Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (106)

Search Parameters:
Keywords = indirect signal production

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 8228 KB  
Article
A Detection Method for Seeding Temperature in Czochralski Silicon Crystal Growth Based on Multi-Sensor Data Fusion
by Lei Jiang, Tongda Chang and Ding Liu
Sensors 2026, 26(2), 516; https://doi.org/10.3390/s26020516 - 13 Jan 2026
Viewed by 128
Abstract
The Czochralski method is the dominant technique for producing power-electronics-grade silicon crystals. At the beginning of the seeding stage, an excessively high (or low) temperature at the solid–liquid interface can cause the time required for the seed to reach the specified length to [...] Read more.
The Czochralski method is the dominant technique for producing power-electronics-grade silicon crystals. At the beginning of the seeding stage, an excessively high (or low) temperature at the solid–liquid interface can cause the time required for the seed to reach the specified length to be too long (or too short). However, the time taken for the seed to reach a specified length is strictly controlled in semiconductor crystal growth to ensure that the initial temperature is appropriate. An inappropriate initial temperature can adversely affect crystal quality and production yield. Accurately evaluating whether the current temperature is appropriate for seeding is therefore essential. However, the temperature at the solid–liquid interface cannot be directly measured, and the current manual evaluation method mainly relies on a visual inspection of the meniscus. Previous methods for detecting this temperature classified image features, lacking a quantitative assessment of the temperature. To address this challenge, this study proposed using the duration of the seeding stage as the target variable for evaluating the temperature and developed an improved multimodal fusion regression network. Temperature signals collected from a central pyrometer and an auxiliary pyrometer were transformed into time–frequency representations via wavelet transform. Features extracted from the time–frequency diagrams, together with meniscus features, were fused through a two-level mechanism with multimodal feature fusion (MFF) and channel attention (CA), followed by masking using spatial attention (SA). The fused features were then input into a random vector functional link network (RVFLN) to predict the seeding duration, thereby establishing an indirect relationship between multi-sensor data and the seeding temperature achieving a quantification of the temperature that could not be directly measured. Transfer comparison experiments conducted on our dataset verified the effectiveness of the feature extraction strategy and demonstrated the superior detection performance of the proposed model. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

24 pages, 2964 KB  
Article
Unveiling the Genomic Architecture of Phenotypic Plasticity Using Multiple GWAS Approaches Under Contrasting Conditions of Water Availability: A Model for Barley
by Sebastián Arenas and Andrés J. Cortés
Int. J. Mol. Sci. 2026, 27(2), 652; https://doi.org/10.3390/ijms27020652 - 8 Jan 2026
Viewed by 277
Abstract
Phenotypic plasticity is a key mechanism by which crops adjust to fluctuating environmental conditions, yet its genetic basis under drought remains poorly characterized in barley (Hordeum vulgare). We hypothesized that phenotypic plasticity under drought is controlled by a distinct, trait-specific genetic [...] Read more.
Phenotypic plasticity is a key mechanism by which crops adjust to fluctuating environmental conditions, yet its genetic basis under drought remains poorly characterized in barley (Hordeum vulgare). We hypothesized that phenotypic plasticity under drought is controlled by a distinct, trait-specific genetic architecture that can be detected using complementary plasticity metrics and genome-wide association studies (GWAS). Here, we examined data from 1277 spring barley genotypes grown under well-watered and water-limited conditions to quantify plastic responses across two developmental traits (i.e., heading time, and maturity) and seven productivity-related traits (i.e., total dry matter, plant grain yield, grain number, grain weight, harvest index, vegetative dry weight, and grain-filling period). The experimental design, based on contrasting water regimes across a large diversity panel, allowed robust assessment of genotype-by-environment interactions. We combined five complementary plasticity estimators with four independent GWAS approaches to resolve the genomic architecture underlying trait-specific plasticity. Environmental effects dominated variation in yield-related traits, whereas developmental traits remained more genetically determined. The different plasticity metrics captured distinct but partially overlapping response dimensions, and their integration greatly increased the robustness of association signals. A total of 239 high-confidence SNPs obtained for top traits, those associated across metrics and methods, were enriched in coding regions and mapped to genes involved in osmoregulation, carbohydrate metabolism, hormonal pathways, and ion transport. A total of 27 high-confidence SNPs were located in coding regions, showing genotype-specific differences in the magnitude and even direction of phenotypic plasticity. These loci exhibited opposite allelic effects across water regimes, consistent with context-dependent antagonistic pleiotropy. The fact that candidate alleles for the plastic response modulate environmental sensitivity differently highlights that drought resilience arises from environment-contingent genetic architectures. Overall, these results provide a comprehensive framework for dissecting plasticity and identify concrete genomic targets for indirect selection targeting crop resilience with improved performance under increasingly variable water availability. Full article
(This article belongs to the Special Issue Abiotic Stress Tolerance and Genetic Diversity in Plants, 2nd Edition)
Show Figures

