Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (331)

Search Parameters:
Keywords = indirect correspondence

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 715 KiB  
Article
One Health Approach to Trypanosoma cruzi: Serological and Molecular Detection in Owners and Dogs Living on Oceanic Islands and Seashore Mainland of Southern Brazil
by Júlia Iracema Moura Pacheco, Louise Bach Kmetiuk, Melissa Farias, Gustavo Gonçalves, Aaronson Ramathan Freitas, Leandro Meneguelli Biondo, Cristielin Alves de Paula, Ruana Renostro Delai, Cláudia Turra Pimpão, João Henrique Perotta, Rogério Giuffrida, Vamilton Alvares Santarém, Helio Langoni, Fabiano Borges Figueiredo, Alexander Welker Biondo and Ivan Roque de Barros Filho
Trop. Med. Infect. Dis. 2025, 10(8), 220; https://doi.org/10.3390/tropicalmed10080220 (registering DOI) - 2 Aug 2025
Abstract
Via a One Health approach, this study concomitantly assessed the susceptibility of humans and dogs to Trypanosoma cruzi infections on three islands and in two mainland seashore areas of southern Brazil. Human serum samples were tested using an enzyme-linked immunosorbent assay (ELISA) to [...] Read more.
Via a One Health approach, this study concomitantly assessed the susceptibility of humans and dogs to Trypanosoma cruzi infections on three islands and in two mainland seashore areas of southern Brazil. Human serum samples were tested using an enzyme-linked immunosorbent assay (ELISA) to detect anti-T. cruzi antibodies, while dog serum samples were tested using indirect fluorescent antibodies in an immunofluorescence assay (IFA). Seropositive human and dog individuals were also tested using quantitative polymerase chain reaction (qPCR) in corresponding blood samples. Overall, 2/304 (0.6%) human and 1/292 dog samples tested seropositive for T. cruzi by ELISA and IFA, respectively, and these cases were also molecularly positive for T. cruzi by qPCR. Although a relatively low positivity rate was observed herein, these cases were likely autochthonous, and the individuals may have been infected as a consequence of isolated events of disturbance in the natural peridomicile areas nearby. Such a disturbance could come in the form of a fire or deforestation event, which can cause stress and parasitemia in wild reservoirs and, consequently, lead to positive triatomines. In conclusion, T. cruzi monitoring should always be conducted in suspicious areas to ensure a Chagas disease-free status over time. Further studies should also consider entomological and wildlife surveillance to fully capture the transmission and spread of T. cruzi on islands and in seashore mainland areas of Brazil and other endemic countries. Full article
(This article belongs to the Section One Health)
Show Figures

Figure 1

15 pages, 3051 KiB  
Article
Study on the Kinetics of Carbothermic Reduction of Stainless Steel Dust by Walnut Shell Biochar
by Guoyu Cui, Xiang Zhang, Yanghui Xu, Guojun Ma, Dingli Zheng and Ju Xu
Metals 2025, 15(8), 835; https://doi.org/10.3390/met15080835 - 26 Jul 2025
Viewed by 193
Abstract
Stainless steel dust (SSD) is a by-product generated during the smelting process of stainless steel, which is rich in valuable metals such as Fe, Cr, Ni, and Mn. To optimize the carbothermic reduction process of SSD, this study first conducted the thermodynamic analysis [...] Read more.
Stainless steel dust (SSD) is a by-product generated during the smelting process of stainless steel, which is rich in valuable metals such as Fe, Cr, Ni, and Mn. To optimize the carbothermic reduction process of SSD, this study first conducted the thermodynamic analysis of the carbothermic reduction of SSD and then employed walnut shell biochar as a reductant with non-isothermal thermogravimetric analysis with linear heating rates of 5 °C/min, 10 °C/min, 15 °C/min, and 20 °C/min. The activation energies of the carbothermic reduction reactions were calculated using the FWO method, KAS method, and Friedman method, respectively. Subsequently, the corresponding kinetic models were fitted and matched using the Málek method. The results indicate that before 600 °C, the direct reduction of SSD by carbon plays a dominant role. As the temperature increases, the indirect reduction becomes the main reduction reaction for SSD due to the generation of CO. The activation energies calculated by the Flynn–Wall–Ozawa (FWO) method, Kissinger–Akahira–Sunose (KAS) method, and Friedman method are 412.120 kJ/mol, 416.930 kJ/mol, and 411.778 kJ/mol, respectively, showing close values and a general trend of increasing activation energy as the conversion rate increased from 10% to 90%. Moreover, the reduction reaction is staged. In the conversion range of 10% to 50%, the carbothermic reduction reaction conforms to the shrinking core model within phase boundary reactions, coded as R1/4. In the conversion range of 50% to 60%, it conforms to the shrinking core model within phase boundary reactions, coded as R1/2; in the conversion range of 60% to 90%, the carbothermic reduction reaction follows the second-order chemical reaction model, coded as F2. Full article
(This article belongs to the Special Issue Separation, Reduction, and Metal Recovery in Slag Metallurgy)
Show Figures

