Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (303)

Search Parameters:
Keywords = indoor trajectory

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1602 KiB  
Article
Phase Portrait-Based Orientation-Aware Path Planning for Autonomous Mobile Robots
by Abdurrahman Yilmaz and Hasan Kivrak
Inventions 2025, 10(4), 65; https://doi.org/10.3390/inventions10040065 (registering DOI) - 1 Aug 2025
Abstract
Path planning algorithms for mobile robots and autonomous systems have advanced considerably, yet challenges remain in navigating complex environments while satisfying non-holonomic constraints and achieving precise target orientation. Phase portraits are traditionally used to analyse dynamical systems via equilibrium points and system trajectories, [...] Read more.
Path planning algorithms for mobile robots and autonomous systems have advanced considerably, yet challenges remain in navigating complex environments while satisfying non-holonomic constraints and achieving precise target orientation. Phase portraits are traditionally used to analyse dynamical systems via equilibrium points and system trajectories, and can be a powerful framework for addressing these challenges. In this work, we propose a novel orientation-aware path planning algorithm that uses phase portrait dynamics by treating both obstacles and target poses as equilibrium points within the environment. Unlike conventional approaches, our method explicitly incorporates non-holonomic constraints and target orientation requirements, resulting in smooth, feasible trajectories with high final pose accuracy. Simulation results across 28 diverse scenarios show that our method achieves zero final orientation error with path lengths comparable to Hybrid A*, and planning times reduced by 52% on the indoor map and 84% on the playpen map relative to Hybrid A*. These results highlight the potential of phase portrait-based planning as an effective and efficient method for real-time autonomous navigation. Full article
Show Figures

Figure 1

18 pages, 12540 KiB  
Article
SS-LIO: Robust Tightly Coupled Solid-State LiDAR–Inertial Odometry for Indoor Degraded Environments
by Yongle Zou, Peipei Meng, Jianqiang Xiong and Xinglin Wan
Electronics 2025, 14(15), 2951; https://doi.org/10.3390/electronics14152951 - 24 Jul 2025
Viewed by 198
Abstract
Solid-state LiDAR systems are widely recognized for their high reliability, low cost, and lightweight design, but they encounter significant challenges in SLAM tasks due to their limited field of view and uneven horizontal scanning patterns, especially in indoor environments with geometric constraints. To [...] Read more.
Solid-state LiDAR systems are widely recognized for their high reliability, low cost, and lightweight design, but they encounter significant challenges in SLAM tasks due to their limited field of view and uneven horizontal scanning patterns, especially in indoor environments with geometric constraints. To address these challenges, this paper proposes SS-LIO, a precise, robust, and real-time LiDAR–Inertial odometry solution designed for solid-state LiDAR systems. SS-LIO uses uncertainty propagation in LiDAR point-cloud modeling and a tightly coupled iterative extended Kalman filter to fuse LiDAR feature points with IMU data for reliable localization. It also employs voxels to encapsulate planar features for accurate map construction. Experimental results from open-source datasets and self-collected data demonstrate that SS-LIO achieves superior accuracy and robustness compared to state-of-the-art methods, with an end-to-end drift of only 0.2 m in indoor degraded scenarios. The detailed and accurate point-cloud maps generated by SS-LIO reflect the smoothness and precision of trajectory estimation, with significantly reduced drift and deviation. These outcomes highlight the effectiveness of SS-LIO in addressing the SLAM challenges posed by solid-state LiDAR systems and its capability to produce reliable maps in complex indoor settings. Full article
(This article belongs to the Special Issue Advancements in Robotics: Perception, Manipulation, and Interaction)
Show Figures

