Neuroscientific Insights into the Built Environment: A Systematic Review of Empirical Research on Indoor Environmental Quality, Physiological Dynamics, and Psychological Well-Being in Real-Life Contexts
Abstract
1. Introduction
1.1. The Built Environment’s Impact on Health
1.2. A New Perspective for Neuroscience Research of the Built Environment
1.3. Methodological Implications for Neuroscience Research
1.4. The Present Review
2. Methodology
2.1. Protocol and Registration
2.2. Eligibility Criteria
2.3. Information Sources
2.4. Search
2.5. Selection of Sources of Evidence
2.6. Data Charting Process
2.7. Data Items
2.8. Risk of Bias Estimation
2.9. Strategy for Synthesis of Results
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.3. Risk of Bias
3.4. Synthesis of Results
3.4.1. Aim
3.4.2. Indoor Environmental Quality Variable
3.4.3. Task
3.4.4. Setting/Context
3.4.5. Data Collection Technique
3.4.6. Biomarker
3.4.7. Well-Being Self-Report Measure
4. Discussion
4.1. Research Field Characterization
4.2. Indoor Environmental Quality Variables
4.3. What Does Well-Being Mean
4.4. Physiology: What Should We Be Looking for
4.5. From Plan Drawing to the Real World
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bartuska, T.J. Understanding Environment(s): Built and Natural. In The Built Environment: A Collaborative Inquiry into Design and Planning; McClure, W., Bartuska, T., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2007; pp. 33–43. ISBN 9780470007525. [Google Scholar]
- Portella, A.A. Built Environment. In Encyclopedia of Quality of Life and Well-Being Research; Michalos, A.C., Ed.; Springer Netherlands: Dordrecht, The Netherlands, 2014; pp. 454–461. ISBN 9789400707535. [Google Scholar]
- Azzazy, S.; Ghaffarianhoseini, A.; GhaffarianHoseini, A.; Naismith, N.; Doborjeh, Z. A Critical Review on the Impact of Built Environment on Users’ Measured Brain Activity. Archit. Sci. Rev. 2021, 64, 319–335. [Google Scholar] [CrossRef]
- Schweizer, C.; Edwards, R.D.; Bayer-Oglesby, L.; Gauderman, W.J.; Ilacqua, V.; Jantunen, M.J.; Lai, H.K.; Nieuwenhuijsen, M.; Künzli, N. Indoor Time-Microenvironment-Activity Patterns in Seven Regions of Europe. J. Expo. Sci. Environ. Epidemiol. 2007, 17, 170–181. [Google Scholar] [CrossRef] [PubMed]
- Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.; Engelmann, W.H. The National Human Activity Pattern Survey (NHAPS): A Resource for Assessing Exposure to Environmental Pollutants. J. Expo. Anal. Environ. Epidemiol. 2001, 11, 231–252. [Google Scholar] [CrossRef] [PubMed]
- Beil, K.; Hanes, D. The Influence of Urban Natural and Built Environments on Physiological and Psychological Measures of Stress—A Pilot Study. Int. J. Environ. Res. Public Health 2013, 10, 1250–1267. [Google Scholar] [CrossRef] [PubMed]
- Stevens, R.G.; Rea, M.S. Light in the Built Environment: Potential Role of Circadian Disruption in Endocrine Disruption and Breast Cancer. Cancer Causes Control 2001, 12, 279–287. [Google Scholar] [CrossRef]
- Sullivan, W.C.; Chang, C.-Y. Mental Health and the Built Environment. In Making Healthy Places: Designing and Building for Health, Well-Being, and Sustainability; Dannenberg, A.L., Frumkin, H., Jackson, R.J., Eds.; Island Press/Center for Resource Economics: Washington, DC, USA, 2011; pp. 106–116. ISBN 9781610910361. [Google Scholar]
- Zainal, N.Z.; Hosni, N. Effects of Urban Built Environment on Mental Health: A Review. J. Cogn. Sci. Hum. Dev. 2022, 8, 30–48. [Google Scholar] [CrossRef]
- Besser, L.M.; Rodriguez, D.A.; McDonald, N.; Kukull, W.A.; Fitzpatrick, A.L.; Rapp, S.R.; Seeman, T. Neighborhood Built Environment and Cognition in Non-Demented Older Adults: The Multi-Ethnic Study of Atherosclerosis. Soc. Sci. Med. 2018, 200, 27–35. [Google Scholar] [CrossRef]
- Keis, O.; Helbig, H.; Streb, J.; Hille, K. Influence of Blue-Enriched Classroom Lighting on Students’ Cognitive Performance. Trends Neurosci. Educ. 2014, 3, 86–92. [Google Scholar] [CrossRef]
- Marchand, G.C.; Nardi, N.M.; Reynolds, D.; Pamoukov, S. The Impact of the Classroom Built Environment on Student Perceptions and Learning. J. Environ. Psychol. 2014, 40, 187–197. [Google Scholar] [CrossRef]
- Möystad, O. Cognition and the Built Environment; Routledge: London, UK, 2017. [Google Scholar]
- Moore, T.H.M.; Kesten, J.M.; López-López, J.A.; Ijaz, S.; McAleenan, A.; Richards, A.; Gray, S.; Savović, J.; Audrey, S. The Effects of Changes to the Built Environment on the Mental Health and Well-Being of Adults: Systematic Review. Health Place 2018, 53, 237–257. [Google Scholar] [CrossRef]
- Rhodes, R.E.; Saelens, B.E.; Sauvage-Mar, C. Understanding Physical Activity through Interactions Between the Built Environment and Social Cognition: A Systematic Review. Sports Med. 2018, 48, 1893–1912. [Google Scholar] [CrossRef] [PubMed]
- Karakas, T.; Yildiz, D. Exploring the Influence of the Built Environment on Human Experience through a Neuroscience Approach: A Systematic Review. Front. Archit. Res. 2020, 9, 236–247. [Google Scholar] [CrossRef]
- Djebbara, Z.; Jensen, O.B.; Parada, F.J.; Gramann, K. Neuroscience and Architecture: Modulating Behavior through Sensorimotor Responses to the Built Environment. Neurosci. Biobehav. Rev. 2022, 138, 104715. [Google Scholar] [CrossRef]
- Evans, G.W.; Wells, N.M.; Moch, A. Housing and Mental Health: A Review of the Evidence and a Methodological and Conceptual Critique. J. Soc. Issues 2003, 59, 475–500. [Google Scholar] [CrossRef]
- Matthews, S.A.; Yang, T.-C. Exploring the Role of the Built and Social Neighborhood Environment in Moderating Stress and Health. Ann. Behav. Med. 2010, 39, 170–183. [Google Scholar] [CrossRef]
- Lederbogen, F.; Haddad, L.; Meyer-Lindenberg, A. Urban Social Stress--Risk Factor for Mental Disorders. The Case of Schizophrenia. Environ. Pollut. 2013, 183, 2–6. [Google Scholar] [CrossRef]
- Lederbogen, F.; Kirsch, P.; Haddad, L.; Streit, F.; Tost, H.; Schuch, P.; Wüst, S.; Pruessner, J.C.; Rietschel, M.; Deuschle, M.; et al. City Living and Urban Upbringing Affect Neural Social Stress Processing in Humans. Nature 2011, 474, 498–501. [Google Scholar] [CrossRef]
- Day, R. Local Environments and Older People’s Health: Dimensions from a Comparative Qualitative Study in Scotland. Health Place 2008, 14, 299–312. [Google Scholar] [CrossRef]