Figure 1

36 pages, 1245 KB  
Review
NO-cGMP Signaling in Endothelial Function of the Healthy and Inflamed Dental Pulp
by Yüksel Korkmaz, Tobias Kollmar, Judith F. Schultheis, Pablo Cores Ziskoven, Lena K. Müller-Heupt and James Deschner
Int. J. Mol. Sci. 2026, 27(1), 57; https://doi.org/10.3390/ijms27010057 - 20 Dec 2025
Viewed by 580
Abstract
The intra- and intercellular signaling molecule nitric oxide (NO) is produced in endothelial cells by the activity of endothelial NO synthase (eNOS). Upon formation, NO diffuses into the underlying vascular smooth muscle cells, where it activates NO-sensitive guanylyl cyclase (NO-GC) resulting in the [...] Read more.
The intra- and intercellular signaling molecule nitric oxide (NO) is produced in endothelial cells by the activity of endothelial NO synthase (eNOS). Upon formation, NO diffuses into the underlying vascular smooth muscle cells, where it activates NO-sensitive guanylyl cyclase (NO-GC) resulting in the production of cyclic guanosine 3′,5′-monophosphate (cGMP) from guanosine 5′-triphosphate (GTP). Inducing vasodilatation, inhibiting platelet aggregation and leukocyte adhesion, and inhibiting the proliferation and migration of vascular smooth muscle cells, the NO-cGMP signaling leads to a number of anti-inflammatory processes. Inflammation-dependent elevated concentrations of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in blood vessels of inflamed dental pulp induce an uncoupling of eNOS and oxidized NO-GC, leading to a disruption of NO-cGMP signaling. Endothelial dysfunction in inflamed dental pulp alters cell–cell and cell–matrix interactions, reducing the regenerative and reparative potential of the dentin–pulp complex in response to carious lesions. In the therapeutic management of caries, it is essential to consider the presence of endothelial dysfunction in the inflamed dental pulp. The utilization of NO-GC stimulators and activators in indirect and direct pulp capping materials may enhance the regeneration and repair potential of inflamed dental pulp. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Endothelial Dysfunction: Fourth Edition)
Show Figures

Figure 1

22 pages, 1103 KB  
Review
Traditional Health Practices May Promote Nrf2 Activation Similar to Exercise
by Hubert Kolb, Stephan Martin and Kerstin Kempf
Int. J. Mol. Sci. 2025, 26(23), 11546; https://doi.org/10.3390/ijms262311546 - 28 Nov 2025
Viewed by 1382
Abstract
Various non-pharmacological practices have been reported to enhance overall health. The molecular effects of exercise have been shown to involve the upregulation of enzymes and transcription factors that enhance antioxidative and anti-inflammatory activity, boost mitochondrial function and growth, and promote a parasympathetic tone. [...] Read more.
Various non-pharmacological practices have been reported to enhance overall health. The molecular effects of exercise have been shown to involve the upregulation of enzymes and transcription factors that enhance antioxidative and anti-inflammatory activity, boost mitochondrial function and growth, and promote a parasympathetic tone. These beneficial changes occur as an adaptive/hormetic response to an initial increase in oxygen radical and nitric oxide production in working muscles. The redox-sensitive nuclear factor erythroid 2-related factor 2 (Nrf2) was identified as the key mediator of the cellular defense response. A similar adaptive response appears to occur in response to exposure to heat or cold, hyperbaric or hypobaric oxygen, cupping therapy, acupuncture, caloric restriction, and the consumption of polyphenol-rich plant-based foods or spices, and there is direct or indirect evidence for the involvement of Nrf2. In many cases, additional stress signaling pathways have been observed to be upregulated, including the nicotinamide adenine dinucleotide (NAD+)-sirtuin and the adenosine monophosphate (AMP)-activated protein kinase pathways. We conclude that while several traditional health practices may share a hormetic mechanism—mild radical-induced damage triggers a defense response through upregulation of antioxidative, anti-inflammatory, and repair activities, which may impact body-wide tissue function. Full article
(This article belongs to the Special Issue Role of NRF2 Pathway in Chronic Diseases)
Show Figures

