
Leveraging Historical Process Data for Recombinant P. pastoris Fermentation Hybrid Deep Modeling and Model Predictive Control Development
by Emils Bolmanis, Vytautas Galvanauskas, Oskars Grigs, Juris Vanags and Andris Kazaks
Fermentation 2025, 11(7), 411; https://doi.org/10.3390/fermentation11070411 - 17 Jul 2025
Viewed by 464
Abstract
Hybrid modeling techniques are increasingly important for improving predictive accuracy and control in biomanufacturing, particularly in data-limited conditions. This study develops and experimentally validates a hybrid deep learning model predictive control (MPC) framework for recombinant P. pastoris fed-batch fermentations. Bayesian optimization and grid [...] Read more.
Hybrid modeling techniques are increasingly important for improving predictive accuracy and control in biomanufacturing, particularly in data-limited conditions. This study develops and experimentally validates a hybrid deep learning model predictive control (MPC) framework for recombinant P. pastoris fed-batch fermentations. Bayesian optimization and grid search techniques were employed to identify the best-performing hybrid model architecture: an LSTM layer with 2 hidden units followed by a fully connected layer with 8 nodes and ReLU activation. This design balanced accuracy (NRMSE 4.93%) and computational efficiency (AICc 998). This architecture was adapted to a new, smaller dataset of bacteriophage Qβ coat protein production using transfer learning, yielding strong predictive performance with low validation (3.53%) and test (5.61%) losses. Finally, the hybrid model was integrated into a novel MPC system and experimentally validated, demonstrating robust real-time substrate feed control in a way that allows it to maintain specific target growth rates. The system achieved predictive accuracies of 6.51% for biomass and 14.65% for product estimation, with an average tracking error of 10.64%. In summary, this work establishes a robust, adaptable, and efficient hybrid modeling framework for MPC in P. pastoris bioprocesses. By integrating automated architecture searching, transfer learning, and MPC, the approach offers a practical and generalizable solution for real-time control and supports scalable digital twin deployment in industrial biotechnology. Full article
Show Figures

Figure 1

26 pages, 3013 KiB  
Review
Intumescent Coatings and Their Applications in the Oil and Gas Industry: Formulations and Use of Numerical Models
by Taher Hafiz, James Covello, Gary E. Wnek, Abdulkareem Melaiye, Yen Wei and Jiujiang Ji
Polymers 2025, 17(14), 1923; https://doi.org/10.3390/polym17141923 - 11 Jul 2025
Viewed by 444
Abstract
The oil and gas industry is subject to significant fire hazards due to the flammability of hydrocarbons and the extreme conditions of operational facilities. Intumescent coatings (ICs) serve as a crucial passive fire protection strategy, forming an insulating char layer when exposed to [...] Read more.
The oil and gas industry is subject to significant fire hazards due to the flammability of hydrocarbons and the extreme conditions of operational facilities. Intumescent coatings (ICs) serve as a crucial passive fire protection strategy, forming an insulating char layer when exposed to heat, thereby reducing heat transfer and delaying structural failure. This review article provides an overview of recent developments in the effectiveness of ICs in mitigating fire risks, enhancing structural resilience, and reducing environmental impacts within the oil and gas industry. The literature surveyed shows that analytical techniques, such as thermogravimetric analysis, scanning electron microscopy, and large-scale fire testing, have been used to evaluate the thermal insulation performances of the coatings. The results indicate significant temperature reductions on protected steel surfaces that extend critical failure times under hydrocarbon fire conditions. Recent advancements in nano-enhanced and bio-derived ICs have also improved thermal stability and mechanical durability. Furthermore, numerical modeling based on heat transfer, mass conservation, and kinetic equations aids in optimizing formulations for real-world applications. Nevertheless, challenges remain in terms of standardizing modeling frameworks and enhancing the environmental sustainability of ICs. This review highlights the progress made and the opportunities for continuous advances and innovation in IC technologies to meet the ever-evolving challenges and complexities in oil and gas industry operations. Consequently, the need to enhance fire protection by utilizing a combination of tools improves predictive modeling and supports regulatory compliance in high-risk industrial environments. Full article
(This article belongs to the Section Innovation of Polymer Science and Technology)
Show Figures

Figure 1

16 pages, 2884 KiB  
Article
Effect of Zinc, Magnesium, and Manganese Phosphate Coatings on the Corrosion Behaviour of Steel
by Alin-Marian Cazac, Lucian-Ionel Cioca, Petru Lazar, Gheorghe Badarau, Nicanor Cimpoesu, Diana-Petronela Burduhos-Nergis, Pompilica Iagaru, Ramona Cimpoesu, Anca Cazac, Costica Bejinariu and Adriana Milea (Pârvu)
Materials 2025, 18(13), 3126; https://doi.org/10.3390/ma18133126 - 1 Jul 2025
Viewed by 325
Abstract
This study provides a systematic comparison of three types of phosphate coatings, applied by identical immersion phosphating processes and tested under two different environmental conditions representative of real industrial scenarios. The focus of this study is the investigation of the corrosion behaviour of [...] Read more.
This study provides a systematic comparison of three types of phosphate coatings, applied by identical immersion phosphating processes and tested under two different environmental conditions representative of real industrial scenarios. The focus of this study is the investigation of the corrosion behaviour of zinc, magnesium, and manganese phosphate coatings on reinforcing steel in two different corrosion environments: river water and seawater. The phosphate coatings were obtained via the immersion phosphating technique. Various techniques, including scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), potentiodynamic polarization curve (PDP) testing, and electrochemical impedance spectroscopy (EIS), were used to evaluate the morphology and corrosion resistance of the coatings. The overall corrosion protection performance of the coatings followed the order of Zn phosphate > Mn phosphate > Mg phosphate. The results indicate that the samples with the Zn-phosphated coating showing the highest improvement. This coating showed no major morphological changes and achieved significantly reduced corrosion rates—0.258 µm/year in river water and 3.060 µm/year in seawater—compared to the typical corrosion rate of uncoated steel, which is about 45 µm/year. These findings emphasize the effectiveness of Zn phosphate coatings in mitigating corrosion in both river water and marine conditions. Full article
Show Figures