Figure 1

15 pages, 271 KiB  
Review
The Number Needed to Immunize (NNI) to Assess the Benefit of a Prophylaxis Intervention with Monoclonal Antibodies Against RSV
by Sara Boccalini, Veronica Gironi, Primo Buscemi, Paolo Bonanni, Barbara Muzii, Salvatore Parisi, Marta Borchiellini and Angela Bechini
Vaccines 2025, 13(8), 791; https://doi.org/10.3390/vaccines13080791 - 25 Jul 2025
Viewed by 297
Abstract
Introduction: Respiratory Syncytial Virus (RSV) is the leading cause of lower respiratory tract infections in infants and children, as well as hospitalizations for respiratory infections in the pediatric population, representing a significant public health concern. Nirsevimab, a long-acting anti-RSV monoclonal antibody, has recently [...] Read more.
Introduction: Respiratory Syncytial Virus (RSV) is the leading cause of lower respiratory tract infections in infants and children, as well as hospitalizations for respiratory infections in the pediatric population, representing a significant public health concern. Nirsevimab, a long-acting anti-RSV monoclonal antibody, has recently been approved by the European Medicines Agency (EMA). The aim of this study is to assess the utility of certain parameters, such as the Number Needed to Immunize (NNI), in supporting decision-makers regarding the introduction of nirsevimab as a universal prophylactic measure. Methods: A literature review was conducted to identify the definition and application of the NNI in the context of infectious disease prevention. The following online databases were consulted: Scopus, MEDLINE, Google Scholar, Web of Science, and Cochrane Library. The search was restricted to English-language texts published between 1 January 2000 and 30 January 2025. Results: The NNI represents the number of individuals who need to be immunized to prevent clinical outcomes such as medical visits and hospitalizations caused by infectious diseases. Six studies were identified that utilized this parameter to outline the benefits of immunization and describe the advantages of using monoclonal antibodies for RSV disease. Finelli and colleagues report that to prevent one RSV-related hospitalization, 37–85 infants aged 0–5 months and 107–280 infants aged 6–11 months would need to be immunized with long-acting anti-RSV antibodies. A recent study by Mallah et al. on the efficacy of nirsevimab estimates that the NNI required to prevent one RSV-related hospitalization is 25 infants. Studies by Francisco and O’Leary report NNI values of 82 and 128 infants, respectively, to prevent one RSV-related hospitalization with nirsevimab. Mallah et al. describe NNI as a metric useful to quantify the immunization effort needed to prevent a single RSV hospitalization. A recent Italian study reports that 35 infants need to be immunized to prevent one hospitalization due to RSV-LRTI and 3 infants need to be immunized to prevent one primary care visit due to RSV-LRTI. The studies indicate that the NNI for anti-RSV monoclonal antibodies is lower than the corresponding Number Needed to Vaccinate (NNV) for vaccines already included in national immunization programs. The main limitations of using this parameter include the absence of a shared threshold for interpreting results and the lack of consideration for the indirect effects of immunization on the population. Conclusions: The NNI is an easily understandable tool that can be used to convey the value of an immunization intervention to a variety of stakeholders, thereby supporting public health decision-making processes when considered in association with the uptake of the preventative strategy. At the current status, the estimated NNI of monoclonal antibodies against RSV results favourable and confirms the use in the first year of life for the prevention of RSV disease. Full article
19 pages, 594 KiB  
Article
Influence of In Situ Polymerization on the Compressive Strength of Scots Pine (Pinus sylvestris L.) Recovered from Demolition Timber and Two Forest-Sourced Species: European Beech (Fagus sylvatica) and Black Alder (Alnus glutinosa)
by Emil Żmuda and Kamil Roman
Materials 2025, 18(15), 3439; https://doi.org/10.3390/ma18153439 - 22 Jul 2025
Viewed by 147
Abstract
This study investigated the effect of in situ polymerization on the compressive strength of demolition-derived Scots pine, European beech, and black alder wood. The treatment applied was based on previously confirmed in situ polymerization systems in wood, which are known to lead to [...] Read more.
This study investigated the effect of in situ polymerization on the compressive strength of demolition-derived Scots pine, European beech, and black alder wood. The treatment applied was based on previously confirmed in situ polymerization systems in wood, which are known to lead to polymer formation and composite-like structures. In this study, we assumed similar behavior and focused on a mechanical evaluation of the modified wood. Three different polymer systems were applied to evaluate differences in performance. After modification, the compressive strength levels increased by 60% in beech, 119% in alder, and 150% in pine, with corresponding increases in density and weight percent gain (WPG). The highest relative improvement was observed in the least dense species, pine. The findings suggest that polymer treatment can significantly enhance the mechanical properties, likely due to the incorporation of polymer into the wood matrix; however, this inference is based on indirect physical evidence. Full article
Show Figures