- Yuen, B.; Nyuk Hien, W. Resident Perceptions and Expectations of Rooftop Gardens in Singapore. Landsc. Urban Plan. 2005, 73, 263–276. [Google Scholar] [CrossRef]
- Elliott, S.J.; Taylor, S.M.; Walter, S.; Stieb, D.; Frank, J.; Eyles, J. Modelling Psychosocial Effects of Exposure to Solid Waste Facilities. Soc. Sci. Med. 1993, 37, 791–804. [Google Scholar] [CrossRef]
- Taylor, S.E.; Repetti, R.L.; Seeman, T. Health Psychology: What Is an Unhealthy Environment and How Does It Get under the Skin? Annu. Rev. Psychol. 1997, 48, 411–447. [Google Scholar] [CrossRef] [PubMed]
- Beukeboom, C.J.; Langeveld, D.; Tanja-Dijkstra, K. Stress-Reducing Effects of Real and Artificial Nature in a Hospital Waiting Room. J. Altern. Complement. Med. 2012, 18, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Codinhoto, R.; Tzortzopoulos, P.; Kagioglou, M.; Aouad, G.; Cooper, R. The Impacts of the Built Environment on Health Outcomes. Facilities 2009, 27, 138–151. [Google Scholar] [CrossRef]
- Lottrup, L.; Grahn, P.; Stigsdotter, U.K. Workplace Greenery and Perceived Level of Stress: Benefits of Access to a Green Outdoor Environment at the Workplace. Landsc. Urban Plan. 2013, 110, 5–11. [Google Scholar] [CrossRef]
- Ulrich, R.S. Natural Versus Urban Scenes: Some Psychophysiological Effects. Environ. Behav. 1981, 13, 523–556. [Google Scholar] [CrossRef]
- van den Berg, A.E.; Maas, J.; Verheij, R.A.; Groenewegen, P.P. Green Space as a Buffer between Stressful Life Events and Health. Soc. Sci. Med. 2010, 70, 1203–1210. [Google Scholar] [CrossRef]
- Ward Thompson, C.; Roe, J.; Aspinall, P.; Mitchell, R.; Clow, A.; Miller, D. More Green Space Is Linked to Less Stress in Deprived Communities: Evidence from Salivary Cortisol Patterns. Landsc. Urban Plan. 2012, 105, 221–229. [Google Scholar] [CrossRef]
- Mallawaarachchi, B.H.; De Silva, M.L.; Rameezdeen, R.; Chandrathilaka, S.R. Green Building Concept to Facilitating High Quality Indoor Environment for Building Occupants in Sri Lanka. In Proceedings of the World Construction Conference 2012. Theme: Global Challenges in Construction Industry, Colombo, Sri lanka, 28–30 June 2012; Senaratne, S., Sandanayake, Y.G., Eds.; Ceylon Institute of Builders: Colombo, Sri Lanka, 2012; pp. 237–246, ISBN 9789554516021. [Google Scholar]
- Steinemann, A.; Wargocki, P.; Rismanchi, B. Ten Questions Concerning Green Buildings and Indoor Air Quality. Build. Environ. 2017, 112, 351–358. [Google Scholar] [CrossRef]
- Abdulaali, H.S.; Usman, I.; Hanafiah, M.; Abdulhasan, M.; Hamzah, M.; Nazal, A. Impact of Poor Indoor Environmental Quality (IEQ) to Inhabitants’ Health, Wellbeing and Satisfaction. Int. J. Adv. Sci. Technol. 2020, 29, 1–14. [Google Scholar]
- Al horr, Y.; Arif, M.; Katafygiotou, M.; Mazroei, A.; Kaushik, A.; Elsarrag, E. Impact of Indoor Environmental Quality on Occupant Well-Being and Comfort: A Review of the Literature. Int. J. Sustain. Built Environ. 2016, 5, 1–11. [Google Scholar] [CrossRef]
- Salonen, H.; Lahtinen, M.; Lappalainen, S.; Nevala, N.; Knibbs, L.D.; Morawska, L.; Reijula, K. Physical Characteristics of the Indoor Environment That Affect Health and Wellbeing in Healthcare Facilities: A Review. Intell. Build. Int. 2013, 5, 3–25. [Google Scholar] [CrossRef]
- Turunen, M.; Toyinbo, O.; Putus, T.; Nevalainen, A.; Shaughnessy, R.; Haverinen-Shaughnessy, U. Indoor Environmental Quality in School Buildings, and the Health and Wellbeing of Students. Int. J. Hyg. Environ. Health 2014, 217, 733–739. [Google Scholar] [CrossRef] [PubMed]
- Thelen, E.; Smith, L.B. A Dynamic Systems Approach to the Development of Cognition and Action. J. Cogn. Neurosci. 1995, 7, 512–514. [Google Scholar]
- Jonas, H. The Phenomenon of Life: Towards a Philosophical Biology; Harper & Row: New York, NY, USA, 1966; 303p. [Google Scholar]
- Newen, A.; De Bruin, L.; Gallagher, S. The Oxford Handbook of 4E Cognition; Oxford University Press: Oxford, UK, 2018; ISBN 9780191054358. [Google Scholar]
- Varela, F.J.; Rosch, E.; Thompson, E. The Embodied Mind: Cognitive Science and Human Experience; MIT Press: Cambridge, MA, USA, 1991. [Google Scholar]
- Thompson, E. Mind in Life: Biology, Phenomenology, and the Sciences of Mind; Harvard University Press: Cambridge, MA, USA, 2010; ISBN 9780674736887. [Google Scholar]
- Sterelny, K. Minds: Extended or Scaffolded? Phenomenol. Cogn. Sci. 2010, 9, 465–481. [Google Scholar] [CrossRef]
- Stephan, A.; Walter, S. Situated Affectivity. In The Routledge Handbook of Phenomenology of Emotion; Routledge: London, UK, 2020; pp. 299–311. [Google Scholar]
- Laland, K.N.; Odling-Smee, J.; Feldman, M.W. Niche Construction, Biological Evolution, and Cultural Change. Behav. Brain Sci. 2000, 23, 131–146; discussion 146–175. [Google Scholar] [CrossRef]
- Clark, A. Mindware: An Introduction to the Philosophy of Cognitive Science; Oxford University Press: Oxford, UK, 2000; Volume 210. [Google Scholar]
- Parada, F.J.; Rossi, A. If Neuroscience Needs Behavior, What Does Psychology Need? Front. Psychol. 2018, 9, 433. [Google Scholar] [CrossRef]
- Di Paolo, E.; De Jaegher, H. The Interactive Brain Hypothesis. Front. Hum. Neurosci. 2012, 6, 163. [Google Scholar] [CrossRef]
- Kyselo, M. The Body Social: An Enactive Approach to the Self. Front. Psychol. 2014, 5, 986. [Google Scholar] [CrossRef]
- De Jaegher, H.; Di Paolo, E.; Gallagher, S. Can Social Interaction Constitute Social Cognition? Trends Cogn. Sci. 2010, 14, 441–447. [Google Scholar] [CrossRef]
- Di Paolo, E.; Rohde, M.; De Jaegher, H. Horizons for the Enactive Mind: Values, Social Interaction, and Play. In Enaction: Towards a New Paradigm for Cognitive Science; Steward, J., Gapenne, O., Di Paolo, E.A., Eds.; The MIT Press: Cambridge, MA, USA, 2010; pp. 34–87. ISBN 9780262289795. [Google Scholar]
- Rossi, A.; Cladera, A.G.; Luarte, N.; Riillo, A.; Parada, F.J. El Sistema Cerebro/cuerpo-En-El-Mundo Es El Objeto de Estudio de La Ciencia Cognitiva En El Siglo XXI. Stud. Psychol. Estud. Psicol. 2019, 40, 377–395. [Google Scholar]
- Parada, F.J.; Grasso-Cladera, A.; Rossi, A.; Soto-Icaza, P.; Arenas-Pérez, M.; Errázuriz, M.C. Applied Human Neuroscience: Fostering and Designing Inclusive Environments with the 3E-Cognition Perspective. Eur. J. Neurosci. 2024, 60, 4148–4168. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Shin, W.; Joo, P.E. Implications of Neuroarchitecture for the Experience of the Built Environment: A Scoping Review. Archnet-IJAR Int. J. Archit. Res. 2022, 16, 225–244. [Google Scholar] [CrossRef]