Figure 1

4878 KB  
Proceeding Paper
Study on AE-Based Tool Condition Monitoring in CFRP Milling Processes
by Vinicius Dias, Thiago Lopes, Marcio Silva, Alessandro Rodrigues, Fabio Dotto and Pedro Oliveira Conceição Junior
Eng. Proc. 2025, 118(1), 82; https://doi.org/10.3390/ECSA-12-26576 - 7 Nov 2025
Viewed by 118
Abstract
Industry 4.0, in its search for improvements to processes and efficient products, has increasingly invested in the use and development of high-performance materials for its production lines. This is exemplified by the introduction of CFRP in the aeronautical industry, since this composite material [...] Read more.
Industry 4.0, in its search for improvements to processes and efficient products, has increasingly invested in the use and development of high-performance materials for its production lines. This is exemplified by the introduction of CFRP in the aeronautical industry, since this composite material has reduced the weight of aircraft and improved their performance. For the construction of large structures, drilling processes are also necessary to fix parts. However, this machining process can cause failures in the structure as a whole. These structural failures occur due to fragmentation, tearing, or detachment of the matrix fiber, significantly reducing the quality and reliability of the final equipment. In this scenario, it is important to preventively detect these intrinsic production failures that lead to the condemnation of the final parts. One indirect detection method is acoustic emission. This work presents a feasibility study focused on the application of data-driven methods for delamination detection and tool wear monitoring in composite machining. A setup for a helical interpolation end-milling drilling process was performed under varying machining conditions, from mild to severe, on CFRP composite plates. Acoustic emission (AE) signals were acquired at each machining pass. The methodology involved selecting an optimal frequency band to obtain information about the wear of the drilling tool through RMS and power spectral density (PSD) analysis, followed by using correlation indices to characterize tool wear progression. The results demonstrate the potential of spectral and statistical techniques to support real-time monitoring and decision-making in advanced composite manufacturing. Full article
Show Figures

Figure 1

18 pages, 3508 KB  
Article
Deficiency in the msbB Gene Reduced the Salmonella Typhimurium Virulence Through Mechanisms Beyond LPS Modification
by Ling Yang, Zhuodong Chai, Jiaqian Qi, Yan Zhang, Yuqi Zhou, Zhenyu Li and Yinan Wei
Microorganisms 2025, 13(11), 2510; https://doi.org/10.3390/microorganisms13112510 - 31 Oct 2025
Cited by 1 | Viewed by 648
Abstract
The Salmonella enterica serovar Typhimurium (ST) mutant lacking the msbB gene (ΔmsbB) has been widely studied as a candidate for attenuated bacterial vectors in therapeutic applications. Deletion of msbB results in LPS with under-acylated lipid A, which lowers endotoxicity while maintaining [...] Read more.
The Salmonella enterica serovar Typhimurium (ST) mutant lacking the msbB gene (ΔmsbB) has been widely studied as a candidate for attenuated bacterial vectors in therapeutic applications. Deletion of msbB results in LPS with under-acylated lipid A, which lowers endotoxicity while maintaining structural integrity. This attenuation has traditionally been attributed to reduced TLR4 activation due to weaker interaction between the modified lipid A and TLR4. In our study, we confirmed that ΔmsbB ST was less lethal than wild-type (WT) ST in a mouse sepsis model. However, this difference persisted even in TLR4- and caspase-11-deficient mice, suggesting that LPS signaling is not the primary determinant of virulence. In vitro, bone marrow–derived macrophages (BMDMs) from TLR4- or caspase-11-deficient mice showed only modest reductions in ST-induced cell death and cytokine production. Importantly, ΔmsbB ST behaved similarly to WT ST in these assays, further indicating that LPS-mediated signaling is not central to the observed attenuation. Our previous studies showed that ST-induced mortality in mice is primarily mediated through NLRC4 activation. Using qPCR and immunoblotting, we found that expression of NLRC4 activators was diminished in the ΔmsbB strain. Additionally, the mutant exhibited increased outer membrane permeability—likely contributing to its heightened antibiotic sensitivity—and reduced motility due to lower flagellin protein levels. In summary, the attenuation of virulence observed in the ΔmsbB strain is not directly due to altered LPS–TLR4 interactions, but rather an indirect effect of diminished expression of virulence factors that activate the NLRC4 inflammasome. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