Figure 1

18 pages, 2834 KiB  
Article
Experimental Study of Solar Hot Water Heating System with Adaptive Control Strategy
by Pawel Znaczko, Norbert Chamier-Gliszczynski and Kazimierz Kaminski
Energies 2025, 18(15), 3904; https://doi.org/10.3390/en18153904 - 22 Jul 2025
Viewed by 148
Abstract
The efficiency of solar water heating systems is strongly influenced by variable weather conditions, making the optimization of control strategies essential for maximizing energy performance. This study presents the development and evaluation of a rule-based adaptive control strategy that dynamically selects one of [...] Read more.
The efficiency of solar water heating systems is strongly influenced by variable weather conditions, making the optimization of control strategies essential for maximizing energy performance. This study presents the development and evaluation of a rule-based adaptive control strategy that dynamically selects one of three predefined control modes—ON–OFF, proportional, or indirect proportional control (IPC)—based on real-time weather classification. The classification algorithm assigns each day to one of four solar irradiance categories, enabling the controller to respond appropriately to current environmental conditions. The proposed adaptive controller was implemented and tested under real operating conditions and compared with a conventional commercial solar controller. Over a 40-day testing period, the adaptive system achieved a 12.7% increase in thermal energy storage efficiency. Specifically, despite receiving 4.8% less solar radiation (719 kWh vs. 755 kWh), the adaptive controller stored 453 kWh of heat in the water tank compared to 416 kWh with the traditional system. This corresponds to an efficiency improvement from 0.55 to 0.63. These results demonstrate the adaptive controller’s superior ability to utilize available solar energy across all weather scenarios. The findings confirm that intelligent control strategies not only enhance technical performance but also improve the economic and environmental value of solar thermal systems. Full article
(This article belongs to the Special Issue Solar Energy and Resource Utilization—2nd Edition)
Show Figures

Figure 1

25 pages, 509 KiB  
Article
Balancing Ethics and Earnings: Corporate Digital Responsibility and Jordanian Banks’ Performance Mediating for Bank Size
by Bashar Abu Khalaf, Munirah Sarhan AlQahtani, Maryam Saad Al-Naimi and Mohamad Anas Ktit
FinTech 2025, 4(3), 29; https://doi.org/10.3390/fintech4030029 - 16 Jul 2025
Viewed by 242
Abstract
This study aims to explore how Corporate Digital Responsibility (CDR) influences Jordanian banks’ performance. It focuses on four CDR dimensions—“social, technological, economic, and environmental”—and examines the mediating role of firm size in these relationships. This study is the first to empirically test the [...] Read more.
This study aims to explore how Corporate Digital Responsibility (CDR) influences Jordanian banks’ performance. It focuses on four CDR dimensions—“social, technological, economic, and environmental”—and examines the mediating role of firm size in these relationships. This study is the first to empirically test the mediating effect of firm size in the relationship between CDR and firm performance in the Jordanian banking sector, providing a novel perspective on how digital ethics shape organizational success. Data were collected through a structured survey from 299 bank employees in Jordan. Structural Equation Modeling (SEM) was employed to assess the direct and indirect effects of CDR dimensions on firm performance, with firm size tested as a mediating variable. All four dimensions of CDR significantly and positively affect firm performance. Additionally, firm size plays a partial mediating role in the relationship between CDR and firm performance, indicating that larger banks may better leverage digital responsibility initiatives to enhance performance. The study relies on self-reported data from a single country (Jordan), which may limit generalizability. Future studies could adopt a longitudinal design or expand to other MENA countries for comparative analysis and broader insights. The findings suggest that Jordanian banks should invest in and prioritize CDR strategies, especially in economic and technological domains, to improve their organizational outcomes and stakeholder relationships. Enhancing firm size may amplify the positive impact of CDR. The findings of this study are robust, as validated by further analysis utilizing data from a customer survey. The results derived from customer viewpoints correspond with staff data, substantiating the beneficial influence of Corporate Digital Responsibility (CDR) on banking performance and affirming the substantial mediating effect of company size. Full article
Show Figures