- Yao, Y.; Lian, Z.; Liu, W.; Jiang, C.; Liu, Y.; Lu, H. Heart Rate Variation and Electroencephalograph--the Potential Physiological Factors for Thermal Comfort Study. Indoor Air 2009, 19, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Persiani, S.G.L.; Kobas, B.; Koth, S.C.; Auer, T. Biometric Data as Real-Time Measure of Physiological Reactions to Environmental Stimuli in the Built Environment. Energies 2021, 14, 232. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, H.; Liu, Z.; Li, D.; Kou, G.; Li, C. Experimental Study on the Human Thermal Comfort Based on the Heart Rate Variability (HRV) Analysis under Different Environments. Sci. Total Environ. 2018, 616–617, 1124–1133. [Google Scholar] [CrossRef]
- Liu, W.; Lian, Z.; Liu, Y. Heart Rate Variability at Different Thermal Comfort Levels. Eur. J. Appl. Physiol. 2008, 103, 361–366. [Google Scholar] [CrossRef]
- Mulders, D.; de Bodt, C.; Lejeune, N.; Courtin, A.; Liberati, G.; Verleysen, M.; Mouraux, A. Dynamics of the Perception and EEG Signals Triggered by Tonic Warm and Cool Stimulation. PLoS ONE 2020, 15, e0231698. [Google Scholar] [CrossRef]
- Bolouki, A. Neurobiological Effects of Urban Built and Natural Environment on Mental Health: Systematic Review. Rev. Environ. Health 2022, 38, 169–179. [Google Scholar] [CrossRef]
- Chen, Z.; He, Y.; Yu, Y. Attention Restoration during Environmental Exposure via Alpha-Theta Oscillations and Synchronization. J. Environ. Psychol. 2020, 68, 101406. [Google Scholar] [CrossRef]
- Kim, J.; Yadav, M.; Ahn, C.R.; Chaspari, T. Saliency Detection Analysis of Pedestrians’ Physiological Responses to Assess Adverse Built Environment Features. In Proceedings of the Computing in Civil Engineering 2019, Atlanta, GA, USA, 17–19 June 2019; American Society of Civil Engineers: Reston, VA, USA, 2019. [Google Scholar]
- Jiang, M.; Hassan, A.; Chen, Q.; Liu, Y. Effects of Different Landscape Visual Stimuli on Psychophysiological Responses in Chinese Students. Indoor Built Environ. 2020, 29, 1006–1016. [Google Scholar] [CrossRef]
- Hu, M.; Roberts, J. Built Environment Evaluation in Virtual Reality Environments—A Cognitive Neuroscience Approach. Urban Sci. 2020, 4, 48. [Google Scholar] [CrossRef]
- Cheng, B.; Wunderlich, A.; Gramann, K.; Lin, E.; Fabrikant, S.I. The Effect of Landmark Visualization in Mobile Maps on Brain Activity during Navigation: A Virtual Reality Study. Front. Virtual Real. 2022, 3, 981625. [Google Scholar] [CrossRef]
- Banaei, M.; Hatami, J.; Yazdanfar, A.; Gramann, K. Walking through Architectural Spaces: The Impact of Interior Forms on Human Brain Dynamics. Front. Hum. Neurosci. 2017, 11, 477. [Google Scholar] [CrossRef] [PubMed]
- Yadav, M.; Chaspari, T.; Kim, J.; Ahn, C.R. Capturing and Quantifying Emotional Distress in the Built Environment. In Proceedings of the Workshop on Human-Habitat for Health (H3): Human-Habitat Multimodal Interaction for Promoting Health and Well-Being in the Internet of Things Era, Boulder, CO, USA, 16 October 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 1–8. [Google Scholar]
- Li, J.; Jin, Y.; Lu, S.; Wu, W.; Wang, P. Building Environment Information and Human Perceptual Feedback Collected through a Combined Virtual Reality (VR) and Electroencephalogram (EEG) Method. Energy Build. 2020, 224, 110259. [Google Scholar] [CrossRef]
- Mavros, P.; Austwick, M.Z.; Smith, A.H. Geo-EEG: Towards the Use of EEG in the Study of Urban Behaviour. Appl. Spat. Anal. Policy 2016, 9, 191–212. [Google Scholar] [CrossRef]
- Neale, C.; Aspinall, P.; Roe, J.; Tilley, S.; Mavros, P.; Cinderby, S.; Coyne, R.; Thin, N.; Ward Thompson, C. The Impact of Walking in Different Urban Environments on Brain Activity in Older People. Cities Health 2020, 4, 94–106. [Google Scholar] [CrossRef]
- Mavros, P.; Wälti, M.J.; Nazemi, M.; Ong, C.H.; Hölscher, C. A Mobile EEG Study on the Psychophysiological Effects of Walking and Crowding in Indoor and Outdoor Urban Environments. Sci. Rep. 2022, 12, 18476. [Google Scholar] [CrossRef]
- Banaei, M.; Ahmadi, A.; Gramann, K.; Hatami, J. Emotional Evaluation of Architectural Interior Forms Based on Personality Differences Using Virtual Reality. Front. Archit. Res. 2020, 9, 138–147. [Google Scholar] [CrossRef]
- Makeig, S.; Gramann, K.; Jung, T.-P.; Sejnowski, T.J.; Poizner, H. Linking Brain, Mind and Behavior. Int. J. Psychophysiol. 2009, 73, 95–100. [Google Scholar] [CrossRef]
- Gramann, K.; Gwin, J.T.; Ferris, D.P.; Oie, K.; Jung, T.-P.; Lin, C.-T.; Liao, L.-D.; Makeig, S. Cognition in Action: Imaging Brain/body Dynamics in Mobile Humans. Rev. Neurosci. 2011, 22, 593–608. [Google Scholar] [CrossRef]
- Gramann, K.; Ferris, D.P.; Gwin, J.; Makeig, S. Imaging Natural Cognition in Action. Int. J. Psychophysiol. 2014, 91, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Jungnickel, E.; Gramann, K. Mobile Brain/Body Imaging (MoBI) of Physical Interaction with Dynamically Moving Objects. Front. Hum. Neurosci. 2016, 10, 306. [Google Scholar] [CrossRef] [PubMed]
- Ladouce, S.; Donaldson, D.I.; Dudchenko, P.A.; Ietswaart, M. Understanding Minds in Real-World Environments: Toward a Mobile Cognition Approach. Front. Hum. Neurosci. 2016, 10, 694. [Google Scholar] [CrossRef]
- Matusz, P.J.; Dikker, S.; Huth, A.G.; Perrodin, C. Are We Ready for Real-World Neuroscience? J. Cogn. Neurosci. 2019, 31, 327–338. [Google Scholar] [CrossRef]
- Rojas-Líbano, D.; Parada, F.J. Body-World Coupling, Sensorimotor Mechanisms, and the Ontogeny of Social Cognition. Front. Psychol. 2019, 10, 3005. [Google Scholar] [CrossRef]
- Parada, F.J.; Rossi, A. Perfect Timing: Mobile Brain/body Imaging Scaffolds the 4E-Cognition Research Program. Eur. J. Neurosci. 2021, 54, 8081–8091. [Google Scholar] [CrossRef]
- Ancora, L.A.; Blanco-Mora, D.A.; Alves, I.; Bonifácio, A.; Morgado, P.; Miranda, B. Cities and Neuroscience Research: A Systematic Literature Review. Front. Psychiatry 2022, 13, 983352. [Google Scholar] [CrossRef] [PubMed]
- Aromataris, E.; Lockwood, C.; Porritt, K.; Pilla, B.; Jordan, Z. (Eds.) JBI Manual for Evidence Synthesis. JBI. 2024. ISBN 9780648848820. Available online: https://synthesismanual.jbi.global (accessed on 19 May 2025).
