Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (968)

Search Parameters:
Keywords = industrial blockchain

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 7899 KiB  
Article
Digital Enablers of Sustainability: Insights from Sustainable Development Goals (SDGs) Research Mapping
by Jeongmi Ga, Jaewoo Bong, Myeongjun Yu and Minjung Kwak
Sustainability 2025, 17(15), 7031; https://doi.org/10.3390/su17157031 (registering DOI) - 2 Aug 2025
Abstract
As the global emphasis on sustainable development intensifies, the integration of digital technologies (DTs) into efforts to address the Sustainable Development Goals (SDGs) has gained increasing attention. However, existing research on the link between the SDGs and DTs remains fragmented and lacks a [...] Read more.
As the global emphasis on sustainable development intensifies, the integration of digital technologies (DTs) into efforts to address the Sustainable Development Goals (SDGs) has gained increasing attention. However, existing research on the link between the SDGs and DTs remains fragmented and lacks a comprehensive perspective on their interconnections. We aimed to address this gap by conducting a large-scale bibliometric analysis based on Elsevier’s SDG research mapping technique. Drawing on approximately 1.17 million publications related to both the 17 SDGs and 11 representative DTs, we explored research trends in the SDG–DT association, identified DTs that are most frequently tied to specific SDGs, and uncovered emerging areas of research within this interdisciplinary domain. Our results highlight the rapid expansion in the volume and variety of SDG–DT studies. Our findings shed light on the widespread relevance of artificial intelligence and robotics, the goal-specific applications of technologies such as 3D printing, cloud computing, drones, and extended reality, as well as the growing visibility of emerging technologies such as digital twins and blockchain. These findings offer valuable insights for researchers, policymakers, and industry leaders aiming to strategically harness DTs to support sustainable development and accelerate progress toward achieving the SDGs. Full article
Show Figures

Figure 1

36 pages, 1010 KiB  
Article
SIBERIA: A Self-Sovereign Identity and Multi-Factor Authentication Framework for Industrial Access
by Daniel Paredes-García, José Álvaro Fernández-Carrasco, Jon Ander Medina López, Juan Camilo Vasquez-Correa, Imanol Jericó Yoldi, Santiago Andrés Moreno-Acevedo, Ander González-Docasal, Haritz Arzelus Irazusta, Aitor Álvarez Muniain and Yeray de Diego Loinaz
Appl. Sci. 2025, 15(15), 8589; https://doi.org/10.3390/app15158589 (registering DOI) - 2 Aug 2025
Abstract
The growing need for secure and privacy-preserving identity management in industrial environments has exposed the limitations of traditional, centralized authentication systems. In this context, SIBERIA was developed as a modular solution that empowers users to control their own digital identities, while ensuring robust [...] Read more.
The growing need for secure and privacy-preserving identity management in industrial environments has exposed the limitations of traditional, centralized authentication systems. In this context, SIBERIA was developed as a modular solution that empowers users to control their own digital identities, while ensuring robust protection of critical services. The system is designed in alignment with European standards and regulations, including EBSI, eIDAS 2.0, and the GDPR. SIBERIA integrates a Self-Sovereign Identity (SSI) framework with a decentralized blockchain-based infrastructure for the issuance and verification of Verifiable Credentials (VCs). It incorporates multi-factor authentication by combining a voice biometric module, enhanced with spoofing-aware techniques to detect synthetic or replayed audio, and a behavioral biometrics module that provides continuous authentication by monitoring user interaction patterns. The system enables secure and user-centric identity management in industrial contexts, ensuring high resistance to impersonation and credential theft while maintaining regulatory compliance. SIBERIA demonstrates that it is possible to achieve both strong security and user autonomy in digital identity systems by leveraging decentralized technologies and advanced biometric verification methods. Full article
(This article belongs to the Special Issue Blockchain and Distributed Systems)
Show Figures