Figure 1

12 pages, 3419 KiB  
Article
Graphene Oxide-Enriched Polymer: Impact on Dental Pulp Cell Viability and Differentiation
by Magdalena Vega-Quiroz, Agustin Reyes-Maciel, Christian Andrea Lopez-Ayuso, Carlos A. Jurado, Hector Guzman-Juarez, Carlos Andres Alvarez-Gayosso, Benjamin Aranda-Herrera, Abdulrahman Alshabib and Rene Garcia-Contreras
Polymers 2025, 17(13), 1768; https://doi.org/10.3390/polym17131768 - 26 Jun 2025
Viewed by 472
Abstract
Background: Reconstructing maxillofacial defects is important in dentistry, so efforts are being made to develop materials that promote cell migration and repair. Graphene oxide (GO) is used to enhance the biocompatibility of polymethylmethacrylate (PMMA) due to its nanostructure. Objective: to assess cytotoxicity, cell [...] Read more.
Background: Reconstructing maxillofacial defects is important in dentistry, so efforts are being made to develop materials that promote cell migration and repair. Graphene oxide (GO) is used to enhance the biocompatibility of polymethylmethacrylate (PMMA) due to its nanostructure. Objective: to assess cytotoxicity, cell proliferation, and differentiation of human dental pulp stem cells (hDPSC) in response to a conventional PMMA (PMMA) and polymer enriched with GO (PMMA+GO). Methods: Experiments were carried out with primary hDPSC subcultures. The PMMA and PMMA+GO were tested in direct and indirect contact. Cytotoxicity (1 day) and proliferation (3, 7, and 14 days) were evaluated with an MTT bioassay. The osteogenic, adipogenic, and chondrogenic aspects were determinate with alizarin red, oil red, and safranine. Mean values, standard deviation, and percentages were calculated; data were analyzed with Shapiro–Wilks normality and Student’s t-test. Results: The cell viability of PMMA and PMMA+GO in direct contact correspond to 90.8 ± 6.2, 149.6 ± 14.5 (1 day); 99.9 ± 7.0, 95.7 ± 6.1 (3 days); 120.2 ± 14.6, 172.9 ± 16.2 (7 days); and 102.9 ± 17.3, 95.4 ± 22.8 (14 days). For indirect contact, 77.2 ± 8.4, 99 ± 21.4 (1 day); 64.8 ± 21.6, 67.0 ± 9.6 (3 days); 91.4 ± 16.5, 142 ± 18.7 (7 days); and 63 ± 15.8, 79.1 ± 3.1 (14 days). PMMA+GO samples showed enhanced adipogenic, chondrogenic, and osteogenic aspects. Conclusions: The integration of GO into PMMA biopolymers stimulates cell proliferation and differentiation, holding great promise for future applications in the field of biomedicine. Full article
(This article belongs to the Special Issue Challenges and Opportunities of Polymer Materials in Dentistry)
Show Figures

