Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (366)

Search Parameters:
Keywords = indoor air design temperature

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 7429 KiB  
Article
Study on the Influence of Window Size on the Thermal Comfort of Traditional One-Seal Dwellings (Yikeyin) in Kunming Under Natural Wind
by Yaoning Yang, Junfeng Yin, Jixiang Cai, Xinping Wang and Juncheng Zeng
Buildings 2025, 15(15), 2714; https://doi.org/10.3390/buildings15152714 - 1 Aug 2025
Viewed by 174
Abstract
Under the dual challenges of global energy crisis and climate change, the building sector, as a major carbon emitter consuming 33% of global primary energy, has seen its energy efficiency optimization become a critical pathway towards achieving carbon neutrality goals. The Window-to-Wall Ratio [...] Read more.
Under the dual challenges of global energy crisis and climate change, the building sector, as a major carbon emitter consuming 33% of global primary energy, has seen its energy efficiency optimization become a critical pathway towards achieving carbon neutrality goals. The Window-to-Wall Ratio (WWR), serving as a core parameter in building envelope design, directly influences building energy consumption, with its optimized design playing a decisive role in balancing natural daylighting, ventilation efficiency, and thermal comfort. This study focuses on the traditional One-Seal dwellings (Yikeyin) in Kunming, China, establishing a dynamic wind field-thermal environment coupled analysis framework to investigate the impact mechanism of window dimensions (WWR and aspect ratio) on indoor thermal comfort under natural wind conditions in transitional climate zones. Utilizing the Grasshopper platform integrated with Ladybug, Honeybee, and Butterfly plugins, we developed parametric models incorporating Kunming’s Energy Plus Weather meteorological data. EnergyPlus and OpenFOAM were employed, respectively, for building heat-moisture balance calculations and Computational Fluid Dynamic (CFD) simulations, with particular emphasis on analyzing the effects of varying WWR (0.05–0.20) on temperature-humidity, air velocity, and ventilation efficiency during typical winter and summer weeks. Key findings include, (1) in summer, the baseline scenario with WWR = 0.1 achieves a dynamic thermal-humidity balance (20.89–24.27 °C, 65.35–74.22%) through a “air-permeable but non-ventilative” strategy, though wing rooms show humidity-heat accumulation risks; increasing WWR to 0.15–0.2 enhances ventilation efficiency (2–3 times higher air changes) but causes a 4.5% humidity surge; (2) winter conditions with WWR ≥ 0.15 reduce wing room temperatures to 17.32 °C, approaching cold thresholds, while WWR = 0.05 mitigates heat loss but exacerbates humidity accumulation; (3) a symmetrical layout structurally constrains central ventilation, maintaining main halls air changes below one Air Change per Hour (ACH). The study proposes an optimized WWR range of 0.1–0.15 combined with asymmetric window opening strategies, providing quantitative guidance for validating the scientific value of vernacular architectural wisdom in low-energy design. Full article
Show Figures

Figure 1

40 pages, 910 KiB  
Review
Impact of Indoor Air Quality, Including Thermal Conditions, in Educational Buildings on Health, Wellbeing, and Performance: A Scoping Review
by Duncan Grassie, Kaja Milczewska, Stijn Renneboog, Francesco Scuderi and Sani Dimitroulopoulou
Environments 2025, 12(8), 261; https://doi.org/10.3390/environments12080261 - 30 Jul 2025
Viewed by 503
Abstract
Educational buildings, including schools, nurseries and universities, face stricter regulation and design control on indoor air quality (IAQ) and thermal conditions than other built environments, as these may affect children’s health and wellbeing. In this scoping review, wide-ranging health, performance, and absenteeism consequences [...] Read more.
Educational buildings, including schools, nurseries and universities, face stricter regulation and design control on indoor air quality (IAQ) and thermal conditions than other built environments, as these may affect children’s health and wellbeing. In this scoping review, wide-ranging health, performance, and absenteeism consequences of poor—and benefits of good—IAQ and thermal conditions are evaluated, focusing on source control, ventilation and air purification interventions. Economic impacts of interventions in educational buildings have been evaluated to enable the assessment of tangible building-related costs and savings, alongside less easily quantifiable improvements in educational attainment and reduced healthcare. Key recommendations are provided to assist decision makers in pathways to provide clean air, at an optimal temperature for students’ learning and health outcomes. Although the role of educational buildings can be challenging to isolate from other socio-economic confounders, secondary short- and long-term impacts on attainment and absenteeism have been demonstrated from the health effects associated with various pollutants. Sometimes overlooked, source control and repairing existing damage can be important cost-effective methods in minimising generation and preventing ingress of pollutants. Existing ventilation standards are often not met, even when mechanical and hybrid ventilation systems are already in place, but can often be achieved with a fraction of a typical school budget through operational and maintenance improvements, and small-scale air-cleaning and ventilation technologies, where necessary. Full article
(This article belongs to the Special Issue Air Pollution in Urban and Industrial Areas III)
Show Figures