Figure 1

23 pages, 3554 KiB  
Article
Multi-Sensor Fusion Framework for Reliable Localization and Trajectory Tracking of Mobile Robot by Integrating UWB, Odometry, and AHRS
by Quoc-Khai Tran and Young-Jae Ryoo
Biomimetics 2025, 10(7), 478; https://doi.org/10.3390/biomimetics10070478 - 21 Jul 2025
Viewed by 396
Abstract
This paper presents a multi-sensor fusion framework for the accurate indoor localization and trajectory tracking of a differential-drive mobile robot. The proposed system integrates Ultra-Wideband (UWB) trilateration, wheel odometry, and Attitude and Heading Reference System (AHRS) data using a Kalman filter. This fusion [...] Read more.
This paper presents a multi-sensor fusion framework for the accurate indoor localization and trajectory tracking of a differential-drive mobile robot. The proposed system integrates Ultra-Wideband (UWB) trilateration, wheel odometry, and Attitude and Heading Reference System (AHRS) data using a Kalman filter. This fusion approach reduces the impact of noisy and inaccurate UWB measurements while correcting odometry drift. The system combines raw UWB distance measurements with wheel encoder readings and heading information from an AHRS to improve robustness and positioning accuracy. Experimental validation was conducted through repeated closed-loop trajectory trials. The results demonstrate that the proposed method significantly outperforms UWB-only localization, yielding reduced noise, enhanced consistency, and lower Dynamic Time Warping (DTW) distances across repetitions. The findings confirm the system’s effectiveness and suitability for real-time mobile robot navigation in indoor environments. Full article
(This article belongs to the Special Issue Advanced Intelligent Systems and Biomimetics)
Show Figures

Figure 1

24 pages, 9349 KiB  
Article
Enhanced Pedestrian Navigation with Wearable IMU: Forward–Backward Navigation and RTS Smoothing Techniques
by Yilei Shen, Yiqing Yao, Chenxi Yang and Xiang Xu
Technologies 2025, 13(7), 296; https://doi.org/10.3390/technologies13070296 - 9 Jul 2025
Viewed by 473
Abstract
Accurate and reliable pedestrian positioning service is essential for providing Indoor Location-Based Services (ILBSs). Zero-Velocity Update (ZUPT)-aided Strapdown Inertial Navigation System (SINS) based on foot-mounted wearable Inertial Measurement Units (IMUs) has shown great performance in pedestrian navigation systems. Though the velocity errors will [...] Read more.
Accurate and reliable pedestrian positioning service is essential for providing Indoor Location-Based Services (ILBSs). Zero-Velocity Update (ZUPT)-aided Strapdown Inertial Navigation System (SINS) based on foot-mounted wearable Inertial Measurement Units (IMUs) has shown great performance in pedestrian navigation systems. Though the velocity errors will be corrected once zero-velocity measurement is available, the navigation system errors accumulated during measurement outages are yet to be further optimized by utilizing historical data during both stance and swing phases of pedestrian gait. Thus, in this paper, a novel Forward–Backward navigation and Rauch–Tung–Striebel smoothing (FB-RTS) navigation scheme is proposed. First, to efficiently re-estimate past system state and reduce accumulated navigation error once zero-velocity measurement is available, both the forward and backward integration method and the corresponding error equations are constructed. Second, to further improve navigation accuracy and reliability by exploiting historical observation information, both backward and forward RTS algorithms are established, where the system model and observation model are built under the output correction mode. Finally, both navigation results are combined to achieve the final estimation of attitude and velocity, where the position is recalculated by the optimized data. Through simulation experiments and two sets of field tests, the FB-RTS algorithm demonstrated superior performance in reducing navigation errors and smoothing pedestrian trajectories compared to traditional ZUPT method and both the FB and the RTS method, whose advantage becomes more pronounced over longer navigation periods than the traditional methods, offering a robust solution for positioning applications in smart buildings, indoor wayfinding, and emergency response operations. Full article
Show Figures

