Industry 4.0, Circular Economy and Sustainable Development Goals: Future Research Directions Through Scientometrics and Mini-Review
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Annual Publications
3.2. Sources
3.3. Keywords Analysis
3.4. Research Trends and Hotspots Through Time
3.5. An Overview of CE and I4.0
3.6. Interrelation Between CE, SDG and I4.0
4. Discussion
Reference | CE | I4.0 | Sector | SDG1 | SDG2 | SDG3 | SDG4 | SDG5 | SDG6 | SDG7 | SDG8 | SDG9 | SDG10 | SDG11 | SDG12 | SDG13 | SDG14 | SDG15 | SDG16 | SDG17 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[22] | Reduce of waste, Energy Recovery | IoT, RFID, Blockchain, AI | Warehouse Management | X | X | X | X | X | X | |||||||||||
[28] | Reverse Logistics | DEMATEL and fuzzy logic | Textile industry supply chain | X | X | X | ||||||||||||||
[24] | Waste-To-Energy Conversion | DT and Big Data | Renewable energy consumption | X | ||||||||||||||||
[19] | Eco-friendly Design | Data-Driven | Waste biomass | X | X | X | X | |||||||||||||
[25] | Circular Business Model | - | Manufacturing sector | X | ||||||||||||||||
[23] | Renewable Energies | Output-oriented Data Envelopment Analysis | Renewable energy consumption | X | ||||||||||||||||
[82] | Recover | - | Waste Management | X | X | |||||||||||||||
[20] | Rainwater Harvesting | - | Water Management | X | ||||||||||||||||
[26] | CMUR and Eco-investment | AI | AI and Eco-investment | X | ||||||||||||||||
[83] | Recycling, reuse and recovery | - | Textiles Industry | X | ||||||||||||||||
[21] | Biodegradability and valorization | - | Algal-based Bioplastics | X | X | X | X | X | ||||||||||||
[29] | Recovery | - | Apparel manufacturing industry | X | ||||||||||||||||
[84] | Reusing animal waste | Automatization | Packaging films | X | ||||||||||||||||
[85] | Composting, Recycling, Pyrolisis | IoT | Waste management systems | X | X | X | ||||||||||||||
[18] | Value Retention Stages | Big Data | Different sectors | X | X | X | X | X | X | X | ||||||||||
[79] | Circular Business Model and Eco-Design | IoT | Ceramic Industry | X | X | X | X | X | X |
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Khodeir, L.M.; Othman, R. Examining the interaction between lean and sustainability principles in the management process of AEC industry. Ain Shams Eng. J. 2018, 9, 1627–1634. [Google Scholar] [CrossRef]
- Griggs, D.; Stafford-Smith, M.; Gaffney, O.; Rockström, J.; Öhman, M.C.; Shyamsundar, P.; Steffen, W.; Glaser, G.; Kanie, N.; Noble, I. Sustainable development goals for people and planet. Nature 2013, 495, 305–307. [Google Scholar] [CrossRef]
- Diniz, N.V.; Cunha, D.R.; de Santana Porte, M.; Oliveira, C.B.M.; de Freitas Fernandes, F. A bibliometric analysis of sustainable development goals in the maritime industry and port sector. Reg. Stud. Mar. Sci. 2024, 69, 103319. [Google Scholar] [CrossRef]
- United Nations. 17 Goals to Transform Our World 2025. Available online: https://www.un.org/sustainabledevelopment (accessed on 4 July 2025).