24 pages, 5277 KB  
Article
Bacillus subtilis Strain TCX1 Isolated from Ambrosia artemisiifolia: Enhancing Cucumber Growth and Biocontrol Against Cucumber Fusarium Wilt
by Yuzhu Dong, Mengzhuo Zhu, Yingwen Zhao, Enjing Yi, Jing Zhang, Ze Wang, Chenxi Wang, Cuimei Yu and Lianju Ma
Plants 2025, 14(19), 3068; https://doi.org/10.3390/plants14193068 - 4 Oct 2025
Viewed by 950
Abstract
Fusarium wilt disease, caused by Fusarium oxysporum f. sp. cucumerinum (FOC), leads to widespread yield losses and quality deterioration in cucumber. Endophytes, as environmentally friendly control agents that enhance pathogen resistance in their host plants, may mitigate these problems. In this [...] Read more.
Fusarium wilt disease, caused by Fusarium oxysporum f. sp. cucumerinum (FOC), leads to widespread yield losses and quality deterioration in cucumber. Endophytes, as environmentally friendly control agents that enhance pathogen resistance in their host plants, may mitigate these problems. In this study, we isolated 14 endophytic bacteria from invasive Ambrosia artemisiifolia and screened the strain Bacillus subtilis TCX1, which exhibited significant antagonistic activity against FOC (inhibitory rate of 86.0%). TCX1 killed Fusarium oxysporum by being highly likely to produce lipopeptide and producing wall hydrolytic enzymes including protease, cellulase, and β-glucanase, thereby inhibiting mycelial growth and spore germination and causing peroxidation of FOC’s cytoplasmic membrane. In addition to its direct effects, TCX1 exerts indirect effects by inducing cucumber resistance to FOC. When cucumber seedlings were inoculated with TCX1, antioxidant enzymes related to disease resistance, including Superoxide dismutase (SOD), Peroxidase (POD), Polyphenol oxidase (PPO) and Phenylalanine ammonialyase (PAL) in cucumber, were significantly increased. The marker genes involved in induced systemic resistance and the salicylic acid signaling pathway, such as npr1, pr1a, pr2, pr9, lox1, and ctr1, were also dramatically upregulated, indicating these pathways played an important role in improving cucumber resistance. Notably, TCX1 can also promote cucumber growth through producing indole-3-acetic acid, solubilizing phosphate, and secreting siderophores. Given that TCX1 has dual functions as both a biological control agent and a biofertilizer, it offers an effective strategy for managing cucumber seedling blight while enhancing plant productivity. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