- Santos, W.M.D.; Secoli, S.R.; Püschel, V.A.d.A. The Joanna Briggs Institute Approach for Systematic Reviews. Rev. Lat. Am. Enferm. 2018, 26, e3074. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. Rev. Esp. Cardiol. 2021, 74, 790–799. [Google Scholar] [CrossRef]
- Yeo, L.B. Psychological And Physiological Benefits Of Plants In The Indoor Environment: A Mini And In-Depth Review. Int. J. BES 2021, 8, 57–67. [Google Scholar] [CrossRef]
- Beemer, C.J.; Stearns-Yoder, K.A.; Schuldt, S.J.; Kinney, K.A.; Lowry, C.A.; Postolache, T.T.; Brenner, L.A.; Hoisington, A.J. A Brief Review on the Mental Health for Select Elements of the Built Environment. Indoor Built Environ. 2021, 30, 152–165. [Google Scholar] [CrossRef]
- McGowan, J.; Sampson, M.; Salzwedel, D.M.; Cogo, E.; Foerster, V.; Lefebvre, C. PRESS Peer Review of Electronic Search Strategies: 2015 Guideline Statement. J. Clin. Epidemiol. 2016, 75, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Microsoft Corporation. Microsoft Excel; Microsoft Corporation: Redmond, WA, USA, 2018. [Google Scholar]
- Munn, Z.; Barker, T.H.; Moola, S.; Tufanaru, C.; Stern, C.; McArthur, A.; Stephenson, M.; Aromataris, E. Methodological Quality of Case Series Studies: An Introduction to the JBI Critical Appraisal Tool. JBI Evid. Synth. 2020, 18, 2127–2133. [Google Scholar] [CrossRef] [PubMed]
- Moola, S.; Munn, Z.; Tufanaru, C.; Aromataris, E.; Sears, K.; Sfetcu, R.; Currie, M.; Qureshi, R.; Mattis, P.; Lisy, K.; et al. Chapter 7: Systematic reviews of etiology and risk. In Joanna Briggs Institute Reviewer’s Manual; Aromataris, E., Munn, Z., Eds.; The Joanna Briggs Institute: North Adelaide, Australia, 2017. [Google Scholar] [CrossRef]
- Arksey, H.; O’Malley, L. Scoping Studies: Towards a Methodological Framework. Int. J. Soc. Res. Methodol. 2005, 8, 19–32. [Google Scholar] [CrossRef]
- Field, A.P.; Gillett, R. How to Do a Meta-Analysis. Br. J. Math. Stat. Psychol. 2010, 63, 665–694. [Google Scholar] [CrossRef]
- Soni, K.D. When Do We Need to Do Meta-Analysis!!! Indian J. Anaesth. 2023, 67, 673–674. [Google Scholar] [CrossRef]
- Fanpu, M.; Shou Yi, W.; Hua, F. Research on the Health Lighting Scheme of University Library Reading Room. Heliyon 2024, 10, e38089. [Google Scholar] [CrossRef]
- Gao, Y.; Gao, Y.; Shao, Z.; Ren, Y. The Effects of Indoor Temperature and Exercise Behavior on Thermal Comfort in Cold Region: A Field Study on Xi’an, China. Energy 2023, 273, 127258. [Google Scholar] [CrossRef]
- Hu, J.; He, Y.; Hao, X.; Li, N.; Su, Y.; Qu, H. Optimal Temperature Ranges Considering Gender Differences in Thermal Comfort, Work Performance, and Sick Building Syndrome: A Winter Field Study in University Classrooms. Energy Build. 2022, 254, 111554. [Google Scholar] [CrossRef]
- Song, C.; Liu, Y.; Zhou, X.; Wang, D.; Wang, Y.; Liu, J. Identification of Local Thermal Conditions for Sleeping Comfort Improvement in Neutral to Cold Indoor Thermal Environments. J. Therm. Biol. 2020, 87, 102480. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Q.; Wang, L.; Li, F.; Weschler, L.B.; Huang, J.; Zhang, Y. Potential Benefits of Short-Term Indoor Exposure to Sweet Orange Essential Oil for Relaxation during Mental Work Breaks. J. Build. Eng. 2023, 78, 107602. [Google Scholar] [CrossRef]
- Wu, Z.; Wagner, A. Effect of Short-Term Thermal History on Thermal Comfort and Physiological Responses: A Pilot Study. Energy Build. 2023, 298, 113510. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, X.; Xie, J.; Liu, J. Occupant’s Preferred Indoor Air Speed in Hot-Humid Climate and Its Influence on Thermal Comfort. Build. Environ. 2023, 229, 109933. [Google Scholar] [CrossRef]
- Chinazzo, G.; Wienold, J.; Andersen, M. Combined Effects of Daylight Transmitted through Coloured Glazing and Indoor Temperature on Thermal Responses and Overall Comfort. Build. Environ. 2018, 144, 583–597. [Google Scholar] [CrossRef]
- Chinazzo, G.; Wienold, J.; Andersen, M. Daylight Affects Human Thermal Perception. Sci. Rep. 2019, 9, 13690. [Google Scholar] [CrossRef]
- Barbic, F.; Minonzio, M.; Cairo, B.; Shiffer, D.; Cerina, L.; Verzeletti, P.; Badilini, F.; Vaglio, M.; Porta, A.; Santambrogio, M.; et al. Effects of a Cool Classroom Microclimate on Cardiac Autonomic Control and Cognitive Performances in Undergraduate Students. Sci. Total Environ. 2022, 808, 152005. [Google Scholar] [CrossRef]
- Beaudette, E.; Foo, E.; Islam Molla, M.T.; Johnson, K.; Dupler, E.; Gagliardi, N.; Woelfle, H.; Halvey, M.; Dunne, L. Investigating User Experience of on-Body Heating Strategies in Indoor Environments. Ergon. Des. 2024, 32, 25–32. [Google Scholar] [CrossRef]
- Fischl, G.; Johansson, P. Digital Occupancy Assessment for Lighting Evaluation: A Pilot Study to Prepare for Real-Time Research Results. Archit. Sci. Rev. 2024, 1–10. [Google Scholar] [CrossRef]
- Roy, S.; Satvaya, P.; Bhattacharya, S. Effects of Indoor Lighting Conditions on Subjective Preferences of Task Lighting and Room Aesthetics in an Indian Tertiary Educational Institution. Build. Environ. 2024, 249, 111119. [Google Scholar] [CrossRef]
