Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = in-vivo biocompatibility

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 5918 KiB  
Article
Stability Study of Synthetic Diamond Using a Thermally Controlled Biological Environment: Application towards Long-Lasting Neural Prostheses
by Jordan Roy, Umme Tabassum Sarah, Gaëlle Lissorgues, Olivier Français, Abir Rezgui, Patrick Poulichet, Hakim Takhedmit, Emmanuel Scorsone and Lionel Rousseau
Sensors 2024, 24(11), 3619; https://doi.org/10.3390/s24113619 - 4 Jun 2024
Cited by 1 | Viewed by 4143
Abstract
This paper demonstrates, for the first time, the stability of synthetic diamond as a passive layer within neural implants. Leveraging the exceptional biocompatibility of intrinsic nanocrystalline diamond, a comprehensive review of material aging analysis in the context of in-vivo implants is provided. This [...] Read more.
This paper demonstrates, for the first time, the stability of synthetic diamond as a passive layer within neural implants. Leveraging the exceptional biocompatibility of intrinsic nanocrystalline diamond, a comprehensive review of material aging analysis in the context of in-vivo implants is provided. This work is based on electric impedance monitoring through the formulation of an analytical model that scrutinizes essential parameters such as the deposited metal resistivity, insulation between conductors, changes in electrode geometry, and leakage currents. The evolution of these parameters takes place over an equivalent period of approximately 10 years. The analytical model, focusing on a fractional capacitor, provides nuanced insights into the surface conductivity variation. A comparative study is performed between a classical polymer material (SU8) and synthetic diamond. Samples subjected to dynamic impedance analysis reveal distinctive patterns over time, characterized by their physical degradation. The results highlight the very high stability of diamond, suggesting promise for the electrode’s enduring viability. To support this analysis, microscopic and optical measurements conclude the paper and confirm the high stability of diamond and its strong potential as a material for neural implants with long-life use. Full article
(This article belongs to the Special Issue Eurosensors 2023 Selected Papers)
Show Figures

Figure 1

38 pages, 5295 KiB  
Review
Magnesium-Based Temporary Implants: Potential, Current Status, Applications, and Challenges
by Sankaranarayanan Seetharaman, Dhivya Sankaranarayanan and Manoj Gupta
J. Funct. Biomater. 2023, 14(6), 324; https://doi.org/10.3390/jfb14060324 - 17 Jun 2023
Cited by 39 | Viewed by 7443
Abstract
Biomedical implants are important devices used for the repair or replacement of damaged or diseased tissues or organs. The success of implantation depends on various factors, such as mechanical properties, biocompatibility, and biodegradability of the materials used. Recently, magnesium (Mg)-based materials have emerged [...] Read more.
Biomedical implants are important devices used for the repair or replacement of damaged or diseased tissues or organs. The success of implantation depends on various factors, such as mechanical properties, biocompatibility, and biodegradability of the materials used. Recently, magnesium (Mg)-based materials have emerged as a promising class of temporary implants due to their remarkable properties, such as strength, biocompatibility, biodegradability, and bioactivity. This review article aims to provide a comprehensive overview of current research works summarizing the above-mentioned properties of Mg-based materials for use as temporary implants. The key findings from in-vitro, in-vivo, and clinical trials are also discussed. Further, the potential applications of Mg-based implants and the applicable fabrication methods are also reviewed. Full article
(This article belongs to the Special Issue Metallic Biomaterials for Medical Applications)
Show Figures

Figure 1

27 pages, 6098 KiB  
Review
Multifunctional Layered Double Hydroxides for Drug Delivery and Imaging
by Seungjin Yu, Goeun Choi and Jin-Ho Choy
Nanomaterials 2023, 13(6), 1102; https://doi.org/10.3390/nano13061102 - 19 Mar 2023
Cited by 26 | Viewed by 5666
Abstract
Two-dimensional nanomaterials, particularly layered double hydroxides (LDHs), have been widely applied in the biomedical field owing to their biocompatibility, biodegradability, controllable drug release/loading ability, and enhanced cellular permeability. Since the first study analyzing intercalative LDHs in 1999, numerous studies have investigated their biomedical [...] Read more.
Two-dimensional nanomaterials, particularly layered double hydroxides (LDHs), have been widely applied in the biomedical field owing to their biocompatibility, biodegradability, controllable drug release/loading ability, and enhanced cellular permeability. Since the first study analyzing intercalative LDHs in 1999, numerous studies have investigated their biomedical applications, including drug delivery and imaging; recent research has focused on the design and development of multifunctional LDHs. This review summarizes the synthetic strategies and in-vivo and in-vitro therapeutic actions and targeting properties of single-function LDH-based nanohybrids and recently reported (from 2019 to 2023) multifunctional systems developed for drug delivery and/or bio-imaging. Full article
(This article belongs to the Special Issue Advances in Nanoscale Materials in Biomedicine)
Show Figures