- Vinuesa, R.; Azizpour, H.; Leite, I.; Balaam, M.; Dignum, V.; Domisch, S.; Felländer, A.; Langhans, S.D.; Tegmark, M.; Fuso Nerini, F. The role of artificial intelligence in achieving the Sustainable Development Goals. Nat. Commun. 2020, 11, 233. [Google Scholar] [CrossRef] [PubMed]
- Mishra, M.; Desul, S.; Santos Guimarães, C.A.; Mishra, S.K.; Kamal, A.H.M.; Goswami, S.; Kalumba, A.M.; Biswal, R.; da Silva, R.M.; dos Santos, C.A.C.; et al. A bibliometric analysis of sustainable development goals (SDGs): A review of progress, challenges, and opportunities. Environ. Dev. Sustain. 2023, 26, 11101–11143. [Google Scholar] [CrossRef]
- Buer, S.V.; Strandhagen, J.O.; Chan, F.T.S. The link between Industry 4.0 and lean manufacturing: Mapping current research and establishing a research agenda. Int. J. Prod. Res. 2018, 56, 2924–2940. [Google Scholar] [CrossRef]
- Alhammadi, A.; Alsyouf, I.; Semeraro, C.; Obaideen, K. The role of industry 4.0 in advancing sustainability development: A focus review in the United Arab Emirates. Clean. Eng. Technol. 2024, 18, 100708. [Google Scholar] [CrossRef]
- Alnahhal, M.; Saleem, W.; Salah, B. The impact of emerging technologies of industry 4.0 on sustainability dimensions. J. Eng. Res. 2024; in press. [Google Scholar] [CrossRef]
- Purvis, B.; Mao, Y.; Roinson, D. Three pillars of sustainability: In search of conceptual origins. Sustain. Sci. 2019, 14, 681–695. [Google Scholar] [CrossRef]
- Bai, C.; Dallasega, P.; Orzes, G.; Sarkis, J. Industry 4.0 technologies assessment: A sustainability perspective. Int. J. Prod. Econ. 2020, 229, 107776. [Google Scholar] [CrossRef]
- Dieste, M.; Sauer, P.C.; Orzes, G. Organizational tensions in industry 4.0 implementation: A paradox theory approach. Int. J. Prod. Econ. 2022, 251, 108532. [Google Scholar] [CrossRef]
- Bohnsack, R.; Bidmon, C.M.; Pinkse, J. Sustainability in the digital age: Intended and unintended consequences of digital technologies for sustainable development. Bus. Strategy Environ. 2022, 31, 599–602. [Google Scholar] [CrossRef]
- Velenturf, A.P.M.; Purnell, P. Resource Recovery from Waste: Restoring the Balance between Resource Scarcity and Waste Overload. Sustainability 2017, 9, 1603. [Google Scholar] [CrossRef]
- Valverde, J.-M.; Avilés-Palacios, C.; de Oliveira Matias, C.; Renna, P. Circular Economy as a Catalyst for Progress towards the Sustainable Development Goals: A Positive Relationship between Two Self-Sufficient Variables. Sustainability 2021, 13, 12652. [Google Scholar] [CrossRef]
- Pomponi, F.; Moncaster, A. Circular economy for the built environment: A research framework. J. Clean. Prod. 2017, 143, 710–718. [Google Scholar] [CrossRef]
- Schöggl, J.P.; Stumpf, L.; Baumgartner, R.J. The narrative of sustainability and circular economy–A longitudinal review of two decades of research. Resour. Conserv. Recycl. 2020, 163, 105073. [Google Scholar] [CrossRef]
- Garcia-Saravia Ortiz-de-Montellano, C.; Samani, P.; van der Meer, Y. How can the circular economy support the advancement of the Sustainable Development Goals (SDGs)? A comprehensive analysis. Sustain. Prod. Consum. 2023, 40, 352–362. [Google Scholar] [CrossRef]
- Abdulhameed, A.S.; Al Omari, R.H.; Bourchak, M.; Abdullah, S.; Abualhaija, M.; Algburi, S. Bio-sourced multifunctional adsorbent of chitosan and adipic acid activated-dragon fruit peels for organic dye removal from water: Eco-friendly management and valorization of biomass. Biomass Bioenergy 2024, 190, 107414. [Google Scholar] [CrossRef]
- Hurayra, M.A.; Ahmed, A.; Alim, M.A.; Rahman, A. Water Savings in Places of Worship: A Case Study for St Mary’s Mosque in Australia. Sustainability 2024, 16, 6568. [Google Scholar] [CrossRef]
- Mogany, T.; Bhola, V.; Bux, F. Algal-based bioplastics: Global trends in applied research, technologies, and commercialization. Environ. Sci. Pollut. Res. 2024, 31, 38022–38044. [Google Scholar] [CrossRef] [PubMed]