Figure 1

20 pages, 4572 KiB  
Article
Nonlinear Output Feedback Control for Parrot Mambo UAV: Robust Complex Structure Design and Experimental Validation
by Asmaa Taame, Ibtissam Lachkar, Abdelmajid Abouloifa, Ismail Mouchrif and Abdelali El Aroudi
Appl. Syst. Innov. 2025, 8(4), 95; https://doi.org/10.3390/asi8040095 - 7 Jul 2025
Viewed by 421
Abstract
This paper addresses the problem of controlling quadcopters operating in an environment characterized by unpredictable disturbances such as wind gusts. From a control point of view, this is a nonstandard, highly challenging problem. Fundamentally, these quadcopters are high-order dynamical systems characterized by an [...] Read more.
This paper addresses the problem of controlling quadcopters operating in an environment characterized by unpredictable disturbances such as wind gusts. From a control point of view, this is a nonstandard, highly challenging problem. Fundamentally, these quadcopters are high-order dynamical systems characterized by an under-actuated and highly nonlinear model with coupling between several state variables. The main objective of this work is to achieve a trajectory by tracking desired altitude and attitude. The problem was tackled using a robust control approach with a multi-loop nonlinear controller combined with extended Kalman filtering (EKF). Specifically, the flight control system consists of two regulation loops. The first one is an outer loop based on the backstepping approach and allows for control of the elevation as well as the yaw of the quadcopter, while the second one is the inner loop, which allows the maintenance of the desired attitude by adjusting the roll and pitch, whose references are generated by the outer loop through a standard PID, to limit the 2D trajectory to a desired set path. The investigation integrates EKF technique for sensor signal processing to increase measurements accuracy, hence improving robustness of the flight. The proposed control system was formally developed and experimentally validated through indoor tests using the well-known Parrot Mambo unmanned aerial vehicle (UAV). The obtained results show that the proposed flight control system is efficient and robust, making it suitable for advanced UAV navigation in dynamic scenarios with disturbances. Full article
(This article belongs to the Section Control and Systems Engineering)
Show Figures

Figure 1

29 pages, 2186 KiB  
Article
WiPIHT: A WiFi-Based Position-Independent Passive Indoor Human Tracking System
by Xu Xu, Xilong Che, Xianqiu Meng, Long Li, Ziqi Liu and Shuai Shao
Sensors 2025, 25(13), 3936; https://doi.org/10.3390/s25133936 - 24 Jun 2025
Viewed by 417
Abstract
Unlike traditional vision-based camera tracking, human indoor localization and activity trajectory recognition also employ other methods such as infrared tracking, acoustic localization, and locators. These methods have significant environmental limitations or dependency on specialized equipment. Currently, WiFi-based human sensing is a novel and [...] Read more.
Unlike traditional vision-based camera tracking, human indoor localization and activity trajectory recognition also employ other methods such as infrared tracking, acoustic localization, and locators. These methods have significant environmental limitations or dependency on specialized equipment. Currently, WiFi-based human sensing is a novel and important method for human activity recognition. However, most WiFi-based activity recognition methods have limitations, such as using WiFi fingerprints to identify human activities. They either require extensive sample collection and training, are constrained by a fixed environmental layout, or rely on the precise positioning of transmitters (TXs) and receivers (RXs) within the space. If the positions are uncertain, or change, the sensing performance becomes unstable. To address the dependency of current WiFi indoor human activity trajectory reconstruction on the TX-RX position, we propose WiPIHT, a stable system for tracking indoor human activity trajectories using a small number of commercial WiFi devices. This system does not require additional hardware to be carried or locators to be attached, enabling passive, real-time, and accurate tracking and trajectory reconstruction of indoor human activities. WiPIHT is based on an innovative CSI channel analysis method, analyzing its autocorrelation function to extract location-independent real-time movement speed features of the human body. It also incorporates Fresnel zone and motion velocity direction decomposition to extract movement direction change patterns independent of the relative position between the TX-RX and the human body. By combining real-time speed and direction curve features, the system derives the shape of the human movement trajectory. Experiments demonstrate that, compared to existing methods, our system can accurately reconstruct activity trajectory shapes even without knowing the initial positions of the TX or the human body. Additionally, our system shows significant advantages in tracking accuracy, real-time performance, equipment, and cost. Full article
(This article belongs to the Special Issue Recent Advances in Smart Mobile Sensing Technology)
Show Figures