Figure 1

17 pages, 375 KiB  
Review
Dextran Formulations as Effective Delivery Systems of Therapeutic Agents
by Anca Roxana Petrovici, Mariana Pinteala and Natalia Simionescu
Molecules 2023, 28(3), 1086; https://doi.org/10.3390/molecules28031086 - 21 Jan 2023
Cited by 50 | Viewed by 5577
Abstract
Dextran is by far one of the most interesting non-toxic, bio-compatible macromolecules, an exopolysaccharide biosynthesized by lactic acid bacteria. It has been extensively used as a major component in many types of drug-delivery systems (DDS), which can be submitted to the next in-vivo [...] Read more.
Dextran is by far one of the most interesting non-toxic, bio-compatible macromolecules, an exopolysaccharide biosynthesized by lactic acid bacteria. It has been extensively used as a major component in many types of drug-delivery systems (DDS), which can be submitted to the next in-vivo testing stages, and may be proposed for clinical trials or pharmaceutical use approval. An important aspect to consider in order to maintain high DDS’ biocompatibility is the use of dextran obtained by fermentation processes and with a minimum chemical modification degree. By performing chemical modifications, artefacts can appear in the dextran spatial structure that can lead to decreased biocompatibility or even cytotoxicity. The present review aims to systematize DDS depending on the dextran type used and the biologically active compounds transported, in order to obtain desired therapeutic effects. So far, pure dextran and modified dextran such as acetalated, oxidised, carboxymethyl, diethylaminoethyl-dextran and dextran sulphate sodium, were used to develop several DDSs: microspheres, microparticles, nanoparticles, nanodroplets, liposomes, micelles and nanomicelles, hydrogels, films, nanowires, bio-conjugates, medical adhesives and others. The DDS are critically presented by structures, biocompatibility, drugs loaded and therapeutic points of view in order to highlight future therapeutic perspectives. Full article
(This article belongs to the Special Issue New Trends in Polymer-Based Materials)
24 pages, 7384 KiB  
Article
Development and Evaluation of Cellulose Derivative and Pectin Based Swellable pH Responsive Hydrogel Network for Controlled Delivery of Cytarabine
by Nighat Batool, Rai Muhammad Sarfraz, Asif Mahmood, Umaira Rehman, Muhammad Zaman, Shehla Akbar, Diena M. Almasri and Heba A. Gad
Gels 2023, 9(1), 60; https://doi.org/10.3390/gels9010060 - 12 Jan 2023
Cited by 13 | Viewed by 3690
Abstract
In the present study, pH-sensitive, biodegradable, and biocompatible Na-CMC/pectin poly(methacrylic acid) hydrogels were synthesized using an aqueous free radical polymerization technique and encapsulated by cytarabine (anti-cancer drug). The aim of the project was to sustain the plasma profile of cytarabine through oral administration. [...] Read more.
In the present study, pH-sensitive, biodegradable, and biocompatible Na-CMC/pectin poly(methacrylic acid) hydrogels were synthesized using an aqueous free radical polymerization technique and encapsulated by cytarabine (anti-cancer drug). The aim of the project was to sustain the plasma profile of cytarabine through oral administration. Sodium carboxymethyl cellulose (Na-CMC) and pectin were cross-linked chemically with methacrylic acid (MAA) as a monomer, using methylene bisacrylamide (MBA) as cross-linker and ammonium per sulfate (APS) as an initiator. Prepared hydrogel formulations were characterized for their texture, morphology, cytarabine loading efficiency, compositional and structural properties, thermal nature, stability, swelling response, drug release profile (pH 1.2 and pH 7.4), and in-vivo pharmacokinetic evaluation. Cytarabine-loaded hydrogels were also evaluated for their safety profile by carrying out toxicity studies in rabbits. Results demonstrated efficient encapsulation of cytarabine into the prepared network with loading ranging from 48.5–82.3%. The highest swelling ratio of 39.38 and maximum drug release of 83.29–85.27% were observed at pH 7.4, highlighting the pH responsiveness of the grafted system. Furthermore, cytarabine maximum release was noticed over 24 h, ensuring a sustained release response for all formulations. Histopathological studies and hemolytic profiles confirmed that the prepared hydrogel system was safe, biocompatible, and non-irritant, showing no symptoms of any toxicities and degeneration in organs. Moreover, pharmacokinetic estimation of the cytarabine-loaded hydrogel showed a remarkable increase in the plasma half-life from 4.44 h to 9.24 h and AUC from 22.06 μg/mL.h to 56.94 μg/mL.h. This study revealed that the prepared hydrogel carrier system has excellent abilities in delivering the therapeutic moieties in a controlled manner. Full article
Show Figures