- Snow, S.; Boyson, A.S.; Paas, K.H.W.; Gough, H.; King, M.-F.; Barlow, J.; Noakes, C.J.; Schraefel, M.c. Exploring the Physiological, Neurophysiological and Cognitive Performance Effects of Elevated Carbon Dioxide Concentrations Indoors. Build. Environ. 2019, 156, 243–252. [Google Scholar] [CrossRef]
- Wang, D.; Xu, Y.; Liu, Y.; Wang, Y.; Jiang, J.; Wang, X.; Liu, J. Experimental Investigation of the Effect of Indoor Air Temperature on Students’ Learning Performance under the Summer Conditions in China. Build. Environ. 2018, 140, 140–152. [Google Scholar] [CrossRef]
- Xiao, Y.; Becerik-Gerber, B.; Lucas, G.; Roll, S.C. Impacts of Working From Home During COVID-19 Pandemic on Physical and Mental Well-Being of Office Workstation Users. J. Occup. Environ. Med. 2021, 63, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Martin, L.; Hauret, L.; Fuhrer, C. Digitally Transformed Home Office Impacts on Job Satisfaction, Job Stress and Job Productivity. COVID-19 Findings. PLoS ONE 2022, 17, e0265131. [Google Scholar] [CrossRef] [PubMed]
- Daniel, S.J. Education and the COVID-19 Pandemic. Prospects 2020, 49, 91–96. [Google Scholar] [CrossRef]
- Haraway, D. Situated Knowledges: The Science Question in Feminism and the Privilege of Partial Perspective. In Feminist Theory Reader; Routledge: London, UK, 2020; pp. 303–310. [Google Scholar]
- Haggis, T. “Knowledge Must Be Contextual”: Some Possible Implications of Complexity and Dynamic Systems Theories for Educational Research. Educ. Philos. Theory 2008, 40, 158–176. [Google Scholar] [CrossRef]
- Basner, M.; Babisch, W.; Davis, A.; Brink, M.; Clark, C.; Janssen, S.; Stansfeld, S. Auditory and Non-Auditory Effects of Noise on Health. Lancet 2014, 383, 1325–1332. [Google Scholar] [CrossRef] [PubMed]
- Altomonte, S.; Kaçel, S.; Martinez, P.W.; Licina, D. What Is NExT? A New Conceptual Model for Comfort, Satisfaction, Health, and Well-Being in Buildings. Build. Environ. 2024, 252, 111234. [Google Scholar] [CrossRef]
- Jensen, H.A.R.; Rasmussen, B.; Ekholm, O. Neighbour and Traffic Noise Annoyance: A Nationwide Study of Associated Mental Health and Perceived Stress. Eur. J. Public Health 2018, 28, 1050–1055. [Google Scholar] [CrossRef]
- Medvedev, O.; Shepherd, D.; Hautus, M.J. The Restorative Potential of Soundscapes: A Physiological Investigation. Appl. Acoust. 2015, 96, 20–26. [Google Scholar] [CrossRef]
- Frontczak, M.; Wargocki, P. Literature Survey on How Different Factors Influence Human Comfort in Indoor Environments. Build. Environ. 2011, 46, 922–937. [Google Scholar] [CrossRef]
- Spence, C.; Senkowski, D.; Röder, B. Crossmodal Processing. Exp. Brain Res. 2009, 198, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Hanc, M.; McAndrew, C.; Ucci, M. Conceptual Approaches to Wellbeing in Buildings: A Scoping Review. Build. Res. Inf. 2019, 47, 767–783. [Google Scholar] [CrossRef]
- Bond, L.; Kearns, A.; Mason, P.; Tannahill, C.; Egan, M.; Whitely, E. Exploring the Relationships between Housing, Neighbourhoods and Mental Wellbeing for Residents of Deprived Areas. BMC Public Health 2012, 12, 48. [Google Scholar] [CrossRef]
- Chu, A.; Thorne, A.; Guite, H. The Impact on Mental Well-being of the Urban and Physical Environment: An Assessment of the Evidence. J. Public Ment. Health 2004, 3, 17–32. [Google Scholar] [CrossRef]
- Azzazy, S.; Ghaffarianhoseini, A.; GhaffarianHoseini, A.; Naismith, N.; Doan, D.T.; Hollander, J.B. The Significance of Indoor Thermal Comfort on Occupants’ Perception: In University Buildings in Auckland, New Zealand. Build. Res. Inf. 2024, 53, 19–39. [Google Scholar] [CrossRef]
- Wargocki, P.; Wyon, D.P. Providing Better Thermal and Air Quality Conditions in School Classrooms Would Be Cost-Effective. Build. Environ. 2013, 59, 581–589. [Google Scholar] [CrossRef]
- Zhang, X.; Wargocki, P.; Lian, Z. Physiological Responses during Exposure to Carbon Dioxide and Bioeffluents at Levels Typically Occurring Indoors. Indoor Air 2017, 27, 65–77. [Google Scholar] [CrossRef]
- Spence, C. Multisensory Feature Integration. In Sensory Individuals: Unimodal and Multimodal Perspectives; Mroczko-Wąsowicz, A., Grush, R., Eds.; Oxford University Press: Oxford, UK, 2023; pp. 277–294. ISBN 9780198866305. [Google Scholar]
- Schweiker, M.; Ampatzi, E.; Andargie, M.S.; Andersen, R.K.; Azar, E.; Barthelmes, V.M.; Berger, C.; Bourikas, L.; Carlucci, S.; Chinazzo, G.; et al. Review of Multi-domain Approaches to Indoor Environmental Perception and Behaviour. Build. Environ. 2020, 176, 106804. [Google Scholar] [CrossRef]
- Wei, W.; Wargocki, P.; Zirngibl, J.; Bendžalová, J.; Mandin, C. Review of Parameters Used to Assess the Quality of the Indoor Environment in Green Building Certification Schemes for Offices and Hotels. Energy Build. 2020, 209, 109683. [Google Scholar] [CrossRef]
- International WELL Building Institute WELL. Available online: https://www.wellcertified.com/ (accessed on 19 May 2025).