- Aravindaraj, K.; Rajan Chinna, P. A systematic literature review of integration of industry 4.0 and warehouse management to achieve Sustainable Development Goals (SDGs). Clean. Logist. Supply Chain 2022, 5, 100072. [Google Scholar] [CrossRef]
- Campoli, J.S.; Alves Junior, P.N.; Kodama, T.K.; Nagano, M.S.; Burnquist, H.L. G20 countries’ progress on the 7th SDG under circular economy DEA model. Environ. Sci. Policy 2024, 160, 103839. [Google Scholar] [CrossRef]
- Balsalobre-Lorente, D.; Shah, S.A.R. Stay circular economy, empowerment, and natural resource utilization factual factors for SDG 12? The principal role of digital technologies. J. Environ. Manag. 2024, 370, 122459. [Google Scholar] [CrossRef] [PubMed]
- Hetherington, J.B.; Loch, A.J.; Juliano, P.; Umberger, W.J. Barriers to circular economy adoption are diverse and some are business-model specific: Evidence from the Australian cheese manufacturing sector. J. Clean. Prod. 2024, 477, 143879. [Google Scholar] [CrossRef]
- Platon, V.; Pavelescu, F.M.; Antonescu, D.; Constantinescu, A.; Frone, S.; Surugiu, M.; Mazilescu, R.; Popa, F. New evidence about artificial intelligence and eco-investment as boosters of the circular economy. Environ. Technol. Innov. 2024, 35, 103685. [Google Scholar] [CrossRef]
- Ijassi, W.; Evrard, D.; Zwolinski, P. Development of a circularity design methodology for urban factories based on systemic thinking and stakeholders engagement. Sustain. Prod. Consum. 2024, 46, 600–616. [Google Scholar] [CrossRef]
- Rashid, M.R.; Ghosh, S.K.; Alam, M.F.B.; Rahman, M.F. A fuzzy multi-criteria model with Pareto analysis for prioritizing sustainable supply chain barriers in the textile industry: Evidence from an emerging economy. Sustain. Oper. Comput. 2024, 5, 29–40. [Google Scholar] [CrossRef]
- Randhawa, R.K. Waste Management and Recovery Practices in the Apparel Sector Through a Sustainable Approach. In Exploring Waste Management in Sustainable Development Contexts; IGI Global: Hershey, PA, USA; pp. 37–52.
- Rodríguez-Aburto, C.; Poma-García, J.; Montaño-Pisfil, J.; Morcillo-Valdivia, P.; Solís-Farfán, R.; Curay-Tribeño, J.; Pilco-Nuñez, A.; Flores-Salinas, J.; Tineo-Cordova, F.; Virú-Vasquez, P.; et al. Applications of Renewable Energies in Low-Temperature Regions: A Scientometric Analysis of Recent Advancements and Future Research Directions. Energy 2025, 18, 904. [Google Scholar] [CrossRef]
- Wallin, J.A. Bibliometric methods: Pitfalls and possibilities. Basic. Clin. Pharmacol. Toxicol. 2005, 97, 261–275. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Mongeon, P.; Paul-Hus, A. The journal coverage of Web of Science and Scopus: A comparative analysis. Scientometrics 2016, 106, 213–228. [Google Scholar] [CrossRef]
- Talbi, A.; Souad, S.B. Industry 4.0 in construction organization of a mega projects: A bibliometric analysis. Procedia Comput. Sci. 2022, 204, 524–531. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Inf. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Hirsch, J.E. An index to quantify an individual’s scientific research output. Proc. Natl. Acad. Sci. USA 2005, 102, 16569–16572. [Google Scholar] [CrossRef]
- Egghe, L. Theory and practise of the g-index. Scientometrics 2013, 69, 131–152. [Google Scholar] [CrossRef]
- Zuo, Z.; Cheng, J.; Guo, H.; Li, Y. Knowledge mapping of research on strategic mineral resource security: A visual analysis using CiteSpace. Resour. Policy 2021, 74, 102372. [Google Scholar] [CrossRef]
- Panchal, R.; Singh, A.; Diwan, H. Does circular economy performance lead to sustainable development?–A systematic literature review. J. Environ. Manag. 2021, 293, 112811. [Google Scholar] [CrossRef]
- Herrera-Vidal, G.; Coronado-Hernández, J.R.; Maheut, J. Complexity management challenges in the industry 4.0 era: A systematic review in production systems. Results Eng. 2025, 26, 105329. [Google Scholar] [CrossRef]