29 pages, 2368 KB  
Review
Inflammation-Driven Genomic Instability: A Pathway to Cancer Development and Therapy Resistance
by Nina Rembiałkowska, Zofia Kocik, Amelia Kłosińska, Maja Kübler, Agata Pałkiewicz, Weronika Rozmus, Mikołaj Sędzik, Helena Wojciechowska and Agnieszka Gajewska-Naryniecka
Pharmaceuticals 2025, 18(9), 1406; https://doi.org/10.3390/ph18091406 - 18 Sep 2025
Cited by 5 | Viewed by 2311
Abstract
Chronic inflammation, while originally a protective physiological response, is increasingly recognized as a key contributor to carcinogenesis. Prolonged inflammatory signaling leads to the sustained production of reactive oxygen and nitrogen species (ROS/RNS), resulting in direct and indirect DNA damage, including base modifications, strand [...] Read more.
Chronic inflammation, while originally a protective physiological response, is increasingly recognized as a key contributor to carcinogenesis. Prolonged inflammatory signaling leads to the sustained production of reactive oxygen and nitrogen species (ROS/RNS), resulting in direct and indirect DNA damage, including base modifications, strand breaks, and DNA cross-linking. Simultaneously, pro-inflammatory mediators such as NF-κB, IL-6, and TNF-α can interfere with DNA repair mechanisms, altering the efficiency of key pathways such as base excision and mismatch repair. Immune cells infiltrating chronically inflamed tissues, including macrophages and neutrophils, further exacerbate genomic instability through ROS/RNS release and cytokine production, creating a tumor-promoting microenvironment. Additionally, chronic inflammation has been implicated in the development of resistance to chemotherapy and radiotherapy by modulating DNA damage response pathways. Understanding the interplay between inflammation, genomic instability, and therapy resistance provides a framework for novel treatment strategies. Targeting chronic inflammation with non-steroidal anti-inflammatory drugs (NSAIDs), corticosteroids, or biological agents such as monoclonal antibodies offers promising avenues for cancer prevention and treatment. Targeting inflammation with NSAIDs, corticosteroids, and monoclonal antibodies shows promise in cancer prevention and therapy, particularly in lung and pancreatic cancer. These agents act by blocking key inflammatory pathways like COX-2, NF-κB, and cytokine signaling. However, potential adverse effects require further clinical evaluation. Full article
(This article belongs to the Special Issue Novel Anticancer Drug Development and Toxicity Reduction Strategies)
Show Figures