- Kent, M.G.; Parkinson, T.; Schiavon, S. Indoor Environmental Quality in WELL-Certified and LEED-Certified Buildings. Sci. Rep. 2024, 14, 15120. [Google Scholar] [CrossRef]
- Nicolini, E. Built Environment and Wellbeing—Standards, Multi-Criteria Evaluation Methods, Certifications. Sustainability 2022, 14, 4754. [Google Scholar] [CrossRef]
- Andalib, E.; Temeljotov-Salaj, A.; Steinert, M.; Johansen, A.; Aalto, P.; Lohne, J. The Interplay between the Built Environment, Health, and Well-being—A Scoping Review. Urban Sci. 2024, 8, 184. [Google Scholar] [CrossRef]
- Ryan, R.M.; Deci, E.L. On Happiness and Human Potentials: A Review of Research on Hedonic and Eudaimonic Well-Being. Annu. Rev. Psychol. 2001, 52, 141–166. [Google Scholar] [CrossRef]
- Scaria, D.; Brandt, M.L.; Kim, E.; Lindeman, B. What Is Wellbeing? In Success in Academic Surgery; Springer International Publishing: Cham, Switzerland, 2020; pp. 3–10. ISBN 9783030294694. [Google Scholar]
- Simons, G.; Baldwin, D.S. A Critical Review of the Definition of “Wellbeing” for Doctors and Their Patients in a Post COVID-19 Era. Int. J. Soc. Psychiatry 2021, 67, 984–991. [Google Scholar] [CrossRef]
- Bluyssen, P.M.; Janssen, S.; van den Brink, L.H.; de Kluizenaar, Y. Assessment of Wellbeing in an Indoor Office Environment. Build. Environ. 2011, 46, 2632–2640. [Google Scholar] [CrossRef]
- Ghaffarianhoseini, A.; AlWaer, H.; Omrany, H.; Ghaffarianhoseini, A.; Alalouch, C.; Clements-Croome, D.; Tookey, J. Sick Building Syndrome: Are We Doing Enough? Archit. Sci. Rev. 2018, 61, 99–121. [Google Scholar] [CrossRef]
- Rohde, L.; Larsen, T.S.; Jensen, R.L.; Larsen, O.K. Framing Holistic Indoor Environment: Definitions of Comfort, Health and Well-Being. Indoor Built Environ. 2020, 29, 1118–1136. [Google Scholar] [CrossRef]
- Lee, J.; Je, H.; Byun, J. Well-Being Index of Super Tall Residential Buildings in Korea. Build. Environ. 2011, 46, 1184–1194. [Google Scholar] [CrossRef]
- Zhang, X.; Du, J.; Chow, D. Association between Perceived Indoor Environmental Characteristics and Occupants’ Mental Well-Being, Cognitive Performance, Productivity, Satisfaction in Workplaces: A Systematic Review. Build. Environ. 2023, 246, 110985. [Google Scholar] [CrossRef]
- Montoya, P.; Schandry, R.; Müller, A. Heartbeat Evoked Potentials (HEP): Topography and Influence of Cardiac Awareness and Focus of Attention. Electroencephalogr. Clin. Neurophysiol. 1993, 88, 163–172. [Google Scholar] [CrossRef]
- Hallett, M. Movement-Related Cortical Potentials. Electromyogr. Clin. Neurophysiol. 1994, 34, 5–13. [Google Scholar] [PubMed]
- Wunderlich, A.; Gramann, K. Eye Movement-Related Brain Potentials during Assisted Navigation in Real-World Environments. Eur. J. Neurosci. 2021, 54, 8336–8354. [Google Scholar] [CrossRef] [PubMed]
- Kaunitz, L.N.; Kamienkowski, J.E.; Varatharajah, A.; Sigman, M.; Quiroga, R.Q.; Ison, M.J. Looking for a Face in the Crowd: Fixation-Related Potentials in an Eye-Movement Visual Search Task. Neuroimage 2014, 89, 297–305. [Google Scholar] [CrossRef]
- Gumilar, I.; Barde, A.; Sasikumar, P.; Billinghurst, M.; Hayati, A.F.; Lee, G.; Munarko, Y.; Singh, S.; Momin, A. Inter-Brain Synchrony and Eye Gaze Direction During Collaboration in VR. In Proceedings of the Extended Abstracts of the 2022 CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 11–16 May 2024; Association for Computing Machinery: New York, NY, USA, 2022; pp. 1–7. [Google Scholar]
- Pinna, T.; Edwards, D.J. A Systematic Review of Associations between Interoception, Vagal Tone, and Emotional Regulation: Potential Applications for Mental Health, Wellbeing, Psychological Flexibility, and Chronic Conditions. Front. Psychol. 2020, 11, 1792. [Google Scholar] [CrossRef]
- Craig, A.D. How Do You Feel? Interoception: The Sense of the Physiological Condition of the Body. Nat. Rev. Neurosci. 2002, 3, 655–666. [Google Scholar] [CrossRef]
- Erle, T.M.; Mitschke, V.; Schultchen, D. Did My Heart Just Leap or Sink? The Role of Personality for the Relation between Cardiac Interoception and Well-Being. Pers. Individ. Dif. 2021, 170, 110493. [Google Scholar] [CrossRef]
- King, J.L.; Parada, F.J. Using Mobile Brain/body Imaging to Advance Research in Arts, Health, and Related Therapeutics. Eur. J. Neurosci. 2021, 54, 8364–8380. [Google Scholar] [CrossRef]
- Parada, F.J. Understanding Natural Cognition in Everyday Settings: 3 Pressing Challenges. Front. Hum. Neurosci. 2018, 12, 386. [Google Scholar] [CrossRef] [PubMed]
- Shamay-Tsoory, S.G.; Mendelsohn, A. Real-Life Neuroscience: An Ecological Approach to Brain and Behavior Research. Perspect. Psychol. Sci. 2019, 14, 841–859. [Google Scholar] [CrossRef]
- Gramann, K.; McKendrick, R.; Baldwin, C.; Roy, R.N.; Jeunet, C.; Mehta, R.K.; Vecchiato, G. Grand Field Challenges for Cognitive Neuroergonomics in the Coming Decade. Front. Neuroergonomics 2021, 2, 643969. [Google Scholar] [CrossRef]
- Parada, F.J.; Rossi, A. The Potential of Neuroarchitecture and 4E-Cognition: From Microbial Dynamics to Active Environments and Back via Scalable Experimental Designs (commentary on Wang et al., 2024). Eur. J. Neurosci. 2024, 60, 6216–6221. [Google Scholar] [CrossRef] [PubMed]
- Gramann, K.; Fairclough, S.H.; Zander, T.O.; Ayaz, H. Editorial: Trends in Neuroergonomics. Front. Hum. Neurosci. 2017, 11, 165. [Google Scholar] [CrossRef] [PubMed]
- Jungnickel, E.; Gehrke, L.; Klug, M.; Gramann, K. Chapter 10—MoBI—Mobile Brain/Body Imaging. In Neuroergonomics; Ayaz, H., Dehais, F., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 59–63. ISBN 9780128119266. [Google Scholar]
- Klug, M.; Gramann, K. Identifying Key Factors for Improving ICA-Based Decomposition of EEG Data in Mobile and Stationary Experiments. Eur. J. Neurosci. 2021, 54, 8406–8420. [Google Scholar] [CrossRef] [PubMed]
- Stangl, M.; Maoz, S.L.; Suthana, N. Mobile Cognition: Imaging the Human Brain in the “real World”. Nat. Rev. Neurosci. 2023, 24, 347–362. [Google Scholar] [CrossRef] [PubMed]
- Gramann, K. Mobile EEG for Neurourbanism Research—What Could Possibly Go Wrong? A Critical Review with Guidelines. J. Environ. Psychol. 2024, 96, 102308. [Google Scholar] [CrossRef]
- Costa-Cordella, S.; Grasso-Cladera, A.; Parada, F.J. The Future of Psychotherapy Research and Neuroscience: Introducing the 4E/MoBI Approach to the Study of Patient--Therapist Interaction. Rev. Gen. Psychol. 2024, 28, 143–165. [Google Scholar] [CrossRef]
- Jacobsen, N.S.J.; Kristanto, D.; Welp, S.; Inceler, Y.C.; Debener, S. Preprocessing Choices for P3 Analyses with Mobile EEG: A Systematic Literature Review and Interactive Exploration. Psychophysiology 2025, 62, e14743. [Google Scholar] [CrossRef]
- Grasso-Cladera, A.; Costa-Cordella, S.; Rossi, A.; Fuchs, N.F.; Parada, F.J. Mobile Brain/Body Imaging: Challenges and Opportunities for the Implementation of Research Programs Based on the 4E Perspective to Cognition. Adapt. Behav. 2023, 31, 423–448. [Google Scholar] [CrossRef]