Figure 1

26 pages, 8635 KiB  
Article
Test Methodologies for Collision Tolerance, Navigation, and Trajectory-Following Capabilities of Small Unmanned Aerial Systems
by Edwin Meriaux and Kshitij Jerath
Drones 2025, 9(6), 447; https://doi.org/10.3390/drones9060447 - 18 Jun 2025
Viewed by 408
Abstract
SmallUnmanned Aerial Systems (sUAS) have seen rapid adoption thanks to advances in endurance, communications, autonomy, and manufacturing costs, yet most testing remains focused on GPS-supported, above-ground operations. This study introduces new test methodologies and presents comprehensive experimental evaluations of collision tolerance, navigation, and [...] Read more.
SmallUnmanned Aerial Systems (sUAS) have seen rapid adoption thanks to advances in endurance, communications, autonomy, and manufacturing costs, yet most testing remains focused on GPS-supported, above-ground operations. This study introduces new test methodologies and presents comprehensive experimental evaluations of collision tolerance, navigation, and trajectory following for commercial sUAS platforms in GPS-denied indoor environments. We also propose numerical and categorical metrics—based on established vehicle collision protocols such as the Modified Acceleration Severity Index (MASI) and Maximum Delta V (MDV)—to quantify collision resilience; for example, the tested platforms achieved an average MASI of 0.1 g, while demonstrating clear separation between the highest- and lowest-performing systems. The experimental results revealed that performance varied significantly with mission complexity, obstacle proximity, and trajectory requirements, identifying platforms best suited for subterranean or crowded indoor applications. By aggregating these metrics, users can select the optimal drone for their specific mission requirements in challenging enclosed spaces. Full article
(This article belongs to the Special Issue Autonomous Drone Navigation in GPS-Denied Environments)
Show Figures

Figure 1

16 pages, 3216 KiB  
Article
UWB Indoor Localization Based on Artificial Rabbit Optimization Algorithm and BP Neural Network
by Chaochuan Jia, Can Tao, Ting Yang, Maosheng Fu, Xiancun Zhou and Zhendong Huang
Biomimetics 2025, 10(6), 367; https://doi.org/10.3390/biomimetics10060367 - 4 Jun 2025
Viewed by 416
Abstract
In the field of ultra-wideband (UWB) indoor localization, traditional backpropagation neural networks (BPNNs) are limited by their susceptibility to local minima, which restricts their ability to achieve global optimization. To overcome this challenge, this paper proposes a novel hybrid algorithm, termed ARO-BP, which [...] Read more.
In the field of ultra-wideband (UWB) indoor localization, traditional backpropagation neural networks (BPNNs) are limited by their susceptibility to local minima, which restricts their ability to achieve global optimization. To overcome this challenge, this paper proposes a novel hybrid algorithm, termed ARO-BP, which integrates the Artificial Rabbit Optimization (ARO) algorithm with a BPNN. The ARO algorithm optimizes the initial weights and thresholds of the BPNN, enabling the model to escape local optima and converge to a global solution. Experiments were conducted in both line-of-sight (LOS) and non-line-of-sight (NLOS) environments using a four-base-station configuration. The results demonstrate that the ARO-BP algorithm significantly outperforms traditional BPNNs. In LOS conditions, the ARO-BP model achieves a localization error of 6.29 cm, representing a 49.48% reduction compared to the 12.45 cm error of the standard BPNN. In NLOS scenarios, the error is further reduced to 9.86 cm (a 46.96% improvement over the 18.59 cm error of the baseline model). Additionally, in dynamic motion scenarios, the trajectory predicted by ARO-BP closely aligns with the ground truth, demonstrating superior stability. These findings validate the robustness and precision of the proposed algorithm, highlighting its potential for real-world applications in complex indoor environments. Full article
Show Figures