Figure 1

17 pages, 299 KB  
Review
Indications and Mechanisms of Action of the Main Treatment Modalities for Non-Melanoma Skin Cancer
by Marcio F. Chedid, Aline C. Tregnago, Floriano Riva, Lucas Prediger, Anisha Agarwal and Jane Mattei
Life 2025, 15(9), 1447; https://doi.org/10.3390/life15091447 - 16 Sep 2025
Viewed by 1511
Abstract
Skin cancer is the most common cancer worldwide. The incidence of skin cancer has been increasing worldwide. Nearly 75% of all skin cancers are basal cell carcinomas (BCC), cutaneous squamous cell carcinoma (cSCC) represents approximately 20%, and those remaining are melanomas (4%) or [...] Read more.
Skin cancer is the most common cancer worldwide. The incidence of skin cancer has been increasing worldwide. Nearly 75% of all skin cancers are basal cell carcinomas (BCC), cutaneous squamous cell carcinoma (cSCC) represents approximately 20%, and those remaining are melanomas (4%) or other rare tumors (1%). Given the high cure rates and the ability to histologically confirm tumor clearance, surgical therapy is the gold standard for the treatment of skin cancer. Conventional surgery is the most employed technique for the removal of non-melanoma skin cancer (NMSCs). Mohs Micrographic Surgery (MMS) is the most precise surgical method for the treatment of non-melanoma skin cancer, allowing for 100% margin evaluation, being the gold-standard method for surgical treatment of non-melanoma skin cancer. Whenever it is possible to obtain wide margins (4 to 6 mm), cure rates vary from 70% to 99%. Imiquimod, a synthetic imidazoquinolinone amine, is a topical immune response modifier approved by the U.S. Food and Drug Administration (FDA) for the treatment of external anogenital warts, actinic keratosis (AK), and superficial basal cell carcinoma (sBCC). The efficacy of imiquimod is primarily attributed to its ability to modulate both innate and adaptive immune responses, as well as its direct effects on cancer cells. Imiquimod exerts its immunomodulatory effects by activating Toll-like receptors 7 and 8 (TLR7/8) on various immune cells, including dendritic cells, macrophages, and natural killer (NK) cells. Upon binding to these receptors, imiquimod triggers the MyD88-dependent signaling pathway, leading to the activation of nuclear factor kappa B (NF-κB) and interferon regulatory factors (IRFs). This cascade leads to the production of pro-inflammatory cytokines, including interferon-alpha (IFN-α), tumor necrosis factor-alpha (TNF-α), interleukin-12 (IL-12), and interleukin-6 (IL-6). These cytokines enhance local inflammation, recruit additional immune cells to the tumor site, and stimulate antigen presentation, thereby promoting an anti-tumor immune response. Radiation therapy (RTh) may be employed as a primary treatment to BCC. It may also be employed as an adjuvant treatment to surgery for SCC and aggressive subtypes of BCC. RTh triggers both direct and indirect DNA damage on cancer cells and generates reactive oxygen species (ROS) within cells. ROS trigger oxidative damage to DNA, proteins, and lipids, exacerbating the cellular stress and contributing to tumor cell death. Recently, immunotherapy emerged as a revolutionary treatment for all stages of SCC. Cemiplimab is a human programmed cell death 1 (PD-1)-blocking antibody that triggers a response to over 50% of patients with locally advanced and metastatic SCC. A randomized clinical trial (RCT) published in 2022 revealed that cemiplimab was highly effective in the neoadjuvant treatment of large SCCs. The drug promoted a significant tumor size decrease, enabling organ-sparing operations and a much better cosmetic effect. A few months ago, a RCT of cemiplimab on adjuvant therapy for locally aggressive SCC was published. Interestingly, cemiplimab was administered to patients with local or regional cutaneous squamous cell carcinoma after surgical resection and postoperative radiotherapy, at high risk for recurrence owing to nodal features, revealed that cemiplimab led to much lower risks both of locoregional recurrence and distant recurrence. Full article
12 pages, 2789 KB  
Article
Mechanistic Insights into Vorinostat as a Repositioned Modulator of TACE-Mediated TNF-α Signaling via MAPK and NFκB Pathways
by Jinyoung Park, Muhammad Yasir, Jongseon Choe, Jin-Hee Han, Eun-Taek Han, Won Sun Park and Wanjoo Chun
Curr. Issues Mol. Biol. 2025, 47(9), 720; https://doi.org/10.3390/cimb47090720 - 4 Sep 2025
Viewed by 854
Abstract
Vorinostat, an FDA-approved histone deacetylase inhibitor, was evaluated for its potential anti-inflammatory activity through modulation of TACE (ADAM17)-mediated TNF-α signaling. The study was conducted using LPS-stimulated RAW264.7 macrophages. TACE enzymatic activity was assessed by a fluorogenic assay, TNF-α release was measured by ELISA, [...] Read more.
Vorinostat, an FDA-approved histone deacetylase inhibitor, was evaluated for its potential anti-inflammatory activity through modulation of TACE (ADAM17)-mediated TNF-α signaling. The study was conducted using LPS-stimulated RAW264.7 macrophages. TACE enzymatic activity was assessed by a fluorogenic assay, TNF-α release was measured by ELISA, and phosphorylation of MAPKs and NFκB signaling proteins was examined by a western blot. Molecular docking was performed using GNINA to evaluate binding affinity to ERK. Vorinostat was found to modestly inhibit TACE enzymatic activity in vitro, while significantly suppressing TNF-α secretion in cells, comparable to the selective TACE inhibitor BMS-561392. A concentration-dependent reduction in phosphorylated IκB and NFκB was observed, along with selective inhibition of ERK phosphorylation. Docking studies indicated a stable, albeit weaker, binding of vorinostat to ERK compared to reference ERK inhibitors. These findings suggest that vorinostat suppresses TNF-α production primarily through indirect mechanisms involving ERK and NF-κB signaling pathways, rather than by direct TACE inhibition. The repositioning of vorinostat as a modulator of inflammatory signaling is supported, offering potential therapeutic value in inflammatory disorders. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

28 pages, 1144 KB  
Review
The Importance of Multifaceted Approach for Accurate and Comprehensive Evaluation of Oxidative Stress Status in Biological Systems
by Borut Poljšak, Polona Jamnik and Irina Milisav
Antioxidants 2025, 14(9), 1083; https://doi.org/10.3390/antiox14091083 - 3 Sep 2025
Cited by 3 | Viewed by 2491
Abstract
Oxidative stress is caused by an imbalance between the formation of reactive oxygen species (ROS) and the activity of antioxidant defense system, which disrupts redox signaling and causes molecular damage. While there are numerous methods to measure oxidative stress, the complex and dynamic [...] Read more.
Oxidative stress is caused by an imbalance between the formation of reactive oxygen species (ROS) and the activity of antioxidant defense system, which disrupts redox signaling and causes molecular damage. While there are numerous methods to measure oxidative stress, the complex and dynamic nature of ROS production and antioxidant reactions requires a multi-faceted approach. Direct methods such as electron spin resonance (ESR) and fluorescent probes measure ROS directly but are limited by the short lifespan of certain species. Indirect methods such as lipid peroxidation markers (e.g., malondialdehyde, MDA), protein oxidation (e.g., carbonyl content), and DNA damage (e.g., 8-oxo-dG) provide information on oxidative damage, but they do not capture the real-time dynamics of ROS. The antioxidant defense system, which includes enzymatic components such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), further complicates assessment, as it responds dynamically to oxidative challenges. Furthermore, the compartmentalized nature of ROS production in organelles and tissues coupled with the temporal variability of oxidative damage and repair underscores the need to integrate multiple assessment methods. This commentary highlights the limitations of using single assays and emphasizes the importance of combining complementary techniques to achieve a comprehensive assessment of oxidative stress. A multi-method approach ensures accurate identification of ROS dynamics, antioxidant responses, and the extent of oxidative damage, providing crucial insights into redox biology and its impact on health and disease. Full article
Show Figures