Graphical abstract

28 pages, 3635 KiB  
Article
Optimizing Energy Performance of Phase-Change Material-Enhanced Building Envelopes Through Novel Performance Indicators
by Abrar Ahmad and Shazim Ali Memon
Buildings 2025, 15(15), 2678; https://doi.org/10.3390/buildings15152678 - 29 Jul 2025
Viewed by 703
Abstract
Over recent decades, phase-change materials (PCMs) have gained prominence as latent-heat thermal energy storage systems in building envelopes because of their high energy density. However, only PCMs that complete a full daily charge–discharge cycle can deliver meaningful energy and carbon-emission savings. This simulation [...] Read more.
Over recent decades, phase-change materials (PCMs) have gained prominence as latent-heat thermal energy storage systems in building envelopes because of their high energy density. However, only PCMs that complete a full daily charge–discharge cycle can deliver meaningful energy and carbon-emission savings. This simulation study introduces a methodology that simultaneously optimizes PCM integration for storage efficiency, indoor thermal comfort, and energy savings. Two new indicators are proposed: overall storage efficiency (ECn), which consolidates heating and cooling-efficiency ratios into a single value, and the performance factor (PF), which quantifies the PCM’s effectiveness in maintaining thermal comfort. Using EnergyPlus v8.9 coupled with DesignBuilder, a residential ASHRAE 90.1 mid-rise apartment was modeled in six warm-temperate (Cfb) European cities for the summer period from June 1 to August 31. Four paraffin PCMs (RT-22/25/28/31 HC, 20 mm thickness) were tested under natural and controlled ventilation strategies, with windows opening 50% when outdoor air was at least 2 °C cooler than indoors. Simulation outputs were validated against experimental cubicle data, yielding a mean absolute indoor temperature error ≤ 4.5%, well within the ±5% tolerance commonly accepted for building thermal simulations. The optimum configuration—RT-25 HC with temperature-controlled ventilation—achieved PF = 1.0 (100% comfort compliance) in all six cities and delivered summer cooling-energy savings of up to 3376 kWh in Paris, the highest among the locations studied. Carbon-emission reductions reached 2254 kg CO2-e year−1, and static payback periods remained below the assumed 50-year building life at a per kg PCM cost of USD 1. The ECn–PF framework, therefore, provides a transparent basis for selecting cost-effective, energy-efficient, and low-carbon PCM solutions in warm-temperate buildings. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

23 pages, 7106 KiB  
Article
A Simulation-Based Comparative Study of Advanced Control Strategies for Residential Air Conditioning Systems
by Jonadri Bundo, Donald Selmanaj, Genci Sharko, Stefan Svensson and Orion Zavalani
Eng 2025, 6(8), 170; https://doi.org/10.3390/eng6080170 - 24 Jul 2025
Viewed by 292
Abstract
This study presents a simulation-based evaluation of advanced control strategies for residential air conditioning systems, including On–Off, PI, and Model Predictive Control (MPC) approaches. A black-box system model was identified using an ARX(2,2,0) structure, achieving over 90% prediction accuracy (FIT) for indoor temperature [...] Read more.
This study presents a simulation-based evaluation of advanced control strategies for residential air conditioning systems, including On–Off, PI, and Model Predictive Control (MPC) approaches. A black-box system model was identified using an ARX(2,2,0) structure, achieving over 90% prediction accuracy (FIT) for indoor temperature and power consumption. Six controllers were implemented and benchmarked in a high-fidelity Simscape environment under a realistic 48-h summer temperature profile. The proposed MPC scheme, particularly when incorporating outdoor temperature gradient logic, reduced energy consumption by up to 30% compared to conventional PI control while maintaining indoor thermal comfort within the acceptable range. This virtual design workflow shortens the development cycle by deferring climatic chamber testing to the final validation phase. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