- Klug, M.; Berg, T.; Gramann, K. Optimizing EEG ICA Decomposition with Data Cleaning in Stationary and Mobile Experiments. Sci. Rep. 2024, 14, 14119. [Google Scholar] [CrossRef]
Physiological Measure | Relationship to Cognitive Processes | Degree of Directness | Notes |
---|---|---|---|
EEG (Electroencephalography) | Direct measure of neural activity underpinning cognition | Direct | Gold standard in Mobile Brain/Body Imaging (MoBI). |
ECG (Electrocardiography) | Indirect measure via cardiac–brain interactions (e.g., HEP) | Moderately Direct | Useful for tracking interoceptive processes. |
HEP (Heartbeat-Evoked Potential) | Direct neural correlate of interoceptive awareness and bodily self-consciousness | Direct | Emerging method with clear links to embodied cognition. |
Heart Rate (HR) | Reflects autonomic nervous system regulation linked to stress, attention, and emotion | Indirect | Important for embodied cognition and well-being. |
Heart Rate Variability (HRV) | Indicates cognitive–emotional regulation via autonomic function | Moderately Direct | Well-established proxy for emotion–cognition coupling. |
Electrodermal Activity (EDA) | Reflects arousal, an emotional response, and the cognitive load | Indirect | Sensitive to attentional and affective dynamics. |
Skin Temperature | Proxy for emotional and autonomic state changes | Indirect | Useful to infer comfort and stress but less specific. |
Eye Tracking | Indicated attentional focus and cognitive strategies | Direct | Especially valuable when combined with EEG in MoBI. |
PICO | Inclusion Criteria | Exclusion Criteria |
---|---|---|
Population | Neurotypical human participants | None |
Intervention | Exposure to at least one of the four main factors of indoor environmental quality—air quality, thermal comfort, noise, or lighting—in real-world scenarios instead of traditional laboratory setups | None |
Comparators | Not applicable | Not applicable |
Outcomes | Data related to the acquisition of physiological variables and self-reported measures of well-being | None |
Other | Empirical design, published in peer-reviewed journals, and available in English or Spanish from any geographic region with no time restrictions. | None |
Case Series Studies | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Reference | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | Q9 | Q10 |
Wang et al., 2018 [108] | Yes | Yes | Yes | Unclear | Yes | Yes | NA | Yes | Yes | Yes |
Chinazzo et al., 2018 [101] | Yes | Yes | Yes | Unclear | Yes | Yes | NA | Yes | Yes | Yes |
Snow et al., 2019 [107] | Yes | Yes | Yes | Unclear | Yes | Yes | NA | Yes | Yes | Yes |
Chinazzo et al., 2019 [102] | Yes | Yes | Yes | Unclear | Yes | Yes | NA | Yes | Yes | Yes |
Song et al., 2020 [97] | Yes | Yes | Yes | Unclear | Yes | Yes | NA | Yes | Yes | Yes |
Barbic et al., 2022 [103] | Yes | Yes | Yes | Unclear | Yes | Yes | NA | Yes | Yes | Yes |
Wang et al., 2023 [98] | Yes | Yes | Yes | Unclear | Yes | Yes | NA | Yes | Yes | Yes |
Zhou et al., 2023 [100] | Yes | Yes | Yes | Unclear | Yes | Yes | NA | Yes | Yes | Yes |
Gao et al., 2023 [95] | Yes | Yes | Yes | Unclear | Yes | Yes | NA | Yes | Yes | Yes |
Roy et al., 2024 [106] | Yes | Yes | Yes | Unclear | Yes | Yes | NA | Yes | Yes | Yes |
Fischl & Johansson, 2024 [105] | Yes | Yes | Yes | Unclear | Yes | Yes | NA | Yes | Yes | Yes |
Fanpu et al., 2024 [94] | Yes | Yes | Yes | Unclear | Yes | Yes | NA | Yes | Yes | Yes |
Beaudette et al., 2024 [104] | Yes | Yes | Yes | Unclear | Yes | Yes | NA | Yes | Yes | Yes |
Cross-Sectional Studies | ||||||||||
Reference | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | ||
Hu et al., 2022 [96] | Yes | Yes | Yes | Yes | Unclear | Unclear | Yes | Yes | ||
Wu & Wagner, 2023 [99] | Yes | Yes | Yes | Yes | Unclear | Unclear | Yes | Yes |
Reference | Aim | Study Type | IEQ Variable | Sample Size |
---|---|---|---|---|
Chinazzo et al., 2018 [101] | To investigate the effect of daylight transmitted through three colored glazing types on thermal responses and overall comfort at three temperature levels. | Experimental | Thermal comfort | 75 |
Wang et al., 2018 [108] | To study the effect of the indoor environment on students’ learning performance in summer. | Experimental | Thermal comfort | 12 |
Chinazzo et al., 2019 [102] | To investigate the influence of daylight on thermal responses, intended as both subjective thermal perceptions and physiological responses, by studying different combinations of daylight and temperature levels. | Experimental | Lighting and thermal comfort | 84 |
Snow et al., 2019 [107] | To measure changes in human performance, physiological, neurophysiological (EEG), and psychological factors as a result of elevated indoor CO2 concentrations and to validate EEG as an objective measurement of sleepiness for studies concerned with the effect of the indoor environment on humans. | Experimental | Air quality | 31 |
Song et al., 2020 [97] | To identify the important local thermal conditions for sleeping thermal comfort. | Experimental | Thermal comfort | 12 |
Barbic et al., 2022 [103] | To evaluate the effects of reducing classroom temperatures on cognitive performance and to evaluate the associated changes in cardiac autonomic control in a class of undergraduate students. | Experimental | Thermal comfort and air quality | 15 |
Hu et al., 2022 [96] | To analyze gender differences in thermal comfort, work performance, and Sick Building Syndrome symptoms and to define optimal temperature ranges while considering gender differences in the three above-mentioned aspects in classrooms in winter. | Observational | Thermal comfort | 2110 |
Gao et al., 2023 [95] | To analyze the dynamic changes and effects of indoor temperature and exercise behavior on human thermal comfort and establish an evaluation mechanism of exercise thermal comfort. | Observational | Thermal comfort | 45 |
Wang et al., 2023 [98] | To provide theoretical foundations for developing healthy building smell-scapes with essential oils. | Experimental | Thermal comfort, lighting, and air quality | 10 |
Wu & Wagner, 2023 [99] | To examine the effect of outdoor short-term thermal history on the thermal comfort and physiological responses of humans in the indoor environment. | Observational | Thermal comfort | 32; 345 |
Zhou et al., 2023 [100] | To determine the preferred indoor air velocity under hot and humid conditions and to examine the effects of elevated air movement on subjective perceptions and skin temperature. | Experimental | Thermal comfort | 36 |
Beaudette et al., 2024 [104] | To investigate the use of readily available heating devices in typical indoor climate-controlled environments, contexts in which some users may feel uncomfortably cool or cold. | Experimental | Thermal comfort | 17 |
Fanpu et al., 2024 [94] | To explore the best artificial illumination supplement under the comprehensive evaluation of vision, emotion, and cognition in different periods. | Experimental | Lighting | 30 |