Figure 1

26 pages, 1263 KiB  
Article
Identifying Key Digital Enablers for Urban Carbon Reduction: A Strategy-Focused Study of AI, Big Data, and Blockchain Technologies
by Rongyu Pei, Meiqi Chen and Ziyang Liu
Systems 2025, 13(8), 646; https://doi.org/10.3390/systems13080646 (registering DOI) - 1 Aug 2025
Abstract
The integration of artificial intelligence (AI), big data analytics, and blockchain technologies within the digital economy presents transformative opportunities for promoting low-carbon urban development. However, a systematic understanding of how these digital innovations influence urban carbon mitigation remains limited. This study addresses this [...] Read more.
The integration of artificial intelligence (AI), big data analytics, and blockchain technologies within the digital economy presents transformative opportunities for promoting low-carbon urban development. However, a systematic understanding of how these digital innovations influence urban carbon mitigation remains limited. This study addresses this gap by proposing two research questions (RQs): (1) What are the key success factors for artificial intelligence, big data, and blockchain in urban carbon emission reduction? (2) How do these technologies interact and support the transition to low-carbon cities? To answer these questions, the study employs a hybrid methodological framework combining the decision-making trial and evaluation laboratory (DEMATEL) and interpretive structural modeling (ISM) techniques. The data were collected through structured expert questionnaires, enabling the identification and hierarchical analysis of twelve critical success factors (CSFs). Grounded in sustainability transitions theory and institutional theory, the CSFs are categorized into three dimensions: (1) digital infrastructure and technological applications; (2) digital transformation of industry and economy; (3) sustainable urban governance. The results reveal that e-commerce and sustainable logistics, the adoption of the circular economy, and cross-sector collaboration are the most influential drivers of digital-enabled decarbonization, while foundational elements such as smart energy systems and digital infrastructure act as key enablers. The DEMATEL-ISM approach facilitates a system-level understanding of the causal relationships and strategic priorities among the CSFs, offering actionable insights for urban planners, policymakers, and stakeholders committed to sustainable digital transformation and carbon neutrality. Full article
Show Figures

Figure 1

31 pages, 3379 KiB  
Review
The Adoption of Technological Innovations in the Maritime Industry: A Bibliometric Review
by Armand Djoumessi, Alessio Tei and Claudio Ferrari
J. Mar. Sci. Eng. 2025, 13(8), 1484; https://doi.org/10.3390/jmse13081484 - 31 Jul 2025
Abstract
The adoption of technological innovations in the maritime industry is of interest to business, policy, and academic communities. In the last group, this interest has translated into the publication of a large but scattered literature, making it difficult to compare findings and identify [...] Read more.
The adoption of technological innovations in the maritime industry is of interest to business, policy, and academic communities. In the last group, this interest has translated into the publication of a large but scattered literature, making it difficult to compare findings and identify the dynamics, structures, and patterns that might inform future research. A comprehensive review of past research on this topic might help achieve this. To date, no such review has been carried out, which is an important gap in the literature that this paper contributes to bridging. Two bibliometric review techniques—co-citation analysis of cited references and bibliographic coupling of documents—are applied to 171 journal articles published between 1999 and February 2025 to answer the following questions: 1. What is the knowledge base of this literature? 2. What are the recent research trends (research fronts) in this literature? The analysis reveals that research on “shore power” dominates both the knowledge base and research fronts. Other key research themes centre on “autonomous shipping”, “blockchain”, and “alternative fuels”. Based on these results, implications for future research are drawn. Full article
(This article belongs to the Special Issue Sustainable and Efficient Maritime Operations)
Show Figures