35 pages, 2895 KiB  
Review
Ventilated Facades for Low-Carbon Buildings: A Review
by Pinar Mert Cuce and Erdem Cuce
Processes 2025, 13(7), 2275; https://doi.org/10.3390/pr13072275 - 17 Jul 2025
Viewed by 643
Abstract
The construction sector presently consumes about 40% of global energy and generates 36% of CO2 emissions, making facade retrofits a priority for decarbonising buildings. This review clarifies how ventilated facades (VFs), wall assemblies that interpose a ventilated air cavity between outer cladding [...] Read more.
The construction sector presently consumes about 40% of global energy and generates 36% of CO2 emissions, making facade retrofits a priority for decarbonising buildings. This review clarifies how ventilated facades (VFs), wall assemblies that interpose a ventilated air cavity between outer cladding and the insulated structure, address that challenge. First, the paper categorises VFs by structural configuration, ventilation strategy and functional control into four principal families: double-skin, rainscreen, hybrid/adaptive and active–passive systems, with further extensions such as BIPV, PCM and green-wall integrations that couple energy generation or storage with envelope performance. Heat-transfer analysis shows that the cavity interrupts conductive paths, promotes buoyancy- or wind-driven convection, and curtails radiative exchange. Key design parameters, including cavity depth, vent-area ratio, airflow velocity and surface emissivity, govern this balance, while hybrid ventilation offers the most excellent peak-load mitigation with modest energy input. A synthesis of simulation and field studies indicates that properly detailed VFs reduce envelope cooling loads by 20–55% across diverse climates and cut winter heating demand by 10–20% when vents are seasonally managed or coupled with heat-recovery devices. These thermal benefits translate into steadier interior surface temperatures, lower radiant asymmetry and fewer drafts, thereby expanding the hours occupants remain within comfort bands without mechanical conditioning. Climate-responsive guidance emerges in tropical and arid regions, favouring highly ventilated, low-absorptance cladding; temperate and continental zones gain from adaptive vents, movable insulation or PCM layers; multi-skin adaptive facades promise balanced year-round savings by re-configuring in real time. Overall, the review demonstrates that VFs constitute a versatile, passive-plus platform for low-carbon buildings, simultaneously enhancing energy efficiency, durability and indoor comfort. Future advances in smart controls, bio-based materials and integrated energy-recovery systems are poised to unlock further performance gains and accelerate the sector’s transition to net-zero. Emerging multifunctional materials such as phase-change composites, nanostructured coatings, and perovskite-integrated systems also show promise in enhancing facade adaptability and energy responsiveness. Full article
(This article belongs to the Special Issue Sustainable Development of Energy and Environment in Buildings)
Show Figures

Figure 1

20 pages, 2422 KiB  
Article
Design and Performance of a Large-Diameter Earth–Air Heat Exchanger Used for Standalone Office-Room Cooling
by Rogério Duarte, António Moret Rodrigues, Fernando Pimentel and Maria da Glória Gomes
Appl. Sci. 2025, 15(14), 7938; https://doi.org/10.3390/app15147938 - 16 Jul 2025
Viewed by 232
Abstract
Earth–air heat exchangers (EAHXs) use the soil’s thermal capacity to dampen the amplitude of outdoor air temperature oscillations. This effect can be used in hot and dry climates for room cooling with no or very little need for resources other than those used [...] Read more.
Earth–air heat exchangers (EAHXs) use the soil’s thermal capacity to dampen the amplitude of outdoor air temperature oscillations. This effect can be used in hot and dry climates for room cooling with no or very little need for resources other than those used during the EAHX construction, an obvious advantage compared to the significant operational costs of refrigeration machines. Contrary to the streamlined process applied in conventional HVAC design (using refrigeration machines), EAHX design lacks straightforward and well-established rules; moreover, EAHXs struggle to achieve office room design cooling demands determined with conventional indoor thermal environment standards, hindering designers’ confidence and the wider adoption of EAHXs for standalone room cooling. This paper presents a graph-based method to assist in the design of a large-diameter EAHX. One year of post-occupancy monitoring data are used to evaluate this method and to investigate the performance of a large-diameter EAHX with up to 16,000 m3/h design airflow rate. Considering an adaptive standard for thermal comfort, peak EAHX cooling capacity of 28 kW (330 kWh/day, with just 50 kWh/day of fan electricity consumption) and office room load extraction of up to 22 kW (49 W/m2) provided evidence in support of standalone use of EAHX for room cooling. A fair fit between actual EAHX thermal performance and results obtained with the graph-based design method support the use of this method for large-diameter EAHX design. Full article
(This article belongs to the Special Issue Thermal Comfort and Energy Consumption in Buildings)
Show Figures