Figure 1

16 pages, 2315 KiB  
Article
ResT-IMU: A Two-Stage ResNet-Transformer Framework for Inertial Measurement Unit Localization
by Yanping Zhu, Jianqiang Zhang, Wenlong Chen, Chenyang Zhu, Sen Yan and Qi Chen
Sensors 2025, 25(11), 3441; https://doi.org/10.3390/s25113441 - 30 May 2025
Viewed by 564
Abstract
To address the challenges of accurate indoor positioning in complex environments, this paper proposes a two-stage indoor positioning method, ResT-IMU, which integrates the ResNet and Transformer architectures. The method initially processes the IMU data using Kalman filtering, followed by the application of windowing [...] Read more.
To address the challenges of accurate indoor positioning in complex environments, this paper proposes a two-stage indoor positioning method, ResT-IMU, which integrates the ResNet and Transformer architectures. The method initially processes the IMU data using Kalman filtering, followed by the application of windowing to the data. Residual networks are then employed to extract motion features by learning the residual mapping of the input data, which enhances the model’s ability to capture motion changes and predict instantaneous velocity. Subsequently, the self-attention mechanism of the Transformer is utilized to capture the temporal features of the IMU data, thereby refining the estimation of movement direction in conjunction with the velocity predictions. Finally, a fully connected layer outputs the predicted velocity and direction, which are used to calculate the trajectory. During training, the RMSE loss is used to optimize velocity prediction, while the cosine similarity loss is employed for direction prediction. Theexperimental results demonstrate that ResT-IMU achieves velocity prediction errors of 0.0182 m/s on the iIMU-TD dataset and 0.014 m/s on the RoNIN dataset. Compared with the ResNet model, ResT-IMU achieves reductions of 0.19 m in ATE and 0.05 m in RTE on the RoNIN dataset. Compared with the IMUNet model, ResT-IMU achieves reductions of 0.61 m in ATE and 0.02 m in RTE on the iIMU-TD dataset and reductions of 0.32 m in ATE and 0.33 m in RTE on the RoNIN dataset. Compared with the ResMixer model, ResT-IMU achieves reductions of 0.13 m in ATE and 0.02 m in RTE on the RoNIN dataset. These improvements indicate that ResT-IMU offers superior accuracy and robustness in trajectory prediction. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

16 pages, 4008 KiB  
Article
On the Flying Accuracy of Miniature Drones in Indoor Environments
by Nusin Akram, Ilker Kocabas and Orhan Dagdeviren
Drones 2025, 9(6), 399; https://doi.org/10.3390/drones9060399 - 28 May 2025
Viewed by 890
Abstract
Micro drones are becoming more popular in many areas, because they are small and fast enough to fly in tight and complex spaces. But they still have some significant problems. Their batteries drain fast, they cannot carry much weight, and their sensors and [...] Read more.
Micro drones are becoming more popular in many areas, because they are small and fast enough to fly in tight and complex spaces. But they still have some significant problems. Their batteries drain fast, they cannot carry much weight, and their sensors and computers are limited. These problems affect their flying performance and stability, which is very important for their missions. In this study, we evaluated the accuracy of mini drones in indoor environments. During hovering, the drones showed an average deviation of 77.9 cm, with a standard deviation of 26.4 cm, indicating moderate stability while stationary. In simple forward flights over 3 m, the average deviation increased to 92.6 cm, which showed slight drop in accuracy during movement. For more complex flight paths, such as L-shaped and square trajectories, the deviations increased to 141 cm and 245 cm, respectively. Full article
(This article belongs to the Special Issue Autonomous Drone Navigation in GPS-Denied Environments)
Show Figures