- Dolci, V.; Bigliardi, B.; Petroni, A.; Pini, B.; Filippelli, S.; Tagliente, L. Integrating Industry 4.0 and Circular Economy: A Conceptual Framework for Sustainable Manufacturing. Procedia Comput. Sci. 2024, 232, 1711–1720. [Google Scholar] [CrossRef]
- Han, Y.; Shevchenko, T.; Yannou, B.; Ranjbari, M.; Shams Esfandabadi, Z.; Saidani, M.; Bouillass, G.; Bliumska-Danko, K.; Li, G. Exploring How Digital Technologies Enable a Circular Economy of Products. Sustainability 2023, 15, 2067. [Google Scholar] [CrossRef]
- Vahidi, A.; Gebremariam, A.T.; Di Maio, F.; Meister, K.; Koulaeian, T.; Rem, P. RFID-based material passport system in a recycled concrete circular chain. J. Clean. Prod. 2024, 442, 140973. [Google Scholar] [CrossRef]
- Bravo-Núñez, M.; Molina-Dahjer, N.; Cerro-Barrios, M.; Lombana-Jiménez, A.; Gatica, G.; Romero-Conrado, A.R. Exploring Blockchain Applications in the Transition to a Circular Economy: A Comprehensive Sector-Focused Review. Procedia Comput. Sci. 2024, 241, 564–569. [Google Scholar] [CrossRef]
- Chiappetta Jabbour, C.J.; De Camargo Fiorini, P.; Wong, C.W.Y.; Jugend, D.; Lopes De Sousa Jabbour, A.B.; Roman Pais Seles, B.M.; Paula Pinheiro, M.A.; Ribeiro da Silva, H.M. First-mover firms in the transition towards the sharing economy in metallic natural resource-intensive industries: Implications for the circular economy and emerging industry 4.0 technologies. Resour. Policy 2020, 66, 101596. [Google Scholar] [CrossRef]
- Chauhan, A.; Jakhar, S.K.; Chauhan, C. The interplay of circular economy with industry 4.0 enabled smart city drivers of healthcare waste disposal. J. Clean. Prod. 2021, 279, 123854. [Google Scholar] [CrossRef]
- Salehi-Amiri, A.; Akbapour, N.; Hajiaghaei-Keshteli, M.; Gajpal, Y.; Jabbarzadeh, A. Designing an effective two-stage, sustainable, and IoT based waste management system. Renew. Sustain. Energy Rev. 2022, 157, 112031. [Google Scholar] [CrossRef]
- Kumar, D.; Agrawal, S.; Singh, R.K.; Singh, R.K. IoT-enabled coordination for recommerce circular supply chain in the industry 4.0 era. Internet Things 2024, 26, 101140. [Google Scholar] [CrossRef]
- Iqbal, M.W.; Kang, Y. Circular economy of food: A secondary supply chain model on food waste management incorporating IoT based technology. J. Clean. Prod. 2024, 435, 140566. [Google Scholar] [CrossRef]
- Gupta, S.; Chen, H.; Hazen, B.T.; Kaur, S.; Santibañez Gonzalez, E.D.R. Circular economy and big data analytics: A stakeholder perspective. Technol. Forecast. Soc. Chang. 2019, 144, 466–474. [Google Scholar] [CrossRef]
- Marquesone, R.D.F.P.; Carvalho, T.C.M.D.B. A Taxonomy of Big Data Analytics in Circular Economy: Perspectives from the Fashion Industry. In World Conference on Information Systems and Technologies; Springer International Publishing: Cham, Switzerland, 2022; Volume 468, pp. 32–41. [Google Scholar]
- Condemi, A.; Cucchiella, F.; Schettini, D. Circular Economy and E-Waste: An Opportunity from RFID TAGs. Appl. Sci. 2019, 9, 3422. [Google Scholar] [CrossRef]
- Steenmans, K.; Taylor, P.; Steenmans, I. Blockchain Technology for Governance of Plastic Waste Management: Where Are We? Soc. Sci. 2021, 10, 434. [Google Scholar] [CrossRef]
- Beier, G.; Niehoff, S.; Xue, B. More Sustainability in Industry through Industrial Internet of Things? Appl. Sci. 2018, 8, 219. [Google Scholar] [CrossRef]
- Voinov, A.I.; Torkanovskiy, E.P.; Osipov, V.S. Nanotechnologization as Essential Component of Circular Economy: Chinese Versus Russian Experience. In Smart Green Innovations in Industry 4.0 for Climate Change Risk Management; Springer International Publishing: Cham, Switzerland, 2023; pp. 391–399. [Google Scholar]
- Hansen, S.F.; Arvidsson, R.; Nielsen, M.B.; Hansen, O.F.H.; Clausen, L.P.W.; Baun, A.; Boldrin, A. Nanotechnology meets circular economy. Nat. Nanotechnol. 2022, 17, 682–685. [Google Scholar] [CrossRef]
- Sustainable Development Goals Fund. From MDGs to SDGs|Sustainable Development Goals Fund 2015. Available online: https://www.sdgfund.org/mdgs-sdgs (accessed on 24 May 2025).