Figure 1

18 pages, 1328 KiB  
Article
Spatiotemporal Patterns of Indoor Air Pollution and Its Association with Depressive Symptoms Among Schoolchildren in China
by Yaqi Wang, Di Shi, Xinyao Ye, Jiajia Dang, Jianhui Guo, Xinyao Lian, Shaoguan Wang, Jieyun Song, Yanhui Dong, Jing Li and Yi Song
Toxics 2025, 13(7), 563; https://doi.org/10.3390/toxics13070563 - 1 Jul 2025
Viewed by 504
Abstract
Despite spending a substantial proportion of their time indoors, the mental health effects of indoor air pollution on children and adolescents remain inadequately explored. This study aimed to elucidate the spatiotemporal variations and sociodemographic inequalities in exposure to multiple indoor pollutants and to [...] Read more.
Despite spending a substantial proportion of their time indoors, the mental health effects of indoor air pollution on children and adolescents remain inadequately explored. This study aimed to elucidate the spatiotemporal variations and sociodemographic inequalities in exposure to multiple indoor pollutants and to assess their potential associations with depressive symptoms among school-aged children in Beijing. Using real-time portable monitors, concentrations of fine particulate matter (PM2.5), coarse particulate matter (PM10), carbon dioxide (CO2), formaldehyde (HCHO), total volatile organic compounds (TVOC), temperature, and humidity in classrooms and bedrooms were measured during both weekdays and weekends. Moreover, substantial spatiotemporal heterogeneity was observed. It was found that concentrations of PM2.5, PM10, and TVOC peaked in classrooms during weekday daytime, while CO2 levels were highest in bedrooms on weekend nights. Exposure levels were notably higher among children whose mothers had lower educational attainment and those living in recently renovated homes, indicating marked socio-demographic disparities. In multivariable logistic regression models, indoor exposure to CO2 and TVOC was significantly associated with increased odds of depressive symptoms. These findings highlight the critical need to improve indoor air quality through enhanced ventilation and the mitigation of emissions from indoor sources, particularly within school and residential settings. The results offer valuable empirical evidence to guide the development of targeted environmental interventions and public health policies designed to support and enhance the psychological well-being of children. Full article
(This article belongs to the Section Air Pollution and Health)
Show Figures