Figure 1

17 pages, 1353 KiB  
Article
SSB: Smart Contract Security Detection Tool Suitable for Industrial Control Scenarios
by Ci Tao, Shuai He and Xingqiu Shen
Sensors 2025, 25(15), 4695; https://doi.org/10.3390/s25154695 - 30 Jul 2025
Viewed by 210
Abstract
The results of this study highlight the effectiveness of the proposed semantic security detection framework, SSB, in identifying a wide range of vulnerabilities in smart contracts tailored for industrial control scenarios. Compared to existing tools like ZEUS, Securify, and VULTRON, SSB demonstrates superior [...] Read more.
The results of this study highlight the effectiveness of the proposed semantic security detection framework, SSB, in identifying a wide range of vulnerabilities in smart contracts tailored for industrial control scenarios. Compared to existing tools like ZEUS, Securify, and VULTRON, SSB demonstrates superior logical coverage across various vulnerability types, as evidenced by its performance on smart contract samples. This suggests that semantic-based approaches, which integrate domain-specific invariants and runtime monitoring, can address the unique challenges of ICS, such as real-time constraints and semantic consistency between code and physical control logic. The framework’s ability to model industrial invariants—covering security, functionality, consistency, time-related, and resource consumption aspects—provides a robust mechanism to prevent critical errors like unauthorized access or premature equipment operation. However, the lack of real-world ICS validation due to confidentiality constraints limits the generalizability of these findings. Future research should focus on adapting SSB for real industrial deployments, exploring scalability across diverse ICS architectures, and integrating advanced AI techniques for dynamic invariant adjustment. Additionally, addressing cross-chain interoperability and privacy concerns could further enhance the framework’s applicability in complex industrial ecosystems. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

27 pages, 1601 KiB  
Article
A Lightweight Authentication Method for Industrial Internet of Things Based on Blockchain and Chebyshev Chaotic Maps
by Zhonghao Zhai, Junyi Liu, Xinying Liu, Yanqin Mao, Xinjun Zhang, Jialin Ma and Chunhua Jin
Future Internet 2025, 17(8), 338; https://doi.org/10.3390/fi17080338 - 28 Jul 2025
Viewed by 107
Abstract
The Industrial Internet of Things (IIoT), a key enabler of Industry 4.0, integrates advanced communication technologies with the industrial economy to enable intelligent manufacturing and interconnected systems. Secure and reliable identity authentication in the IIoT becomes essential as connectivity expands across devices, systems, [...] Read more.
The Industrial Internet of Things (IIoT), a key enabler of Industry 4.0, integrates advanced communication technologies with the industrial economy to enable intelligent manufacturing and interconnected systems. Secure and reliable identity authentication in the IIoT becomes essential as connectivity expands across devices, systems, and domains. Blockchain technology presents a promising solution due to its decentralized, tamper-resistant, and traceable characteristics, facilitating secure and transparent identity verification. However, current blockchain-based cross-domain authentication schemes often lack a lightweight design, rendering them unsuitable for latency-sensitive and resource-constrained industrial environments. This paper proposes a lightweight cross-domain authentication scheme that combines blockchain with Chebyshev chaotic mapping. Unlike existing schemes relying heavily on Elliptic Curve Cryptography or bilinear pairing, our design circumvents such computationally intensive primitives entirely through the algebraic structure of Chebyshev polynomials. A formal security analysis using the Real-Or-Random (ROR) model demonstrates the scheme’s robustness. Furthermore, performance evaluations conducted with Hyperledger Fabric and the MIRACL cryptographic library validate the method’s effectiveness and superiority over existing approaches in terms of both security and operational efficiency. Full article
Show Figures