- de Jong, E.; Vijge, M.J. From Millennium to Sustainable Development Goals: Evolving discourses and their reflection in policy coherence for development. Earth Syst. Gov. 2021, 7, 100087. [Google Scholar] [CrossRef]
- Our World Data. SDG Tracker: Measuring Progress Towards the Sustainable Development Goals. Available online: https://ourworldindata.org/sdgs (accessed on 24 May 2025).
- Silvestre, B.S.; Ţîrcă, D.M. Innovations for sustainable development: Moving toward a sustainable future. J. Clean. Prod. 2019, 208, 325–332. [Google Scholar] [CrossRef]
- Hidayatno, A.; Destyanto, A.R.; Hulu, C.A. Industry 4.0 Technology Implementation Impact to Industrial Sustainable Energy in Indonesia: A Model Conceptualization. Energy Procedia 2019, 156, 227–233. [Google Scholar] [CrossRef]
- Luo, A.; Rodríguez, F.; Leipold, S. Explanations of the political gridlock behind international circular economy: Waste Ban narratives in the China-EU cooperation. Ambio 2023, 52, 126–139. [Google Scholar] [CrossRef]
- Johansson, N. Circular Agreements—Exploring the Role of Agreements and Deals as a Political Tool for a Circular Economy. Circ. Econ. Sustain. 2021, 1, 499–505. [Google Scholar] [CrossRef]
- Bisoni, C.P.; Brondi, C.; Rosso, C.; Cutaia, L. Towards a Global Framework to Measure and Assess Circular Economy. Symphonya Emerg. Issues Manag. 2020, 1, 88–100. [Google Scholar] [CrossRef]
- Tuerk, E.; Sporysheva, N. Promoting Circularity in Transition Economies: The Role of Trade and Economic Cooperation. Glob. Trade Cust. J. 2022, 17, 91–102. [Google Scholar] [CrossRef]
- Rabbi, M.F.; Amin, M.B. Circular economy and sustainable practices in the food industry: A comprehensive bibliometric analysis. Clean. Responsible Consum. 2024, 14, 100206. [Google Scholar] [CrossRef]
- Singh, S.; Trivedi, B.; Dasgupta, M.S.; Routroy, S. A bibliometric analysis of circular economy concept in E-waste research during the period 2008–2020. Mater. Today Proc. 2021, 46, 8519–8524. [Google Scholar] [CrossRef]
- Cotrina-Teatino, M.A.; Marquina-Araujo, J.J. Circular economy in the mining industry: A bibliometric and systematic literature review. Resour. Policy 2025, 102, 105513. [Google Scholar] [CrossRef]
- Muhuri, P.K.; Shukla, A.K.; Abraham, A. Industry 4.0: A bibliometric analysis and detailed overview. Eng. Appl. Artif. Intell. 2019, 78, 218–235. [Google Scholar] [CrossRef]
- Zahid, A.; Leclaire, P.; Hammadi, L.; Costa-Affonso, R.; El Ballouti, A. Exploring the potential of industry 4.0 in manufacturing and supply chain systems: Insights and emerging trends from bibliometric analysis. Supply Chain. Anal. 2025, 10, 100108. [Google Scholar] [CrossRef]
- Indana, F.; Pahlevi, R.W. A bibliometric approach to Sustainable Development Goals (SDGs) systematic analysis. Cogent Bus. Manag. 2023, 10, 2224174. [Google Scholar] [CrossRef]
- Ferraz, D.; Pyka, A. Circular economy, bioeconomy, and sustainable development goals: A systematic literature review. Environ. Sci. Pollut. Res. 2023, 1, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Corona, B.; Shen, L.; Reike, D.; Rosales Carreón, J.; Worrell, E. Towards sustainable development through the circular economy—A review and critical assessment on current circularity metrics. Resour. Conserv. Recycl. 2019, 151, 104498. [Google Scholar] [CrossRef]