Graphical abstract

32 pages, 6094 KiB  
Article
A Study of the Soil–Wall–Indoor Air Thermal Environment in a Solar Greenhouse
by Zhi Zhang, Yu Li, Liqiang Wang, Weiwei Cheng and Zhonghua Liu
Sensors 2025, 25(13), 4041; https://doi.org/10.3390/s25134041 - 28 Jun 2025
Viewed by 331
Abstract
Greenhouses offer optimal environments for crop cultivation during the winter months. The rationale for this study was identified as the synergistic exchange of air between the soil, the wall, and the indoor environment within the greenhouse (referring to the coupling law of the [...] Read more.
Greenhouses offer optimal environments for crop cultivation during the winter months. The rationale for this study was identified as the synergistic exchange of air between the soil, the wall, and the indoor environment within the greenhouse (referring to the coupling law of the temperature fields of the three elements in space and time, including the direction of heat transfer and the consistency of the temperature zoning), thereby maintaining a more optimal temperature. However, there is a paucity of research on the impact of different spans on the thermal environment in solar greenhouses and even fewer studies on the synergistic law of changes in soil-wall indoor air in solar greenhouses with different spans. In this study, two solar greenhouses with different spans were analyzed through a combination of experiments as follows: K-means classification optimized using the grey wolf optimizer (GWO), computational fluid dynamics (CFD) simulations, and long short-term memory (LSTM) prediction models. The two solar greenhouses, designated as S1 and S2, had spans of 11 m and 10 m, respectively. The results are as follows: In two greenhouses when the span and temperature were the same, the indoor air temperature and soil temperature of the S1 greenhouse were lower than those of the S2 greenhouse; there was an isothermal layer in the north wall of greenhouses S1 and S2 (a stable area where the temperature change over time is less than 0.5 °C), the horizontal distance between the isothermal layer on the inside of the greenhouse wall and the inside of the wall was more than 400 mm, and that of the outside of the greenhouse wall was more than 200 mm; within the solar greenhouse, this study identified that heat was emitted from the inner surface of the wall (at 0 mm from the inner surface) toward the outer surface of the wall (at 0 mm from the outer surface), as well as at a horizontal distance of 200 mm from the inner surface of the wall. The temperature data from 0:00 to 8:00 at night were selected for the purpose of analyzing the temperature synergistic change in soil-wall indoor air in the S1 greenhouse. The temperature change can be classified into four categories according to K-means classification, which was optimized based on the grey wolf algorithm. The categories were as follows: high-temperature region, medium-high temperature region, medium-low temperature region, and low-temperature region. The low-temperature region spanned the range of X = (800, 3000) mm, and its height range was Y = (−150, 1200) mm. The CFD model and LSTM prediction model have been shown to be superior, and the findings of this study offer a theoretical basis for the optimization of thermal environment control in solar greenhouses. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

20 pages, 2551 KiB  
Article
Theoretical Study on Impact of Solar Radiation Heat Gain on Thermal Comfort and Energy Efficiency in Glass Curtain Wall Buildings Based on PMV Index
by Haoyu Chen, Jinzhe Nie, Yuzhe Liu and Yuelin Li
Buildings 2025, 15(13), 2228; https://doi.org/10.3390/buildings15132228 - 25 Jun 2025
Viewed by 564
Abstract
With rapid global urbanization, glass curtain wall buildings have been widely adopted due to aesthetics and natural lighting. However, during summer time, intense solar radiation leads to significant indoor heat gain, which adversely affect thermal comfort and energy efficiency. The conventional air conditioning [...] Read more.
With rapid global urbanization, glass curtain wall buildings have been widely adopted due to aesthetics and natural lighting. However, during summer time, intense solar radiation leads to significant indoor heat gain, which adversely affect thermal comfort and energy efficiency. The conventional air conditioning systems are typically equipped with a cooling capacity sufficient to maintain an indoor air temperature at the design values specified in the Design standard for energy efficiency of public buildings, which fails to account for the effects of radiation temperature, potentially resulting in reduced thermal comfort and energy inefficiency. By integrating the Thermal Comfort Tool to calculate the PMV index, this study evaluates the affection of solar heat gain on indoor occupants’ thermal comfort and proposes an optimized air temperature control strategy to realize thermal comfort. Based on the dynamic air temperature strategy, an energy consumption model is developed to evaluate the affection of solar radiation on energy consumption for glass curtain wall buildings based on the PMV index. The synergistic effects of shading measures are then evaluated. This study conducts simulation analysis using an office building with a glass curtain wall located in Beijing as a case study. When accounting for radiant heat gain, a significant portion of the time (53.89%) fall outside the thermal comfort range, even when the air conditioning is set to the designated temperature. To maintain thermal comfort, the air conditioning temperature must be lowered by 1.4–3.5 °C, resulting in a 28.08% increase in energy consumption. To address this issue, this study finds that installing interior shading can reduce radiant heat gain. Under the same thermal comfort conditions, the required air temperature reduction is only 0.8–2.1 °C, leading to a 24.26% reduction in energy consumption compared to the case without interior shading. Full article
Show Figures