Figure 1

23 pages, 3122 KiB  
Article
Investigation of Anti-Corrosion Behavior of Epoxy-Based Tannic Acid/Benzoxazine and Embedded ZnO Nanocomposites
by Khalid A. Alamry, Hafsah Klfout and Mahmoud A. Hussein
Catalysts 2025, 15(7), 644; https://doi.org/10.3390/catal15070644 - 1 Jul 2025
Viewed by 585
Abstract
Corrosion is a major issue in many industries, leading to material degradation, increased maintenance costs, and safety hazards. Conventional protective coatings frequently rely on hazardous chemicals, which has driven demand for environmentally friendly materials that can enhance the durability of infrastructure. The present [...] Read more.
Corrosion is a major issue in many industries, leading to material degradation, increased maintenance costs, and safety hazards. Conventional protective coatings frequently rely on hazardous chemicals, which has driven demand for environmentally friendly materials that can enhance the durability of infrastructure. The present study investigates the structural, mechanical, anticorrosive, and tensile properties of a novel polymer composite based on tannic acid-benzoxazine monomer (TA-BZ), reinforced with epoxy resin and zinc oxide (ZnO) nanoparticles. The composite formulations are designated as Epoxy-TA-BZ1-ZnO (A), Epoxy-TA-BZ2-ZnO (B), and Epoxy-TA-BZ4-ZnO (C). The objective of this research is to develop a sustainable material system with improved anticorrosive and mechanical performance. The composites were synthesized through the crosslinking of TA-BZ with epoxy resin and the incorporation of ZnO nanoparticles, known for their corrosion-inhibiting properties and contributions to tensile strength. The materials were evaluated using Fourier Transform Infrared (FT-IR) spectroscopy, Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), potentiodynamic polarization techniques, and tensile testing. Among the tested formulations, Epoxy-TA-BZ4-ZnO exhibited outstanding anticorrosive performance, achieving a minimal corrosion rate of 0.06 mm/year. This performance is attributed to the favorable dispersion of ZnO nanoparticles at 5 wt%, which serve as effective barriers to corrosive agents under the conditions studied. These findings highlight the potential of TA-BZ-based composites as environmentally sustainable alternatives to conventional coatings in corrosion-sensitive applications. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

50 pages, 8944 KiB  
Review
Fire-Resistant Coatings: Advances in Flame-Retardant Technologies, Sustainable Approaches, and Industrial Implementation
by Rutu Patel, Mayankkumar L. Chaudhary, Yashkumar N. Patel, Kinal Chaudhari and Ram K. Gupta
Polymers 2025, 17(13), 1814; https://doi.org/10.3390/polym17131814 - 29 Jun 2025
Viewed by 1534
Abstract
Fire-resistant coatings have emerged as crucial materials for reducing fire hazards in various industries, including construction, textiles, electronics, and aerospace. This review provides a comprehensive account of recent advances in fire-resistant coatings, emphasizing environmentally friendly and high-performance systems. Beginning with a classification of [...] Read more.
Fire-resistant coatings have emerged as crucial materials for reducing fire hazards in various industries, including construction, textiles, electronics, and aerospace. This review provides a comprehensive account of recent advances in fire-resistant coatings, emphasizing environmentally friendly and high-performance systems. Beginning with a classification of traditional halogenated and non-halogenated flame retardants (FRs), this article progresses to cover nitrogen-, phosphorus-, and hybrid-based systems. The synthesis methods, structure–property relationships, and fire suppression mechanisms are critically discussed. A particular focus is placed on bio-based and waterborne formulations that align with green chemistry principles, such as tannic acid (TA), phytic acid (PA), lignin, and deep eutectic solvents (DESs). Furthermore, the integration of nanomaterials and smart functionalities into fire-resistant coatings has demonstrated promising improvements in thermal stability, char formation, and smoke suppression. Applications in real-world contexts, ranging from wood and textiles to electronics and automotive interiors, highlight the commercial relevance of these developments. This review also addresses current challenges such as long-term durability, environmental impacts, and the standardization of performance testing. Ultimately, this article offers a roadmap for developing safer, sustainable, and multifunctional fire-resistant coatings for future materials engineering. Full article
(This article belongs to the Special Issue Flame-Retardant Polymer Composites II)
Show Figures

Figure 1

Back to TopTop