Figure 1

16 pages, 239 KiB  
Article
The Correspondence Between Executive Functioning and Academic Achievement Among Children with Prenatal Alcohol Exposure
by Kristene Cheung, Susan Doyle, Kylee Clayton, Ana Hanlon-Dearman, Jo Ann Unger, Caelan Budhoo and Alyssa Romaniuk
Children 2025, 12(7), 842; https://doi.org/10.3390/children12070842 - 26 Jun 2025
Viewed by 245
Abstract
Background/Objectives: Canadian guidelines for diagnosing fetal alcohol spectrum disorder (FASD) strongly recommend using direct measures to assess brain domains whenever possible. Executive functioning, one of the brain domains assessed, can be measured using direct and indirect measures; however, research has found discrepancies [...] Read more.
Background/Objectives: Canadian guidelines for diagnosing fetal alcohol spectrum disorder (FASD) strongly recommend using direct measures to assess brain domains whenever possible. Executive functioning, one of the brain domains assessed, can be measured using direct and indirect measures; however, research has found discrepancies between these two forms of assessment and has not examined this relationship using ratings from the newest version of one of the most commonly used indirect measure of executive functioning, the second version of the Behavior Rating Inventory of Executive Functioning (BRIEF2). Academic achievement may also help explain discrepancies between these forms of assessment, especially in indirect executive functioning skills at school, because many of the items on the BRIEF2 Teacher Form are related to school skills. This study aimed to examine the relationship between direct measures of executive functioning, indirect measures of executive functioning, and academic achievement. Methods: Charts of 74 children who completed an FASD diagnostic assessment in Canada were included in this study (61% males; 58% with FASD; Mage = 11.77). Direct and indirect measures of executive functioning across settings and academic achievement were assessed. Results: Few correlations between corresponding BRIEF2 and direct measures of executive functioning were significantly associated. There were several significant correlations between academic achievement and (a) educator ratings on the BRIEF2 and (b) direct measures of executive functioning. None of the caregiver ratings on the BRIEF2 were significantly associated with academic achievement. Conclusions: The results suggest that academic performance is related to BRIEF2 ratings of executive functioning skills at school and direct measures of executive functioning. Aside from a few exceptions, direct and indirect measures of the same executive functioning skill were not correlated. Full article
(This article belongs to the Section Pediatric Neurology & Neurodevelopmental Disorders)
14 pages, 2161 KiB  
Article
Observation of Electroplating in a Lithium-Metal Battery Model Using Magnetic Resonance Microscopy
by Rok Peklar, Urša Mikac and Igor Serša
Molecules 2025, 30(13), 2733; https://doi.org/10.3390/molecules30132733 - 25 Jun 2025
Viewed by 357
Abstract
Accurate imaging methods are important for understanding electrodeposition phenomena in metal batteries. Among the suitable imaging methods for this task is magnetic resonance imaging (MRI), which is a very powerful radiological diagnostic method. In this study, MR microscopy was used to image electroplating [...] Read more.
Accurate imaging methods are important for understanding electrodeposition phenomena in metal batteries. Among the suitable imaging methods for this task is magnetic resonance imaging (MRI), which is a very powerful radiological diagnostic method. In this study, MR microscopy was used to image electroplating in a lithium symmetric cell, which was used as a model for a lithium-metal battery. Lithium electrodeposition in this cell was studied by sequential 3D 1H MRI of 1 M LiPF6 in EC/DMC electrolyte under different charging conditions, which resulted in different dynamics of the amount of electroplated lithium and its structure. The acquired images depicted the electrolyte distribution, so that the images of deposited lithium that did not give a detectable signal corresponded to the negatives of these images. With this indirect MRI, phenomena such as the transition from a mossy to a dendritic structure at Sand’s time, the growth of whiskers, the growth of dendrites with arborescent structure, the formation of dead lithium, and the formation of gas due to electrolyte decomposition were observed. In addition, the effect of charge and discharge cycles on electrodeposition was also studied. It was found that it is difficult to correctly predict the occurrence of these phenomena based on charging conditions alone, as seemingly identical conditions resulted in different results. Full article
(This article belongs to the Special Issue Advanced Magnetic Resonance Methods in Materials Chemistry Analysis)
Show Figures