Figure 1

24 pages, 2815 KiB  
Article
Blockchain-Powered LSTM-Attention Hybrid Model for Device Situation Awareness and On-Chain Anomaly Detection
by Qiang Zhang, Caiqing Yue, Xingzhe Dong, Guoyu Du and Dongyu Wang
Sensors 2025, 25(15), 4663; https://doi.org/10.3390/s25154663 - 28 Jul 2025
Viewed by 222
Abstract
With the increasing scale of industrial devices and the growing complexity of multi-source heterogeneous sensor data, traditional methods struggle to address challenges in fault detection, data security, and trustworthiness. Ensuring tamper-proof data storage and improving prediction accuracy for imbalanced anomaly detection for potential [...] Read more.
With the increasing scale of industrial devices and the growing complexity of multi-source heterogeneous sensor data, traditional methods struggle to address challenges in fault detection, data security, and trustworthiness. Ensuring tamper-proof data storage and improving prediction accuracy for imbalanced anomaly detection for potential deployment in the Industrial Internet of Things (IIoT) remain critical issues. This study proposes a blockchain-powered Long Short-Term Memory Network (LSTM)–Attention hybrid model: an LSTM-based Encoder–Attention–Decoder (LEAD) for industrial device anomaly detection. The model utilizes an encoder–attention–decoder architecture for processing multivariate time series data generated by industrial sensors and smart contracts for automated on-chain data verification and tampering alerts. Experiments on real-world datasets demonstrate that the LEAD achieves an F0.1 score of 0.96, outperforming baseline models (Recurrent Neural Network (RNN): 0.90; LSTM: 0.94; and Bi-directional LSTM (Bi-LSTM, 0.94)). We simulate the system using a private FISCO-BCOS network with a multi-node setup to demonstrate contract execution, anomaly data upload, and tamper alert triggering. The blockchain system successfully detects unauthorized access and data tampering, offering a scalable solution for device monitoring. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

24 pages, 4612 KiB  
Article
A Privacy Preserving Attribute-Based Access Control Model for the Tokenization of Mineral Resources via Blockchain
by Padmini Nemala, Ben Chen and Hui Cui
Appl. Sci. 2025, 15(15), 8290; https://doi.org/10.3390/app15158290 - 25 Jul 2025
Viewed by 136
Abstract
The blockchain technology is transforming the mining industry by enabling mineral reserve tokenization, improving security, transparency, and traceability. However, controlling access to sensitive mining data remains a challenge. Existing access control models, such as role-based access control, are too rigid because they assign [...] Read more.
The blockchain technology is transforming the mining industry by enabling mineral reserve tokenization, improving security, transparency, and traceability. However, controlling access to sensitive mining data remains a challenge. Existing access control models, such as role-based access control, are too rigid because they assign permissions based on predefined roles rather than real-world conditions like mining licenses, regulatory approvals, or investment status. To address this, this paper explores an attribute-based access control model for blockchain-based mineral tokenization systems. ABAC allows access permissions to be granted dynamically based on multiple attributes rather than fixed roles, making it more adaptable to the mining industry. This paper presents a high-level system design that integrates ABAC with the blockchain using smart contracts to manage access policies and ensure compliance. The proposed model is designed for permissioned blockchain platforms, where access control decisions can be automated and securely recorded. A comparative analysis between ABAC and RBAC highlights how ABAC provides greater flexibility, security, and privacy for mining operations. By introducing ABAC in blockchain-based mineral reserve tokenization, this paper contributes to a more efficient and secure way of managing data access in the mining industry, ensuring that only authorized stakeholders can interact with tokenized mineral assets. Full article
Show Figures

Figure 1

32 pages, 15499 KiB  
Article
Enhancing Transparency in Buyer-Driven Commodity Chains for Complex Products: Extending a Blockchain-Based Traceability Framework Towards the Circular Economy
by Ritwik Takkar, Ken Birman and H. Oliver Gao
Appl. Sci. 2025, 15(15), 8226; https://doi.org/10.3390/app15158226 - 24 Jul 2025
Viewed by 290
Abstract
This study extends our prior blockchain-based traceability framework, WEave, for application to a furniture supply chain scenario, while using the original multi-tier apparel supply chain as an anchoring use case. We integrate circular economy principles such as product reuse, recycling traceability, and full [...] Read more.
This study extends our prior blockchain-based traceability framework, WEave, for application to a furniture supply chain scenario, while using the original multi-tier apparel supply chain as an anchoring use case. We integrate circular economy principles such as product reuse, recycling traceability, and full lifecycle transparency to bolster sustainability and resilience in supply chains by enabling data-driven accountability and tracking for closed-loop resource flows. The enhanced approach can track post-consumer returns, use of recycled materials, and second-life goods, all represented using a closed-loop supply chain topology. We describe the extended network architecture and smart contract logic needed to capture circular lifecycle events, while proposing new metrics for evaluating lifecycle traceability and reuse auditability. To validate the extended framework, we outline simulation experiments that incorporate circular flows and cross-industry scenarios. Results from these simulations indicate improved transparency on recycled content, audit trails for returned products, and acceptable performance overhead when scaling to different product domains. Finally, we offer conclusions and recommendations for implementing WEave functionality into real-world settings consistent with the goals of digital, resilient, and sustainable supply chains. Full article
Show Figures