Figure 1

25 pages, 1759 KiB  
Article
A Comparative Evaluation of the Thermal Performance of Passive Facades with Variable Cavity Widths for Near-Zero Energy Buildings (nZEB): A Modeling Study
by Eugen Iavorschi, Laurențiu Dan Milici, Constantin Ungureanu and Ciprian Bejenar
Appl. Sci. 2025, 15(13), 7019; https://doi.org/10.3390/app15137019 - 22 Jun 2025
Cited by 1 | Viewed by 797
Abstract
In the current context of the transition toward climate neutrality and the pressing need to reduce energy consumption in the construction sector, nZEBs have become a central benchmark in European sustainability policies. These buildings offer multiple benefits, such as reduced operational costs, enhanced [...] Read more.
In the current context of the transition toward climate neutrality and the pressing need to reduce energy consumption in the construction sector, nZEBs have become a central benchmark in European sustainability policies. These buildings offer multiple benefits, such as reduced operational costs, enhanced thermal comfort, and improved indoor air quality. Achieving such performance requires the integration of advanced technological solutions, including passive façades with ventilated cavities. The primary objective of this study is to investigate the influence of cavity geometry on the thermal behavior of a passive façade, through numerical simulations conducted in ANSYS Fluent 17. The study focuses on comparing five distinct configurations with varying cavity widths, aiming to identify the optimal solution in terms of heat transfer efficiency. The main contribution lies in the analysis and correlation of air temperature and velocity distributions with the cavity’s geometric parameters, highlighting the impact of channel width on thermal performance. The configuration with a 12 cm wide air channel recorded the highest heat flux at the outlet, approximately 44 times greater than the façade with a 4 cm wide channel, making it the most efficient solution. The results indicate significantly higher thermal efficiency for the configuration with a larger cavity width, contrary to initial intuitive assumptions. These insights provide a valuable framework for the optimal design of passive façades in nZEB applications and highlight the need for further research, combining numerical and experimental approaches, to develop sustainable and energy-efficient building envelope solutions. Full article
(This article belongs to the Special Issue Advancements in HVAC Technologies and Zero-Emission Buildings)
Show Figures

Figure 1

19 pages, 2000 KiB  
Article
Window Frame Design Optimization Analysis Based on Hygrothermal Performance and the Level(s) Framework
by Konstantin Verichev, Carmen Díaz-López, Andrés García-Ruíz and Francisca Valdenegro
Buildings 2025, 15(12), 2126; https://doi.org/10.3390/buildings15122126 - 19 Jun 2025
Viewed by 390
Abstract
This study investigates the hygrothermal performance of window frames to assess their capacity to prevent surface condensation—a critical factor for indoor air quality and building durability, particularly in humid climates. Driven by the practical need to replace existing aluminum frames with more sustainable [...] Read more.
This study investigates the hygrothermal performance of window frames to assess their capacity to prevent surface condensation—a critical factor for indoor air quality and building durability, particularly in humid climates. Driven by the practical need to replace existing aluminum frames with more sustainable alternatives, the research evaluates standard aluminum frames against modified timber frames designed to replicate the aluminum geometry. Using daily temperature and humidity data from Valdivia, Chile (2023)—a city with a temperate oceanic and humid climate—interior surface temperatures were simulated with HTflux software and compared against dew point values over a relative humidity (RH) range from 40% to 80%. A novel methodology is proposed for verifying the hygrothermal behavior of window frames based on annual performance analysis and highlighting the need to optimize window design according to specific local climate conditions. The results indicate that modified timber frames exhibited consistently lower average interior surface temperatures (by 1.2 °C) and a significantly higher risk of surface condensation compared to aluminum frames, particularly at typical comfort-level indoor humidity conditions (e.g., 167 vs. 100 condensation days at 50% RH). While both materials presented a high risk of condensation under extreme humidity conditions (80% RH), timber frames showed potentially greater severity of condensation. These findings underscore that the proposed timber frame modification is not hygrothermally adequate without strict control of indoor humidity. Anchored in the Level(s) framework, the study emphasizes the critical influence of geometric design on material performance and advocates for holistic, sustainable construction practices that balance energy efficiency, environmental impact, and occupant comfort. It highlights the need for integrated design solutions and effective moisture management to ensure building resilience in humid environments. Full article
(This article belongs to the Special Issue Trends and Prospects in Indoor Environment of Buildings)
Show Figures