Figure 1

24 pages, 5980 KiB  
Article
Performance Evaluation and Simulation Optimization of Outdoor Environmental Space in Communities Based on Subjective Comfort: A Case Study of Minhe Community in Qian’an City
by Yuefang Rong, Jian Song, Zhuofan Xu, Haoxi Lin, Jiakun Liu, Baiyi Yang and Shuhan Guo
Buildings 2025, 15(12), 2078; https://doi.org/10.3390/buildings15122078 - 17 Jun 2025
Viewed by 365
Abstract
With the continual expansion of global urbanization and population growth, urban energy demands have intensified, and anthropogenic activities have precipitated profound shifts in the global climate. These climatic changes directly alter urban environmental conditions, which in turn exert indirect effects on human physiological [...] Read more.
With the continual expansion of global urbanization and population growth, urban energy demands have intensified, and anthropogenic activities have precipitated profound shifts in the global climate. These climatic changes directly alter urban environmental conditions, which in turn exert indirect effects on human physiological function. Consequently, the comfort of outdoor community environments has emerged as a critical metric for assessing the quality of human habitation. Although existing studies have focused on improving singular environmental factors—such as wind or thermal comfort—they often lack an integrated, multi-factor coupling mechanism, and adaptive strategy systems tailored to hot-summer, cold-winter regions remain underdeveloped. This study examines the Minhe Community in Qian’an City to develop a performance evaluation framework for outdoor spaces grounded in subjective comfort and to close the loop from theoretical formulation to empirical validation via an interdisciplinary approach. We first synthesized 25 environmental factors across eight categories—including wind, thermal, and lighting parameters—and applied the Analytic Hierarchy Process (AHP) to establish factor weights, thereby constructing a comprehensive model that encompasses both physiological and psychological requirements. Field surveys, meteorological data collection, and ENVI-met (V5.1.1) microclimate simulations revealed pronounced issues in the community’s wind distribution, thermal comfort, and acoustic environment. In response, we proposed adaptive interventions—such as stratified vegetation design and permeable pavement installations—and validated their efficacy through further simulation. Post-optimization, the community’s overall comfort score increased from 4.64 to 5.62, corresponding to an efficiency improvement of 21.3%. The innovative contributions of this research are threefold: (1) transcending the limitations of single-factor analyses by establishing a multi-dimensional, coupled evaluation framework; (2) integrating AHP with ENVI-met simulation to realize a fully quantified “evaluation–simulation–optimization” workflow; and (3) proposing adaptive strategies with broad applicability for the retrofit of communities in hot-summer, cold-winter climates, thereby offering a practical technical pathway for urban microclimate enhancement. Full article
Show Figures

Figure 1

22 pages, 11308 KiB  
Article
TIAR-SAR: An Oriented SAR Ship Detector Combining a Task Interaction Head Architecture with Composite Angle Regression
by Yu Gu, Minding Fang and Dongliang Peng
Remote Sens. 2025, 17(12), 2049; https://doi.org/10.3390/rs17122049 - 13 Jun 2025
Viewed by 470
Abstract
Oriented ship detection in Synthetic Aperture Radar (SAR) images has broad applications in maritime surveillance and other fields. While deep learning advancements have significantly improved ship detection performance, persistent challenges remain for existing methods. These include the inherent misalignment between regression and classification [...] Read more.
Oriented ship detection in Synthetic Aperture Radar (SAR) images has broad applications in maritime surveillance and other fields. While deep learning advancements have significantly improved ship detection performance, persistent challenges remain for existing methods. These include the inherent misalignment between regression and classification tasks and the boundary discontinuity problem in oriented object detection. These issues hinder efficient and accurate ship detection in complex scenarios. To address these challenges, we propose TIAR-SAR, a novel oriented SAR ship detector featuring a task interaction head and composite angle regression. First, we propose a task interaction detection head (Tihead) capable of predicting both oriented bounding boxes (OBBs) and horizontal bounding boxes (HBBs) simultaneously. Within the Tihead, a “decompose-then-interact” structure is designed. This structure not only mitigates feature misalignment but also promotes feature interaction between regression and classification tasks, thereby enhancing prediction consistency. Second, we propose a joint angle refinement mechanism (JARM). The JARM addresses the non-differentiability problem of the traditional rotated Intersection over Union (IoU) loss through the design of a composite angle regression loss (CARL) function, which strategically combines direct and indirect angle regression methods. A boundary angle correction mechanism (BACM) is then designed to enhance angle estimation accuracy. During inference, BACM dynamically replaces an object’s OBB prediction with its corresponding HBB if the OBB exhibits excessive angle deviation when the angle of the object is near the predefined boundary. Finally, the performance and applicability of the proposed methods are evaluated through extensive experiments on multiple public datasets, including SRSDD, HRSID, and DOTAv1. Experimental results derived from the use of the SRSDD dataset demonstrate that the mAP50 of the proposed method reaches 63.91%, an improvement of 4.17% compared with baseline methods. The detector achieves 17.42 FPS on 1024 × 1024 images using an RTX 2080 Ti GPU, with a model size of only 21.92 MB. Comparative experiments with other state-of-the-art methods on the HRSID dataset demonstrate the proposed method’s superior detection performance in complex nearshore scenarios. Furthermore, when further tested on the DOTAv1 dataset, the mAP50 can reach 79.1%. Full article
Show Figures