- Rodríguez-Aburto, C.; Poma-García, J.; Montaño-Pisfil, J.; Morcillo-Valdivia, P.; Oyanguren-Ramirez, F.; Santos-Mejia, C.; Rodriguez-Flores, R.; Virú-Vasquez, P.; Pilco-Nuñez, A. Bibliometric Analysis of Global Publications on Management, Trends, Energy, and the Innovation Impact of Green Hydrogen Production. Sustainability 2024, 16, 11048. [Google Scholar] [CrossRef]
- Lin, K.Y. User experience-based product design for smart production to empower industry 4.0 in the glass recycling circular economy. Comput. Ind. Eng. 2018, 125, 729–738. [Google Scholar] [CrossRef]
- Dev, N.K.; Shankar, R.; Qaiser, F.H. Industry 4.0 and circular economy: Operational excellence for sustainable reverse supply chain performance. Resour. Conserv. Recycl. 2020, 153, 104583. [Google Scholar] [CrossRef]
- Yadav, G.; Luthra, S.; Jakhar, S.K.; Mangla, S.K.; Rai, D.P. A framework to overcome sustainable supply chain challenges through solution measures of industry 4.0 and circular economy: An automotive case. J. Clean. Prod. 2020, 254, 120112. [Google Scholar] [CrossRef]
- Esmaeilian, B.; Sarkis, J.; Lewis, K.; Behdad, S. Blockchain for the future of sustainable supply chain management in Industry 4.0. Resour. Conserv. Recycl. 2020, 163, 105064. [Google Scholar] [CrossRef]
- Garcia-Muiña, F.E.; González-Sánchez, R.; Ferrari, A.M.; Volpi, L.; Pini, M.; Siligardi, C.; Settembre-Blundo, D. Identifying the Equilibrium Point between Sustainability Goals and Circular Economy Practices in an Industry 4.0 Manufacturing Context Using Eco-Design. Soc. Sci. 2019, 8, 241. [Google Scholar] [CrossRef]
- Zavos, S.; Lehtokunnas, T.; Pyyhtinen, O. The (missing) social aspect of the circular economy: A review of social scientific articles. Sustain. Earth Rev. 2024, 7, 11. [Google Scholar] [CrossRef]
- Garcia-Saravia Ortiz-de-Montellano, C.; van der Meer, Y. A Theoretical Framework for Circular Processes and Circular Impacts Through a Comprehensive Review of Indicators. Glob. J. Flex. Syst. Manag. 2022, 23, 291–314. [Google Scholar] [CrossRef]
- Ferradás-González, A.; Pérez-Rico, C.; Adá-Lameiras, A. Transforming sorted and performance of waste recovery companies: Circular Economy, Sustainability Technology and SDGs. Sustain. Technol. Entrep. 2024, 3, 100082. [Google Scholar] [CrossRef]
- Khairul Akter, M.M.; Haq, U.N.; Islam, M.M.; Uddin, M.A. Textile-apparel manufacturing and material waste management in the circular economy: A conceptual model to achieve sustainable development goal (SDG) 12 for Bangladesh. Clean. Environ. Syst. 2022, 4, 100070. [Google Scholar] [CrossRef]
- Sharma, T.; Kaur, G.; Singh, A.; Kaur, P.; Dar, B.N. Harnessing animal waste proteins for eco-friendly packaging films: A sustainable approach towards SDG-12. Trends Food Sci. Technol. 2024, 147, 104455. [Google Scholar] [CrossRef]
- Fatimah, Y.A.; Govindan, K.; Murniningsih, R.; Setiawan, A. Industry 4.0 based sustainable circular economy approach for smart waste management system to achieve sustainable development goals: A case study of Indonesia. J. Clean. Prod. 2020, 269, 122263. [Google Scholar] [CrossRef]
- Findik, D.; Tirgil, A.; Özbuğday, F.C. Industry 4.0 as an enabler of circular economy practices: Evidence from European SMEs. J. Clean. Prod. 2023, 410, 137281. [Google Scholar] [CrossRef]
- Hjaltadóttir, R.E.; Hild, P. Circular Economy in the building industry European policy and local practices. Eur. Plan. Stud. 2021, 29, 2226–2251. [Google Scholar] [CrossRef]