Figure 1

19 pages, 13655 KiB  
Article
Indoor mmWave Radar Ghost Suppression: Trajectory-Guided Spatiotemporal Point Cloud Learning
by Ruizhi Liu, Zhenhang Qin, Xinghui Song, Lei Yang, Yue Lin and Hongtao Xu
Sensors 2025, 25(11), 3377; https://doi.org/10.3390/s25113377 - 27 May 2025
Viewed by 776
Abstract
Millimeter-wave (mmWave) radar is increasingly used in smart environments for human detection due to its rich sensing capabilities and sensitivity to subtle movements. However, indoor multipath propagation causes severe ghost target issues, reducing radar reliability. To address this, we propose a trajectory-based ghost [...] Read more.
Millimeter-wave (mmWave) radar is increasingly used in smart environments for human detection due to its rich sensing capabilities and sensitivity to subtle movements. However, indoor multipath propagation causes severe ghost target issues, reducing radar reliability. To address this, we propose a trajectory-based ghost suppression method that integrates multi-target tracking with point cloud deep learning. Our approach consists of four key steps: (1) point cloud pre-segmentation, (2) inter-frame trajectory tracking, (3) trajectory feature aggregation, and (4) feature broadcasting, effectively combining spatiotemporal information with point-level features. Experiments on an indoor dataset demonstrate its superior performance compared to existing methods, achieving 93.5% accuracy and 98.2% AUROC. Ablation studies demonstrate the importance of each component, particularly the complementary benefits of pre-segmentation and trajectory processing. Full article
(This article belongs to the Special Issue Radar Target Detection, Imaging and Recognition)
Show Figures

Figure 1

23 pages, 6966 KiB  
Article
Structural Vibration Detection Using the Optimized Optical Flow Technique and UAV After Removing UAV’s Motions
by Xin Bai, Rongliang Xie, Ning Liu and Zi Zhang
Appl. Sci. 2025, 15(11), 5821; https://doi.org/10.3390/app15115821 - 22 May 2025
Viewed by 638
Abstract
Traditional structural damage detection relies on multi-sensor arrays (e.g., total stations, accelerometers, and GNSS). However, these sensors have some inherent limitations such as high cost, limited accuracy, and environmental sensitivity. Advances in computer vision technology have driven the research on vision-based structural vibration [...] Read more.
Traditional structural damage detection relies on multi-sensor arrays (e.g., total stations, accelerometers, and GNSS). However, these sensors have some inherent limitations such as high cost, limited accuracy, and environmental sensitivity. Advances in computer vision technology have driven the research on vision-based structural vibration analysis and damage identification. In this study, an optimized Lucas–Kanade optical flow algorithm is proposed, and it integrates feature point trajectory analysis with an adaptive thresholding mechanism, and improves the accuracy of the measurements through an innovative error vector filtering strategy. Comprehensive experimental validation demonstrates the performance of the algorithm in a variety of test scenarios. The method tracked MTS vibrations with 97% accuracy in a laboratory environment, and the robustness of the environment was confirmed by successful noise reduction using a dedicated noise-suppression algorithm under camera-induced interference conditions. UAV field tests show that it effectively compensates for UAV-induced motion artifacts and maintains over 90% measurement accuracy in both indoor and outdoor environments. Comparative analyses show that the proposed UAV-based method has significantly improved accuracy compared to the traditional optical flow method, providing a highly robust visual monitoring solution for structural durability assessment in complex environments. Full article
Show Figures

Figure 1

22 pages, 1034 KiB  
Article
A Novel Crowdsourcing-Assisted 5G Wireless Signal Ranging Technique in MEC Architecture
by Rui Lu, Lei Shi, Yinlong Liu and Zhongkai Dang
Future Internet 2025, 17(5), 220; https://doi.org/10.3390/fi17050220 - 14 May 2025
Viewed by 449
Abstract
In complex indoor and outdoor scenarios, traditional GPS-based ranging technology faces limitations in availability due to signal occlusion and user privacy issues. Wireless signal ranging technology based on 5G base stations has emerged as a potential alternative. However, existing methods are limited by [...] Read more.
In complex indoor and outdoor scenarios, traditional GPS-based ranging technology faces limitations in availability due to signal occlusion and user privacy issues. Wireless signal ranging technology based on 5G base stations has emerged as a potential alternative. However, existing methods are limited by low efficiency in constructing static signal databases, poor environmental adaptability, and high resource overhead, restricting their practical application. This paper proposes a 5G wireless signal ranging framework that integrates mobile edge computing (MEC) and crowdsourced intelligence to systematically address the aforementioned issues. This study designs a progressive solution by (1) building a crowdsourced data collection network, using mobile terminals equipped with GPS technology to automatically collect device signal features, replacing inefficient manual drive tests; (2) developing a progressive signal update algorithm that integrates real-time crowdsourced data and historical signals to optimize the signal fingerprint database in dynamic environments; (3) establishing an edge service architecture to offload signal matching and trajectory estimation tasks to MEC nodes, using lightweight computing engines to reduce the load on the core network. Experimental results demonstrate a mean positioning error of 5 m, with 95% of devices achieving errors within 10 m, as well as building and floor prediction error rates of 0.5% and 1%, respectively. The proposed framework outperforms traditional static methods by 3× in ranging accuracy while maintaining computational efficiency, achieving significant improvements in environmental adaptability and service scalability. Full article
Show Figures