Figure 1

18 pages, 3263 KiB  
Article
Integrated Microbiology and Metabolomics Analysis Reveal Responses of Soil Bacterial Communities and Metabolic Functions to N-Zn Co-Fertilization in the Rhizosphere of Tea Plants (Camellia sinensis L.)
by Min Lu, Yali Shi, Dandan Qi, Qiong Wang, Haowen Zhang, Ying Feng, Zhenli He, Chunwang Dong, Xiaoe Yang and Changbo Yuan
Plants 2025, 14(12), 1811; https://doi.org/10.3390/plants14121811 - 12 Jun 2025
Viewed by 988
Abstract
The co-fertilization of nitrogen (N) and zinc (Zn) offers significant advantages in improving the growth and development of tea plants (Camellia sinensis L). However, the corresponding responses of rhizosphere microecology remain unclear. In this study, a pot experiment was performed to investigate [...] Read more.
The co-fertilization of nitrogen (N) and zinc (Zn) offers significant advantages in improving the growth and development of tea plants (Camellia sinensis L). However, the corresponding responses of rhizosphere microecology remain unclear. In this study, a pot experiment was performed to investigate the effects of N-Zn co-fertilization on rhizosphere soil’s N availability, the rhizobacterial community and the metabolism of tea plants. N-Zn co-fertilization significantly increased the soil total of N, NH4+-N and NO3-N contents. 16S rRNA sequencing found that N-Zn co-fertilization recruited rhizobacteria associated with N cycling and Zn activation, including Proteobacteria, Acidobacteriota and Gemmatimonadota, resulting in complex rhizobacterial networks. Metabolomics analysis indicated obvious interferences in the metabolisms of lipids, amino acids and cofactors and vitamins after fertilization. PLS-PM analysis suggested that fertilization had both direct and indirect influences on the rhizobacterial community and differential metabolites. RDA models identified pH (R2 = 0.734, p < 0.01; R2 = 0.808, p < 0.01) and total N (R2 = 0.633, p < 0.05; R2 = 0.608, p < 0.01) as dominant factors influencing both the rhizobacterial community and differential metabolites. Finally, network analysis found significant associations between rhizobacteria related to N cycling and Zn mobilization and metabolic processes involved in N metabolism and responses to Zn stress. These findings underscored that appropriate N-Zn co-fertilization is crucial for the rhizosphere soil’s N availability and the microenvironment of tea plants. Full article
(This article belongs to the Special Issue Nutrient Management on Soil Microbiome Dynamics and Plant Health)
Show Figures

Figure 1

10 pages, 3033 KiB  
Article
Glycosidase Isoforms in Honey and the Honey Bee (Apis mellifera L.): Differentiating Bee- and Yeast-Derived Enzymes and Implications for Honey Authentication
by Ratko Pavlović, Sanja Stojanović, Marija Pavlović, Nenad Drulović, Miroslava Vujčić, Biljana Dojnov and Zoran Vujčić
Insects 2025, 16(6), 622; https://doi.org/10.3390/insects16060622 - 12 Jun 2025
Viewed by 661
Abstract
The enzymes in honey can originate not only from bees and the plants from which the bees collect pollen and nectar but also from feed provided by beekeepers. Enzymes that hydrolyze sucrose—present in honey (α-glucosidase) or honey adulterated with invert syrup (β-fructofuranosidase)—can be [...] Read more.
The enzymes in honey can originate not only from bees and the plants from which the bees collect pollen and nectar but also from feed provided by beekeepers. Enzymes that hydrolyze sucrose—present in honey (α-glucosidase) or honey adulterated with invert syrup (β-fructofuranosidase)—can be distinguished using zymography, where enzymatic bands are detected with nitroblue tetrazolium (NBT) after sugar removal via ultrafiltration. This method enables the identification of honey produced in hives that have been improperly fed with invert syrup, leading to the mixture of natural honey and syrup, and offers a practical tool to detect indirect adulteration. The NBT assay, in combination with ultrafiltration, was used to determine the isoelectric point of honey bee α-glucosidases. The pI value of 6.63 for isoforms found in the head, midgut, and natural honey extracts during winter can be attributed to α-glucosidase III. Two additional isoforms with isoelectric points of 5.20 and 5.77 were observed in the midgut extract and may correspond to α-glucosidase I and II. The difference between α-glucosidase and β-fructofuranosidase was confirmed using a substrate specificity test, followed by thin-layer chromatography, where it was confirmed that α-glucosidase from natural honey, bee head, and bee midgut does not hydrolyze raffinose, in contrast to yeast β-fructofuranosidase. Full article
(This article belongs to the Special Issue Current Advances in Pollinator Insects)
Show Figures