- Zeng, X.; Ogunseitan, O.A.; Nakamura, S.; Suh, S.; Kral, U.; Li, J.; Geng, Y. Reshaping global policies for circular economy. Circ. Econ. 2022, 1, 100003. [Google Scholar] [CrossRef]
- Hsu, C.-H.; Li, Z.-H.; Zhang, T.-Y. Enabling Industry 5.0-Driven Circular Economy Transformation: A Strategic Roadmap. Sustainability 2024, 16, 9954. [Google Scholar] [CrossRef]
- Valencia, M.; Bocken, N.; Loaiza, C.; De Jaeger, S. The social contribution of the circular economy. J. Clean. Prod. 2023, 408, 137082. [Google Scholar] [CrossRef]
- Saleh, M.A.S.; AlShafeey, M. Examining the synergies between industry 4.0 and sustainability dimensions using text mining, sentiment analysis, and association rules. Sustain. Futures 2025, 9, 100423. [Google Scholar] [CrossRef]
- García-Muiña, F.; Medina-Salgado, M.S.; González-Sánchez, R.; Huertas-Valdivia, I.; Ferrari, A.M.; Settembre-Blundo, D. Industry 4.0-based dynamic Social Organizational Life Cycle Assessment to target the social circular economy in manufacturing. J. Clean. Prod. 2021, 327, 129439. [Google Scholar] [CrossRef]
Source | h-Index | g-Index | m-Index | TC | NP | SP | IF |
---|---|---|---|---|---|---|---|
Journal of Cleaner Production | 34 | 46 | 4.857 | 5591 | 46 | 2019 | 10.0 |
Sustainability (Switzerland) | 25 | 43 | 3.571 | 1905 | 46 | 2019 | 3.3 |
Business Strategy and the Environment | 13 | 24 | 2.6 | 1576 | 24 | 2021 | 13.3 |
Computers and Industrial Engineering | 10 | 14 | 1.25 | 520 | 14 | 2018 | 6.5 |
Production Planning and Control | 10 | 11 | 3.333 | 417 | 11 | 2023 | 6.1 |
Technological Forecasting and Social Change | 10 | 10 | 2 | 1262 | 10 | 2021 | 13.3 |
Resources, Conservation and Recycling | 9 | 9 | 1.286 | 1751 | 9 | 2019 | 10.9 |
Procedia CIRP | 8 | 16 | 1 | 285 | 16 | 2018 | 0.5 |
International Journal of Production Economics | 6 | 6 | 1.2 | 610 | 6 | 2021 | 10 |
Journal of Enterprise Information Management | 6 | 6 | 1.2 | 259 | 6 | 2021 | 7.6 |
Sector | CE Technique | I4.0 | Main Findings | Reference |
---|---|---|---|---|
Agri-food | Valorization | Big Data, Cyber-Physical Systems (CPS), IoT | A five-step approach was developed to guide sustainable process design using big data for environmental assessment. Among four rice straw pretreatment processes, RSP2 showed the lowest environmental impact; big data enabled robust decision support. | [76] |
Reverse supply chain | Integration of the ReSOLVE framework (Regenerate, Share, Optimize, Loop, Virtualize, Exchange) | IoT, Cyber-Physical Systems (CPS), Additive Manufacturing (AM), cloud-based ERP, RFID, simulation | The study proposes a model that combines I4.0 and circular economy principles to enhance sustainability in reverse logistics. It uses real-time information systems to coordinate production, remanufacturing, and transportation activities. Simulation and Taguchi design methods identify optimal information-sharing and scheduling policies that reduce CO2 emissions and operational costs. | [76] |
Automotive supply chain | Circular economy practices like 6R (Reduce, Reuse, Recycle, Refuse, Rethink, Repair), reverse logistics | Smart factories, IoT, machine learning, digitization | A framework was developed using BWM and ELECTRE to prioritize challenges and solutions for SSCM. Adoption of 6R and digital tools improves sustainability in auto supply chains. | [77] |