Figure 1

15 pages, 2833 KB  
Article
Transgenerational and Molecular Responses to Lanthanum Exposure in a Spodoptera littoralis-Brassica rapa System
by Cong van Doan, Sara Bonzano and Massimo E. Maffei
Int. J. Mol. Sci. 2025, 26(17), 8462; https://doi.org/10.3390/ijms26178462 - 30 Aug 2025
Cited by 1 | Viewed by 676
Abstract
The widespread use of rare earth elements (REEs) in agriculture, particularly Lanthanum (La), raises concerns about their ecological impact on non-target organisms. We investigated the direct and indirect effects of La on the insect pest Spodoptera littoralis and its host plant, Brassica rapa [...] Read more.
The widespread use of rare earth elements (REEs) in agriculture, particularly Lanthanum (La), raises concerns about their ecological impact on non-target organisms. We investigated the direct and indirect effects of La on the insect pest Spodoptera littoralis and its host plant, Brassica rapa. Direct exposure to La-supplemented diets reduced larval growth, survival, and egg production. Interestingly, a transgenerational effect was observed, where larvae from La-exposed parents exhibited increased resilience, showing no performance reduction on the same diets. Indirectly, La accumulation in plants mediated a hormetic response in herbivores, increasing larval weight at low concentrations but reducing it at high concentrations, while modulating their oxidative stress and detoxification gene expression. From the plant perspective, La exposure amplified herbivory-induced calcium signalling and altered the expression of key genes related to calcium and reactive oxygen species pathways. These findings reveal the complex ecological risks of La accumulation in agroecosystems, affecting both plants and insects directly and through novel transgenerational effects. Full article
(This article belongs to the Special Issue New Insights into Plant and Insect Interactions (Second Edition))
Show Figures

Graphical abstract

23 pages, 1339 KB  
Review
Current State of Knowledge on Amiodarone (AMD)-Induced Reactive Oxygen Species (ROS) Production in In Vitro and In Vivo Models
by Konrad A. Szychowski
Oxygen 2025, 5(3), 16; https://doi.org/10.3390/oxygen5030016 - 26 Aug 2025
Cited by 2 | Viewed by 2235
Abstract
Amiodarone (AMD) is an effective antiarrhythmic drug whose long-term use is limited by multi-organ toxicities linked to oxidative stress. This review synthesizes current evidence on how AMD induces reactive oxygen species (ROS) generation in vitro and in vivo, and the mechanistic pathways involved. [...] Read more.
Amiodarone (AMD) is an effective antiarrhythmic drug whose long-term use is limited by multi-organ toxicities linked to oxidative stress. This review synthesizes current evidence on how AMD induces reactive oxygen species (ROS) generation in vitro and in vivo, and the mechanistic pathways involved. AMD promotes ROS production through both direct and indirect mechanisms. Directly, AMD accumulates in mitochondria and impairs the electron transport chain, leading to electron leakage and superoxide formation. It also undergoes redox cycling, forming radical intermediates that trigger lipid peroxidation and deplete cellular antioxidants. AMD and its metabolites inhibit antioxidant enzymes (SOD, CAT, GPx) expression and/or activities and reduce glutathione level, compounding oxidative injury. Indirectly, AMD activates signaling pathways that exacerbate ROS generation. This compound can induce pro-inflammatory mediators such as TNF-α and modulate nuclear receptors such as AhR, PXR, CAR, and PPARs, altering the expression of metabolic enzymes and endogenous antioxidants. These processes are time- and dose-dependent: short exposures at low concentrations may transiently scavenge radicals, whereas chronic or higher-dose exposures consistently lead to net ROS accumulation. The oxidative effects of AMD vary by tissue and experimental models. In chronic models, organs such as the lung and liver show pronounced ROS-mediated injury, whereas acute or cell-based systems typically exhibit subtler changes. AMD-induced toxicity arises from multifactorial oxidative stress involving mitochondrial dysfunction, increased radical formation, depletion of antioxidant defenses, and activation of pro-oxidant signaling pathways. Recognizing these pathways suggests that antioxidant and mitochondria-targeted co-therapies could ameliorate the side effects of AMD. Full article
(This article belongs to the Special Issue Feature Papers in Oxygen Volume III)
Show Figures