Figure 1

21 pages, 10456 KiB  
Article
Experimental Validation of a Modular Skid for Hydrogen Production in a Hybrid Microgrid
by Gustavo Teodoro Bustamante, Jamil Haddad, Bruno Pinto Braga Guimaraes, Ronny Francis Ribeiro Junior, Frederico de Oliveira Assuncao, Erik Leandro Bonaldi, Luiz Eduardo Borges-da-Silva, Fabio Monteiro Steiner, Jaime Jose de Oliveira Junior and Claudio Inacio de Almeida Costa
Energies 2025, 18(15), 3910; https://doi.org/10.3390/en18153910 - 22 Jul 2025
Viewed by 240
Abstract
This article presents the development, integration, and experimental validation of a modular microgrid for sustainable hydrogen production, addressing global electricity demand and environmental challenges. The system was designed for initial validation in a thermoelectric power plant environment, with scalability to other applications. Centered [...] Read more.
This article presents the development, integration, and experimental validation of a modular microgrid for sustainable hydrogen production, addressing global electricity demand and environmental challenges. The system was designed for initial validation in a thermoelectric power plant environment, with scalability to other applications. Centered on a six-compartment skid, it integrates photovoltaic generation, battery storage, and a liquefied petroleum gas generator to emulate typical cogeneration conditions, together with a high-purity proton exchange membrane electrolyzer. A supervisory control module ensures real-time monitoring and energy flow management, following international safety standards. The study also explores the incorporation of blockchain technology to certify the renewable origin of hydrogen, enhancing traceability and transparency in the green hydrogen market. The experimental results confirm the system’s technical feasibility, demonstrating stable hydrogen production, efficient energy management, and islanded-mode operation with preserved grid stability. These findings highlight the strategic role of hydrogen as an energy vector in the transition to a cleaner energy matrix and support the proposed architecture as a replicable model for industrial facilities seeking to combine hydrogen production with advanced microgrid technologies. Future work will address large-scale validation and performance optimization, including advanced energy management algorithms to ensure economic viability and sustainability in diverse industrial contexts. Full article
Show Figures

Figure 1

22 pages, 1805 KiB  
Article
A Hybrid Semantic and Multi-Attention Mechanism Approach for Detecting Vulnerabilities in Smart Contract Code
by Zhenxiang He, Yanling Liu and Xiaohui Sun
Symmetry 2025, 17(7), 1161; https://doi.org/10.3390/sym17071161 - 21 Jul 2025
Viewed by 310
Abstract
Driven by blockchain technology, numerous industries are increasingly adopting smart contracts to enhance efficiency, reduce costs, and improve transparency. As a result, ensuring the security of smart contracts has become critical. Traditional detection methods often suffer from low efficiency, are prone to missing [...] Read more.
Driven by blockchain technology, numerous industries are increasingly adopting smart contracts to enhance efficiency, reduce costs, and improve transparency. As a result, ensuring the security of smart contracts has become critical. Traditional detection methods often suffer from low efficiency, are prone to missing complex vulnerabilities, and have limited accuracy. Although deep learning approaches address some of these challenges, issues with both accuracy and efficiency remain in current solutions. To overcome these limitations, this paper proposes a symmetry-inspired solution that harmonizes bidirectional and generative semantic patterns. First, we generate distinct feature extraction segments for different vulnerabilities. We then use the Bidirectional Encoder Representations from Transformers (BERT) module to extract original semantic features from these segments and the Generative Pre-trained Transformer (GPT) module to extract generative semantic features. Finally, the two sets of semantic features are fused using a multi-attention mechanism and input into a classifier for result prediction. Our method was tested on three datasets, achieving F1 scores of 93.33%, 93.65%, and 92.31%, respectively. The results demonstrate that our approach outperforms most existing methods in smart contract detection. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