Figure 1

18 pages, 3244 KiB  
Article
Determination of Conformational and Functional Stability of Potential Plague Vaccine Candidate in Formulation
by Krubha Athirathinam, Selvasudha Nandakumar, Shailendra Kumar Verma and Ruckmani Kandasamy
Vaccines 2023, 11(1), 27; https://doi.org/10.3390/vaccines11010027 - 23 Dec 2022
Viewed by 2701
Abstract
Generally, protein-based vaccines are available in liquid form and are highly susceptible to instability under elevated temperature changes including freezing conditions. There is a need to create a convenient formulation of protein/peptides that can be stored at ambient conditions without loss of activity [...] Read more.
Generally, protein-based vaccines are available in liquid form and are highly susceptible to instability under elevated temperature changes including freezing conditions. There is a need to create a convenient formulation of protein/peptides that can be stored at ambient conditions without loss of activity or production of adverse effects. The efficiency of naturally occurring biocompatible polymer dextran in improving the shelf-life and biological activity of a highly thermally unstable plague vaccine candidate protein called Low Calcium Response V antigen (LcrV), which can be stored at room temperature (30 ± 2 °C), has been evaluated. To determine the preferential interactions with molecular-level insight into solvent–protein interactions, analytical techniques such asspectroscopy, particle size distribution, gel electrophoresis, microscopy, and thermal analysis have been performed along with the evaluation of humoral immune response, invivo. The analytical methods demonstrate the structural stability of the LcrV protein by expressing its interaction with the excipients in the formulation. The invivo studies elicited the biological activity of the formulated antigen with a significantly higher humoral immune response (p-value = 0.047) when compared to the native, adjuvanted antigen. We propose dextran as a potential biopolymer with its co-excipient sodium chloride (NaCl) to provide protein compactness, i.e., prevent protein unfolding by molecular crowding or masking mechanism using preferential hydrophobic interaction for up to three weeks at room temperature (30 ± 2 °C). Full article
(This article belongs to the Special Issue Design of Multi-Epitope Subunit Vaccine and Immunization Strategies)
Show Figures

Graphical abstract

30 pages, 5431 KiB  
Article
Tadalafil Nanoemulsion Mists for Treatment of Pediatric Pulmonary Hypertension via Nebulization
by Bassant Elbardisy, Nabila Boraie and Sally Galal
Pharmaceutics 2022, 14(12), 2717; https://doi.org/10.3390/pharmaceutics14122717 - 5 Dec 2022
Cited by 15 | Viewed by 3294
Abstract
Oral tadalafil (TD) proved promising in treating pediatric pulmonary arterial hypertension (PAH). However, to ensure higher efficacy and reduce the systemic side effects, targeted delivery to the lungs through nebulization was proposed as an alternative approach. This poorly soluble drug was previously dissolved [...] Read more.
Oral tadalafil (TD) proved promising in treating pediatric pulmonary arterial hypertension (PAH). However, to ensure higher efficacy and reduce the systemic side effects, targeted delivery to the lungs through nebulization was proposed as an alternative approach. This poorly soluble drug was previously dissolved in nanoemulsions (NEs). However, the formulations could not resist aqueous dilution, which precluded its dilution with saline for nebulization. Thus, the current study aimed to modify the previous systems into dilutable TD-NEs and assess their suitability for a pulmonary application. In this regard, screening of various excipients was conducted to optimize the former systems; different formulations were selected and characterized in terms of physicochemical properties, nebulization performance, stability following sterilization, and biocompatibility. Results showed that the optimal system comprised of Capmul-MCM-EP:Labrafac-lipophile (1:1) (w/w) as oil, Labrasol:Poloxamer-407 (2:1) (w/w) as surfactant mixture (Smix) and water. The optimum formulation P2TD resisted aqueous dilution, exhibited reasonable drug loading (2.45 mg/mL) and globule size (25.04 nm), acceptable pH and viscosity for pulmonary administration, and could be aerosolized using a jet nebulizer. Moreover, P2TD demonstrated stability following sterilization and a favorable safety profile confirmed by both in-vitro and in-vivo toxicity studies. These favorable findings make P2TD promising for the treatment of pediatric PAH. Full article
(This article belongs to the Special Issue Drug Delivery Systems for Asthma and Pulmonary Diseases)
Show Figures