Figure 1

13 pages, 294 KB  
Article
Global Existence for the Cauchy Problem of the Parabolic–Parabolic–ODE Chemotaxis Model with Indirect Signal Production on the Plane
by Qian Liu and Dan Li
Mathematics 2025, 13(16), 2624; https://doi.org/10.3390/math13162624 - 15 Aug 2025
Viewed by 509
Abstract
This paper establishes the global existence of solutions to a chemotaxis system with indirect signal production in the whole two-dimensional space. This system exhibits a mass threshold phenomenon governed by a critical mass mc=8πδ, where δ represents [...] Read more.
This paper establishes the global existence of solutions to a chemotaxis system with indirect signal production in the whole two-dimensional space. This system exhibits a mass threshold phenomenon governed by a critical mass mc=8πδ, where δ represents the decay rate of the static individuals. When the total initial mass m=R2u0dx<mc, all solutions exist globally and remain bounded. In the critical case of m=mc, the global existence or finite-time blow-up may occur depending on the initial conditions. The critical mass obtained in the whole space coincides with that previously derived in radially symmetric bounded domains. A key novelty lies in extending the analysis to the full plane, where the absence of compactness is overcome by constructing a suitable Lyapunov functional and employing refined Trudinger–Moser-type inequalities. Full article
(This article belongs to the Section E: Applied Mathematics)
29 pages, 6015 KB  
Review
A Comprehensive Review of BBX Protein-Mediated Regulation of Anthocyanin Biosynthesis in Horticultural Plants
by Hongwei Li, Kuanping Deng, Yingying Zhao and Delin Xu
Horticulturae 2025, 11(8), 894; https://doi.org/10.3390/horticulturae11080894 - 2 Aug 2025
Cited by 1 | Viewed by 2100
Abstract
Anthocyanins, a subclass of flavonoid pigments, impart vivid red, purple, and blue coloration to horticultural plants, playing essential roles in ornamental enhancement, stress resistance, and pollinator attraction. Recent studies have identified B-box (BBX) proteins as a critical class of transcription factors (TFs) involved [...] Read more.
Anthocyanins, a subclass of flavonoid pigments, impart vivid red, purple, and blue coloration to horticultural plants, playing essential roles in ornamental enhancement, stress resistance, and pollinator attraction. Recent studies have identified B-box (BBX) proteins as a critical class of transcription factors (TFs) involved in anthocyanin biosynthesis. Despite these advances, comprehensive reviews systematically addressing BBX proteins are urgently needed, especially given the complexity and diversity of their roles in regulating anthocyanin production. In this paper, we provide an in-depth overview of the fundamental structures, biological functions, and classification of BBX TFs, along with a detailed description of anthocyanin biosynthetic pathways and bioactivities. Furthermore, we emphasize the diverse molecular mechanisms through which BBX TFs regulate anthocyanin accumulation, including direct activation or repression of target genes, indirect modulation via interacting protein complexes, and co-regulation with other transcriptional regulators. Additionally, we summarize the known upstream regulatory signals and downstream target genes of BBX TFs, highlighting their significance in shaping anthocyanin biosynthesis pathways. Understanding these regulatory networks mediated by BBX proteins will not only advance fundamental horticultural science but also provide valuable insights for enhancing the aesthetic quality, nutritional benefits, and stress adaptability of horticultural crops. Full article
Show Figures

Graphical abstract

Back to TopTop