Figure 1

21 pages, 11738 KiB  
Article
Sustainable Mitigation Strategies for Enhancing Student Thermal Comfort in the Educational Buildings of Sohag University
by Amr Sayed Hassan Abdallah and Randa Mohamed Ahmed Mahmoud
Buildings 2025, 15(12), 2048; https://doi.org/10.3390/buildings15122048 - 14 Jun 2025
Viewed by 478
Abstract
Improving students’ thermal comfort in university courtyards and indoor spaces promotes walkability, enhances livability, and fosters social interaction among students. This study aims to improve students’ outdoor thermal comfort in university courtyards, to reduce heat transfer to classrooms, and to accordingly reduce energy [...] Read more.
Improving students’ thermal comfort in university courtyards and indoor spaces promotes walkability, enhances livability, and fosters social interaction among students. This study aims to improve students’ outdoor thermal comfort in university courtyards, to reduce heat transfer to classrooms, and to accordingly reduce energy consumption in university buildings in hot arid climates. Thus, the proposed coupled methodology for the case study, the Faculty of Agriculture, New Sohag University, Egypt, consists of three stages. First, monitoring and questionnaire surveys were conducted in the open courtyard and the classroom to obtain air temperature, wind speed, thermal image, and CO2 and thermal comfort analysis. Secondly, the Envi-met model was used to investigate the impact of six improvement solutions on improving thermal comfort in the courtyard. Third, retrofitting strategies in the building envelope were evaluated to decrease heat transfer and energy consumption by DesignBuilder software. Consequently, the findings revealed a high outdoor air temperature, which causes discomfort for students. Hence, the simulation results concluded that the significant reduction of physiological equivalent temperature (PET), which ranged between 11.1 °C and 13.9 °C, occurred after applying the hybrid improvement solutions (vegetation area and semi-shading or pergola-shading). Moreover, integrating a combination of retrofitting strategies into the faculty buildings contributed to a 30% reduction in energy consumption. Ultimately, the proposed methodology aims to assist architects and urban designers in the early design stages by providing the appropriate environmental solutions for the universities’ courtyards and buildings in hot arid climates. Full article
(This article belongs to the Special Issue Research on Indoor Air Environment and Energy Conservation)
Show Figures

Figure 1

22 pages, 4567 KiB  
Article
Thermodynamic-Based Perceived Predictive Power Control for Renewable Energy Penetrated Resident Microgrids
by Wenhui Shi, Lifei Ma, Wenxin Li, Yankai Zhu, Dongliang Nan and Yinzhang Peng
Energies 2025, 18(12), 3027; https://doi.org/10.3390/en18123027 - 6 Jun 2025
Viewed by 456
Abstract
Heating, ventilation, and air conditioning (HVAC) systems and microgrids have garnered significant attention in recent research, with temperature control and renewable energy integration emerging as key focus areas in urban distribution power systems. This paper proposes a robust predictive temperature control (RPTC) method [...] Read more.
Heating, ventilation, and air conditioning (HVAC) systems and microgrids have garnered significant attention in recent research, with temperature control and renewable energy integration emerging as key focus areas in urban distribution power systems. This paper proposes a robust predictive temperature control (RPTC) method and a microgrid control strategy incorporating asymmetrical challenges, including uneven power load distribution and uncertainties in renewable outputs. The proposed method leverages a thermodynamics-based R-C model to achieve precise indoor temperature regulation under external disturbances, while a multisource disturbance compensation mechanism enhances system robustness. Additionally, an HVAC load control model is developed to enable real-time dynamic regulation of airflow, facilitating second-level load response and improved renewable energy accommodation. A symmetrical power tracking and voltage support secondary controller is also designed to accurately capture and manage the fluctuating power demands of HVAC systems for supporting operations of distribution power systems. The effectiveness of the proposed method is validated through power electronics simulations in the Matlab/Simulink/SimPowerSystems environment, demonstrating its practical applicability and superior performance. Full article
(This article belongs to the Special Issue Digital Modeling, Operation and Control of Sustainable Energy Systems)
Show Figures