20 pages, 1175 KiB  
Article
The Effect of Blockchain Adoption on Corporate Sustainable Development Performance: Evidence from Chinese Listed Firms
by Xiaoling Yuan, Shi Shi and Qing Di
Sustainability 2025, 17(14), 6631; https://doi.org/10.3390/su17146631 - 21 Jul 2025
Viewed by 401
Abstract
To respond to China’s sustainable development goals, this study uses a dynamic panel data set (2009–2023) and the PSM-DID model to examine how blockchain adoption impacts corporate sustainable development performance (CSDP). The results show that blockchain significantly enhances CSDP by 9.8–12.3%, primarily through [...] Read more.
To respond to China’s sustainable development goals, this study uses a dynamic panel data set (2009–2023) and the PSM-DID model to examine how blockchain adoption impacts corporate sustainable development performance (CSDP). The results show that blockchain significantly enhances CSDP by 9.8–12.3%, primarily through two channels (reducing financing constraints by improving transparency and decreasing chairman-CEO duality) to optimize governance. Regional environmental regulation strengthens this relationship. Heterogeneity analysis reveals stronger impacts in unregulated industries, private firms, and central–western regions, while state-owned firms show policy-driven governance improvements. The study enriches the understanding of blockchain’s dual role in balancing efficiency and sustainability, offering insights for integrating digital technology into green policy frameworks. Full article
Show Figures

Figure 1

21 pages, 1186 KiB  
Article
How Digital Technology and Business Innovation Enhance Economic–Environmental Sustainability in Legal Organizations
by Linhua Xia, Zhen Cao and Muhammad Bilawal Khaskheli
Sustainability 2025, 17(14), 6532; https://doi.org/10.3390/su17146532 - 17 Jul 2025
Viewed by 505
Abstract
This study discusses the role of organizational pro-environmental behavior in driving sustainable development. Studies of green practices highlight their capacity to achieve ecological goals while delivering economic sustainability with business strategies for sustainable businesses and advancing environmental sustainability law. It also considers how [...] Read more.
This study discusses the role of organizational pro-environmental behavior in driving sustainable development. Studies of green practices highlight their capacity to achieve ecological goals while delivering economic sustainability with business strategies for sustainable businesses and advancing environmental sustainability law. It also considers how the development of artificial intelligence, resource management, big data analysis, blockchain, and the Internet of Things enables companies to maximize supply efficiency and address evolving environmental regulations and sustainable decision-making. Through digital technology, businesses can facilitate supply chain transparency, adopt circular economy practices, and produce in an equitable and environmentally friendly manner. Additionally, intelligent business management practices, such as effective decision-making and sustainability reporting, enhance compliance with authorities while ensuring long-term profitability from a legal perspective. Integrating business innovation and digital technology within legal entities enhances economic efficiency, reduces operational costs, improves environmental sustainability, reduces paper usage, and lowers the carbon footprint, creating a double-benefit model of long-term resilience. The policymakers’ role in formulating policy structures that lead to green digital innovation is also to ensure that economic development worldwide is harmonized with environmental protection and international governance. Using example studies and empirical research raises awareness about best practices in technology-based sustainability initiatives across industries and nations, aligning with the United Nations Sustainable Development Goals. Full article
Show Figures