Fischl & Johansson, 2024 [105] | To integrate digital occupancy assessment methods to understand indoor lighting conditions on occupant well-being. | Experimental | Lighting | 13 |
Roy et al., 2024 [106] | To explore the influence of three different lighting conditions on participants’ perceptions of task lighting attributes, aspects of room esthetics, and their physiological responses. | Experimental | Lighting | 24 |
Reference | Task | Setting |
---|---|---|
Chinazzo et al., 2018 [101] | Office tasks (paper-based performance tests such as the d2 test) | Office-like room |
Wang et al., 2018 [108] | Learning performance test | Experimental room in rural primary and secondary school |
Chinazzo et al., 2019 [102] | Office tasks (assigned paper-based) | Office-like room |
Snow et al., 2019 [107] | Cognitive test (Stroop test, shifting attention task, continuous performance test, four-part continuous performance test) | Office |
Song et al., 2020 [97] | Sleeping behavior | Residential house |
Barbic et al., 2022 [103] | Cambridge Brain Science Task | University classroom |
Hu et al., 2022 [96] | Course-related activities such as reading books or completing homework | University classroom |
Gao et al., 2023 [95] | Field test lasting >100 min (preparation, warm-up, and testing stage). | Physical fitness training center |
Wang et al., 2023 [98] | Cognitive tasks/tests (Stroop, N-back, visual search task, and digital memory span test) | Office |
Wu & Wagner, 2023 [99] | No specific task (indoor staying) | University dormitory rooms |
Zhou et al., 2023 [100] | Office tasks (computer work or reading) | Office-like rooms |
Beaudette et al., 2024 [104] | Office tasks (self-directed desk work) | Office-like room |
Fanpu et al., 2024 [94] | Reading tasks (Anfimov letter recognition table, number proofreading table, and Randall ring checklist) | Reading space of the university library |
Fischl & Johansson, 2024 [105] | Simple (navigation map) and complex (floor plans and facades of their homes) drawing tasks | Students group rooms |
Roy et al., 2024 [106] | Reading (common textbook) and writing (copy diagrams and paragraphs) tasks | Tertiary educational institute classroom |
Reference | Data Collection Technique | Main Biomarker | Self-Report | Cross-Test Between Variables |
---|---|---|---|---|
Chinazzo et al., 2018 [101] | Surface thermometer; wristband sensor | Skin temperature; heart rate; skin conductance | Thermal comfort (based on a 7-point scale of the ASHRAE); ergonomics of the thermal environment | No |
Wang et al., 2018 [108] | Electronic sphygmomanometer; electronic thermometer | Blood pressure; heart rate; body temperature | ASHRAE 7-point thermal sensation scale | Yes |
Chinazzo et al., 2019 [102] | Surface thermometer | Skin temperature | Ergonomics of the thermal environment | No |
Snow et al., 2019 [107] | EEG; Electrodes; Finger clip; Abdominal belt | Heart rate; Respiration rate; Skin temperature; EEG frequency bands | Sick Building Syndrome symptoms; Stanford Sleepiness Scale; Positive and Negative Affective State | Yes |
Song et al., 2020 [97] | Surface thermometer | Skin temperature | Thermal sensation, comfort, and acceptability evaluation scales (TSV; TCV; TAV) | Yes |
Barbic et al., 2022 [103] | ECG | Heart rate; respiration rate | Questionnaire for the thermal comfort survey (modified by Wang) | No |
Hu et al., 2022 [96] | Thermocouple; fingertip pulse oximeter | Skin temperature; blood oxygen saturation; heart rate | Thermal comfort; self-estimated work performance; Sick Building Syndrome symptoms (based on a 7-point scale of the ASHRAE) | No |
Gao et al., 2023 [95] | Infrared imager; four-channel thermometer; chest strap sensor; blood pressure monitor | Skin temperature; heart rate; blood pressure | TSV; TCV; TPV; TSL; FSV | No |
Wang et al., 2023 [98] | Holter monitor; sphygmomanometer | Heart rate; heart rate variability; blood pressure | POMS questionnaire; indoor air quality acceptability scale; odor scale | No |
Wu & Wagner, 2023 [99] | Surface thermometer; blood pressure monitor | Skin temperature; heart rate; blood pressure | Thermal sensation, preference, comfort, and acceptability (based on a 7-point scale of the ASHRAE) | Yes |
Zhou et al., 2023 [100] | Surface thermometer | Skin temperature | Scales for perceptions on temperature, humidity, and air movement (TSV; HSV; AMV; TCV; TS; HS; AS; TAV; HAV; AMA; TPV; HPV; AVP) | Yes |
Beaudette et al., 2024 [104] | Thermistors | Skin temperature | Adapted ASHRAE scale (perceived thermal sensation and comfort) | Yes |
Fanpu et al., 2024 [94] | Heart rate band | Heart rate variability | Positive and Negative Emotion Scale; visual discomfort scale; office lighting survey scale; Subjective alertness scale | No |
Fischl & Johansson, 2024 [105] | Galvanic skin response sensor; wristband sensor | Skin conductance; heart rate | 7-point Likert scale (satisfaction, pleasantness, novelty, and other perceptions); Self-Assessment Manikin (emotional reaction) | No |
Roy et al., 2024 [106] | Digital sphygmomanometer; fingertip pulse oximeter | Blood pressure; heart rate | 5-point semantic differential scale (aspects of lighting of tasks and room esthetics) | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grasso-Cladera, A.; Arenas-Perez, M.; Wegertseder-Martinez, P.; Vilina, E.; Mattoli-Sanchez, J.; Parada, F.J. Neuroscientific Insights into the Built Environment: A Systematic Review of Empirical Research on Indoor Environmental Quality, Physiological Dynamics, and Psychological Well-Being in Real-Life Contexts. Int. J. Environ. Res. Public Health 2025, 22, 824. https://doi.org/10.3390/ijerph22060824
Grasso-Cladera A, Arenas-Perez M, Wegertseder-Martinez P, Vilina E, Mattoli-Sanchez J, Parada FJ. Neuroscientific Insights into the Built Environment: A Systematic Review of Empirical Research on Indoor Environmental Quality, Physiological Dynamics, and Psychological Well-Being in Real-Life Contexts. International Journal of Environmental Research and Public Health. 2025; 22(6):824. https://doi.org/10.3390/ijerph22060824
Chicago/Turabian StyleGrasso-Cladera, Aitana, Maritza Arenas-Perez, Paulina Wegertseder-Martinez, Erich Vilina, Josefina Mattoli-Sanchez, and Francisco J. Parada. 2025. "Neuroscientific Insights into the Built Environment: A Systematic Review of Empirical Research on Indoor Environmental Quality, Physiological Dynamics, and Psychological Well-Being in Real-Life Contexts" International Journal of Environmental Research and Public Health 22, no. 6: 824. https://doi.org/10.3390/ijerph22060824
APA StyleGrasso-Cladera, A., Arenas-Perez, M., Wegertseder-Martinez, P., Vilina, E., Mattoli-Sanchez, J., & Parada, F. J. (2025). Neuroscientific Insights into the Built Environment: A Systematic Review of Empirical Research on Indoor Environmental Quality, Physiological Dynamics, and Psychological Well-Being in Real-Life Contexts. International Journal of Environmental Research and Public Health, 22(6), 824. https://doi.org/10.3390/ijerph22060824