Figure 1

14 pages, 291 KiB  
Article
Economic Cost of Suicide Among Culturally and Linguistically Diverse (CALD) Migrants in Australia
by Humaira Maheen and Christopher M. Doran
Int. J. Environ. Res. Public Health 2025, 22(6), 892; https://doi.org/10.3390/ijerph22060892 - 3 Jun 2025
Viewed by 563
Abstract
Background: Suicide and self-harm pose significant global public health challenges with substantial economic implications. Recent Australian evidence shows considerable variations in the prevalence of suicidal behaviours and mortality among culturally and ethnically diverse population groups. This study aims to estimate the associated economic [...] Read more.
Background: Suicide and self-harm pose significant global public health challenges with substantial economic implications. Recent Australian evidence shows considerable variations in the prevalence of suicidal behaviours and mortality among culturally and ethnically diverse population groups. This study aims to estimate the associated economic cost of suicide among culturally and linguistically diverse (CALD) migrants in Australia. Methods: We evaluated the economic impact of suicide by considering the years of life lost, years of productive life lost, and overall economic costs, including direct, indirect, and intangible costs. We used data on suicide deaths in 2020 from the National Coronial Information System. Results: The estimated economic cost associated with 346 suicide deaths among CALD migrants is $2.9 billion (Australian dollars), with an average cost per fatality equivalent to $8.47 million. This estimate varies in the sensitivity analysis from $1.9 billion to $3.9 billion, depending on the average age of fatality, with corresponding average costs of $5.59 million to $11.35 million, respectively. These estimates do not capture costs associated with suicidal behaviours, which may substantially increase the economic burden. Conclusions: The significant economic impacts of CALD migrants’ suicide in Australia highlight the urgent need for a comprehensive national suicide prevention programme tailored for CALD migrant populations. Full article
(This article belongs to the Special Issue Health Economics Perspectives on Health Promotion and Health Equity)
27 pages, 12001 KiB  
Article
Meso-Structural Modeling of Asphalt Mixtures Using Computed Tomography and Discrete Element Method with Indirect Tensile Testing
by Yunliang Li, Qichen Wang, Baocheng Liu and Yiqiu Tan
Materials 2025, 18(11), 2566; https://doi.org/10.3390/ma18112566 - 30 May 2025
Viewed by 520
Abstract
This study develops a meso-structural modeling approach for asphalt mixtures by integrating computed tomography (CT) technology and the discrete element method (DEM), which accounts for the morphological characteristics of aggregates, asphalt mortar, and voids. The indirect tensile (IDT) tests of SMA-13 asphalt mixtures, [...] Read more.
This study develops a meso-structural modeling approach for asphalt mixtures by integrating computed tomography (CT) technology and the discrete element method (DEM), which accounts for the morphological characteristics of aggregates, asphalt mortar, and voids. The indirect tensile (IDT) tests of SMA-13 asphalt mixtures, a commonly used skeleton-type asphalt mixture for the surface course of asphalt pavements, were numerically simulated using CT-DEM. Through a comparative analysis of the load–displacement curve, the peak load, and the displacements corresponding to the maximum loads from the IDT tests, the accuracy of the simulation results was validated against the experimental results. Based on the simulation results of the IDT tests, the internal force transfer paths were obtained through post-processing, and the force chain system was identified. The crack propagation paths and failure mechanisms during the IDT tests were analyzed. The research results indicate that under the external load of the IDT test, there are primary force chains in both vertical and horizontal directions within the specimen. The interaction between these vertically and horizontally oriented force chains governs the fracture progression of the specimen. During IDT testing, the internal forces within the aggregate skeleton consistently exceed those within the mortar, while interfacial forces at aggregate–mortar contacts maintain intermediate values. Both the aggregate’s and mortar’s internal forces exhibit strong linear correlations with temperature, with the mortar’s internal forces showing a stronger linear relationship with external loading compared to those within the aggregate skeleton. The evolution of internal meso-cracks progresses through three distinct phases. The stable meso-crack growth phase initiates at 10% of the peak load, followed by the accelerated meso-crack growth phase commencing at the peak load. The fracture-affected zone during IDT testing extends symmetrically 20 mm laterally from the specimen centerline. Initial meso-cracks predominantly develop along aggregate–mortar interfaces and void boundaries, while subsequent propagation primarily occurs through interfacial zones near the main fracture path. The microcrack initiation threshold demonstrates dependence on the material’s strength and deformation capacity. Furthermore, the aggregate–mortar interfacial transition zone is a critical factor dominating crack resistance. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

Back to TopTop