Figure 1

20 pages, 5574 KiB  
Article
Corona-Generated Space Charge Characteristic in an Indoor HVDC Corona Cage Under Atmospheric Temperature Conditions
by Jules Simplice Djeumen, Hendrick Musawenkosi Langa and Trudy Sutherland
Energies 2025, 18(11), 2872; https://doi.org/10.3390/en18112872 - 30 May 2025
Viewed by 471
Abstract
This study conducted experiments and simulations to examine the DC corona-generated space charge characteristics and understand the performance of high-voltage direct current (HVDC) transmission lines. In experimental studies, various gradient temperatures are tested on a standard model of the potential HVDC transmission line [...] Read more.
This study conducted experiments and simulations to examine the DC corona-generated space charge characteristics and understand the performance of high-voltage direct current (HVDC) transmission lines. In experimental studies, various gradient temperatures are tested on a standard model of the potential HVDC transmission line in Southern Africa using an indoor corona cage. Initial tests on the single-line model of aluminium TERN conductors measured the DC corona inception voltages (CIVs) as the ambient temperature increased from 25 °C to 42 °C. A daylight ultraviolet corona camera (CoroCam8) has been used for measurements and visualisation; the measurements record temperatures for positive and negative direct current (DC) voltages. Experimental investigations are supplemented by simulations utilising the finite element method (FEM)-based software COMSOL Multiphysics. Following the creation of 3D models of the corona cage and potential conductor arrangement, the electric field distribution on the surfaces of the conductors was examined. The CIV observations and modelling findings determine the setups’ corona inception electric field strengths. The study effectively integrated experimental data from a corona cage with FEM models to assess DC corona properties across different air temperatures thoroughly. The inception voltage levels of corona are significantly influenced by ambient temperature and the space charge generated by corona. The outcomes of the discussion will inform the design of the proposed HVDC transmission line in Southern Africa. Full article
Show Figures

Figure 1

28 pages, 813 KiB  
Systematic Review
Neuroscientific Insights into the Built Environment: A Systematic Review of Empirical Research on Indoor Environmental Quality, Physiological Dynamics, and Psychological Well-Being in Real-Life Contexts
by Aitana Grasso-Cladera, Maritza Arenas-Perez, Paulina Wegertseder-Martinez, Erich Vilina, Josefina Mattoli-Sanchez and Francisco J. Parada
Int. J. Environ. Res. Public Health 2025, 22(6), 824; https://doi.org/10.3390/ijerph22060824 - 23 May 2025
Viewed by 891
Abstract
The research aims to systematize the current scientific evidence on methodologies used to investigate the impact of the indoor built environment on well-being, focusing on indoor environmental quality (IEQ) variables such as thermal comfort, air quality, noise, and lighting. This systematic review adheres [...] Read more.
The research aims to systematize the current scientific evidence on methodologies used to investigate the impact of the indoor built environment on well-being, focusing on indoor environmental quality (IEQ) variables such as thermal comfort, air quality, noise, and lighting. This systematic review adheres to the Joanna Briggs Institute framework and PRISMA guidelines to assess empirical studies that incorporate physiological measurements like heart rate, skin temperature, and brain activity, which are captured through various techniques in real-life contexts. The principal results reveal a significant interest in the relationship between the built environment and physiological as well as psychological states. For instance, thermal comfort was found to be the most commonly studied IEQ variable, affecting heart activity and skin temperature. The research also identifies the need for a shift towards using advanced technologies like Mobile Brain/Body Imaging (MoBI) for capturing real-time physiological data in natural settings. Major conclusions include the need for a multi-level, evidence-based approach that considers the dynamic interaction between the brain, body, and environment. This study advocates for the incorporation of multiple physiological signals to gain a comprehensive understanding of well-being in relation to the built environment. It also highlights gaps in current research, such as the absence of noise as a studied variable of IEQ and the need for standardized well-being assessment tools. By synthesizing these insights, the research aims to pave the way for future studies that can inform better design and policy decisions for indoor environments. Full article
Show Figures

Figure 1

Back to TopTop