Supply chain management | Recycle and repair, reducing emissions | IoT, smart logistics transportation, smart business models. | Blockchain, integrated with I4.0 technologies, holds strong potential to enhance sustainability in supply chains, but requires careful design to avoid unintended negative impacts such as increased energy consumption. | [78] |
Reference | Country/Region | Policy Framework | Proposed/Observed | Technology Focus | Barriers/Challenges |
---|---|---|---|---|---|
[86] | European Union | European Green Deal, Circular Economy Action Plans and ReSOLVE Framework | Promote twin transition (digital + green), spread Industry 4.0 among SMEs, stimulate CE through tech adoption | Big Data, IoT, AI, 3D printing, Cloud, Blockchain, RFID | High transition costs, logistics complexity, lack of SME support, informational gaps |
[87] | Luxembourg and Sweden | EU CE Roadmaps (2011, 2015, 2020); local policy interaction with firms in building sector | Incentivize material reuse, use of non-virgin inputs, design for disassembly, support via digital transparency tools | Digital tools (modeling software, material passports), transparency systems | Fragmentation, weak inter-actor collaboration, insufficient guidance from policymakers |
[88] | Global (focus on USA, EU, Japan, China) | Basel Convention, national waste regulations, UNFC classification, regional circular economy plans | Advocate for global policy harmonization, regulate transboundary waste flows, classify anthropogenic resources systematically | Recycling technologies, urban mining, remanufacturing, waste classification, life cycle assessment (LCA), application of UNFC framework | Illegal waste flows, lack of toxic material control, unequal technical capacities, regulatory mismatches, downgraded quality of recycled materials |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baca-Neglia, M.; Barreto-Pio, C.; Virú-Vásquez, P.; Badillo-Rivera, E.; Césare-Coral, M.F.; Castro-Pantoja, J.B.; Sotelo-Méndez, A.; Saldivar-Villarroel, J.; Arroyo-Paz, A.; Cruz-Martinez, R.V.; et al. Industry 4.0, Circular Economy and Sustainable Development Goals: Future Research Directions Through Scientometrics and Mini-Review. Sustainability 2025, 17, 6468. https://doi.org/10.3390/su17146468
Baca-Neglia M, Barreto-Pio C, Virú-Vásquez P, Badillo-Rivera E, Césare-Coral MF, Castro-Pantoja JB, Sotelo-Méndez A, Saldivar-Villarroel J, Arroyo-Paz A, Cruz-Martinez RV, et al. Industry 4.0, Circular Economy and Sustainable Development Goals: Future Research Directions Through Scientometrics and Mini-Review. Sustainability. 2025; 17(14):6468. https://doi.org/10.3390/su17146468
Chicago/Turabian StyleBaca-Neglia, Maximo, Carmen Barreto-Pio, Paul Virú-Vásquez, Edwin Badillo-Rivera, Mary Flor Césare-Coral, Jhimy Brayam Castro-Pantoja, Alejandrina Sotelo-Méndez, Juan Saldivar-Villarroel, Antonio Arroyo-Paz, Raymunda Veronica Cruz-Martinez, and et al. 2025. "Industry 4.0, Circular Economy and Sustainable Development Goals: Future Research Directions Through Scientometrics and Mini-Review" Sustainability 17, no. 14: 6468. https://doi.org/10.3390/su17146468
APA StyleBaca-Neglia, M., Barreto-Pio, C., Virú-Vásquez, P., Badillo-Rivera, E., Césare-Coral, M. F., Castro-Pantoja, J. B., Sotelo-Méndez, A., Saldivar-Villarroel, J., Arroyo-Paz, A., Cruz-Martinez, R. V., Norabuena Meza, E., & Quispe-Ojeda, T. C. (2025). Industry 4.0, Circular Economy and Sustainable Development Goals: Future Research Directions Through Scientometrics and Mini-Review. Sustainability, 17(14), 6468. https://doi.org/10.3390/su17146468