Figure 1

21 pages, 2740 KiB  
Review
Industry 4.0, Circular Economy and Sustainable Development Goals: Future Research Directions Through Scientometrics and Mini-Review
by Maximo Baca-Neglia, Carmen Barreto-Pio, Paul Virú-Vásquez, Edwin Badillo-Rivera, Mary Flor Césare-Coral, Jhimy Brayam Castro-Pantoja, Alejandrina Sotelo-Méndez, Juan Saldivar-Villarroel, Antonio Arroyo-Paz, Raymunda Veronica Cruz-Martinez, Edgar Norabuena Meza and Teodosio Celso Quispe-Ojeda
Sustainability 2025, 17(14), 6468; https://doi.org/10.3390/su17146468 - 15 Jul 2025
Viewed by 490
Abstract
The global pursuit of sustainable development has intensified the need to integrate Circular Economy (CE), Sustainable Development Goals (SDGs), and Industry 4.0 (I4.0) as mutually reinforcing frameworks. This study explores the scientific evolution and interconnections among these pillars through a dual approach: (i) [...] Read more.
The global pursuit of sustainable development has intensified the need to integrate Circular Economy (CE), Sustainable Development Goals (SDGs), and Industry 4.0 (I4.0) as mutually reinforcing frameworks. This study explores the scientific evolution and interconnections among these pillars through a dual approach: (i) a scientometric analysis using CiteSpace, VOSviewer, and Bibliometrix in RStudio (2024.12.1+563), and (ii) a targeted mini-review of high-impact literature. A dataset of 478 Scopus-indexed articles (2016–2024) was analyzed, revealing CE and I4.0 as key technological and strategic enablers of the SDGs—particularly SDG 12 (Responsible Consumption and Production), SDG 9 (Industry, Innovation and Infrastructure), and SDG 13 (Climate Action). Moreover, the results underscore an increasing role of enabling digital technologies—such as IoT, blockchain, and big data—in shaping sustainable production systems. An important insight from this work is the growing relevance of policy frameworks as catalysts for implementing CE and I4.0 strategies, especially within national and international sustainability agendas. However, the low citation frequency of “policy” as a keyword indicates a gap in the literature that merits further exploration. Future research is encouraged to conduct in-depth bibliometric studies focused on sustainability-related policies, including regulations that operationalize CE and I4.0 to support SDG achievement. This study contributes a comprehensive overview of emerging research trends, identifies strategic knowledge gaps, and highlights the need for cohesive governance mechanisms to accelerate the digital–ecological transition. Full article
Show Figures

Figure 1

35 pages, 2044 KiB  
Review
Overview of Sustainable Maritime Transport Optimization and Operations
by Lang Xu and Yalan Chen
Sustainability 2025, 17(14), 6460; https://doi.org/10.3390/su17146460 - 15 Jul 2025
Viewed by 623
Abstract
With the continuous expansion of global trade, achieving sustainable maritime transport optimization and operations has become a key strategic direction for transforming maritime transport companies. To summarize the current state of research and identify emerging trends in sustainable maritime transport optimization and operations, [...] Read more.
With the continuous expansion of global trade, achieving sustainable maritime transport optimization and operations has become a key strategic direction for transforming maritime transport companies. To summarize the current state of research and identify emerging trends in sustainable maritime transport optimization and operations, this study systematically examines representative studies from the past decade, focusing on three dimensions, technology, management, and policy, using data sourced from the Web of Science (WOS) database. Building on this analysis, potential avenues for future research are suggested. Research indicates that the technological field centers on the integrated application of alternative fuels, improvements in energy efficiency, and low-carbon technologies in the shipping and port sectors. At the management level, green investment decisions, speed optimization, and berth scheduling are emphasized as core strategies for enhancing corporate sustainable performance. From a policy perspective, attention is placed on the synergistic effects between market-based measures (MBMs) and governmental incentive policies. Existing studies primarily rely on multi-objective optimization models to achieve a balance between emission reductions and economic benefits. Technological innovation is considered a key pathway to decarbonization, while support from governments and organizations is recognized as crucial for ensuring sustainable development. Future research trends involve leveraging blockchain, big data, and artificial intelligence to optimize and streamline sustainable maritime transport operations, as well as establishing a collaborative governance framework guided by environmental objectives. This study contributes to refining the existing theoretical framework and offers several promising research directions for both academia and industry practitioners. Full article
(This article belongs to the Special Issue The Optimization of Sustainable Maritime Transportation System)
Show Figures

Figure 1

Back to TopTop