Figure 1

33 pages, 9992 KiB  
Article
High-Precision Pedestrian Indoor Positioning Method Based on Inertial and Magnetic Field Information
by Ning Yu, Xuanhe Chen, Renjian Feng and Yinfeng Wu
Sensors 2025, 25(9), 2891; https://doi.org/10.3390/s25092891 - 3 May 2025
Viewed by 2481
Abstract
Long-term and high-precision positioning is the key to the pedestrian indoor positioning method. The estimation methods relying only on the inertial measurement unit (IMU) itself lack external observations that can provide absolute information, and the cumulative error easily leads to the distortion of [...] Read more.
Long-term and high-precision positioning is the key to the pedestrian indoor positioning method. The estimation methods relying only on the inertial measurement unit (IMU) itself lack external observations that can provide absolute information, and the cumulative error easily leads to the distortion of the calculated trajectory. In this paper, based on the Extended Kalman Filter (EKF) algorithm, the environmental magnetic field information is taken as the external observation quantity, and a positioning method combining inertial navigation and the magnetic field is proposed. The cumulative error is suppressed from both the yaw angle and pedestrian pose, and the overall navigation and positioning accuracy is improved. The experimental results show that the proposed fusion method greatly improves the suppression of yaw angle and displacement errors. In a total distance of 297.08 m, the yaw angle error is reduced from 11.043° to 4.778°, and the position error is reduced from 8.999 m to 0.364 m. The relative average error decreases from 3.02% to 0.12%. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

18 pages, 22617 KiB  
Article
Experimental Study on Pipeline–Soil Interaction in Translational Landslide
by Tianjun Xue, Lingxin Liu, Jianlei Zhang, Mengjie Dai, Gengyuan Shi and Xinze Li
Coatings 2025, 15(5), 537; https://doi.org/10.3390/coatings15050537 - 30 Apr 2025
Viewed by 493
Abstract
Pipelines in landslide-prone areas are highly susceptible to damage or rupture under soil movement, posing severe threats to social stability and national security. However, research on pipeline failure mechanisms across different landslide types remains insufficient. Therefore, this study employs large-scale indoor model tests [...] Read more.
Pipelines in landslide-prone areas are highly susceptible to damage or rupture under soil movement, posing severe threats to social stability and national security. However, research on pipeline failure mechanisms across different landslide types remains insufficient. Therefore, this study employs large-scale indoor model tests to investigate the interaction mechanisms between pipelines and soil (pipeline–soil interaction) in translational landslide zones through comparative experiments. The results indicate that: (1) The failure process of translational landslides is characterized by initial sliding at the slope crest under loading, which progressively drives the lower soil mass, ultimately resulting in global slope instability. The sliding mass displacement exhibits a top-to-bottom reduction pattern. (2) Pipelines traversing slopes laterally significantly enhance slope stability by providing measurable anti-sliding resistance. (3) Pipeline displacement under sliding mass action occurs in the downslope direction, yet its trajectory deviates from the sliding mass movement. (4) Strain analysis reveals that the pipeline experiences peak strain in the middle region of the sliding mass and at the sliding-non-sliding interface, with the middle region being the primary location for initial yielding and fracture. This study advances the understanding of pipeline-sliding mass interaction mechanisms in translational landslides and offers critical insights for improving pipeline safety and reliability. Full article
(This article belongs to the Special Issue Advances in Pavement Materials and Civil Engineering)
Show Figures

Figure 1

Back to TopTop