Graphical abstract

18 pages, 2221 KiB  
Article
Probiotic Properties of Weissella confusa PP29 on Hibiscus sabdariffa L. Media
by Alexandra Dimofte, Natalia Simionescu, Anca-Roxana Petrovici and Iuliana Spiridon
Fermentation 2022, 8(10), 553; https://doi.org/10.3390/fermentation8100553 - 18 Oct 2022
Cited by 6 | Viewed by 3157
Abstract
To date, there are very few data regarding new efficient probiotics’ development with their own prebiotic substrate. All commercial products contain prebiotic substrate that was previously purified from external sources and added to the final product. The present study describes Weissella confusa strain [...] Read more.
To date, there are very few data regarding new efficient probiotics’ development with their own prebiotic substrate. All commercial products contain prebiotic substrate that was previously purified from external sources and added to the final product. The present study describes Weissella confusa strain fermentations in media with different anthocyanin concentrations from Hibiscus sabdariffa L., in order to increase the exopolysaccharide (EPS) yield, leading to augmented probiotic and prebiotic properties. The extracted and purified EPS were characterized by Gel permeation chromatography, Fourier-transform infrared, and nuclear magnetic resonance spectroscopy; thermal analysis measurements and the whole fermented media’s probiotic properties were evaluated by testing low pH and bile salt resistance, along with hydrophobicity and auto-aggregation capacity. The anthocyanins increased biomass and EPS yields and the high EPS molecular mass improved nutrient access by allowing a good microbial suspension in media. The confirmed dextran structure provides media biocompatibility and very good probiotic properties compared with existing literature. Simultaneously, the anthocyanins in media protected the strain cells against low pH and bile salt compared with the control fermentation. These very good results show that the whole fermented culture media is suitable for further in-vitro and in-vivo studies regarding its probiotic and prebiotic activity. Full article
(This article belongs to the Special Issue Postbiotics from Production to Their Health-Promoting Aspects)
Show Figures

Figure 1

18 pages, 3289 KiB  
Article
Dually Responsive Poly(N-vinylcaprolactam)-b-poly(dimethylsiloxane)-b-poly(N-vinylcaprolactam) Polymersomes for Controlled Delivery
by Veronika Kozlovskaya, Yiming Yang, Fei Liu, Kevin Ingle, Aftab Ahmad, Ganesh V. Halade and Eugenia Kharlampieva
Molecules 2022, 27(11), 3485; https://doi.org/10.3390/molecules27113485 - 28 May 2022
Cited by 12 | Viewed by 2671
Abstract
Limited tissue selectivity and targeting of anticancer therapeutics in systemic administration can produce harmful side effects in the body. Various polymer nano-vehicles have been developed to encapsulate therapeutics and prevent premature drug release. Dually responsive polymeric vesicles (polymersomes) assembled from temperature-/pH-sensitive block copolymers [...] Read more.
Limited tissue selectivity and targeting of anticancer therapeutics in systemic administration can produce harmful side effects in the body. Various polymer nano-vehicles have been developed to encapsulate therapeutics and prevent premature drug release. Dually responsive polymeric vesicles (polymersomes) assembled from temperature-/pH-sensitive block copolymers are particularly interesting for the delivery of encapsulated therapeutics to targeted tumors and inflamed tissues. We have previously demonstrated that temperature-responsive poly(N-vinylcaprolactam) (PVCL)-b-poly(dimethylsiloxane) (PDMS)-b-PVCL polymersomes exhibit high loading efficiency of anticancer therapeutics in physiological conditions. However, the in-vivo toxicity of these polymersomes as biocompatible materials has not yet been explored. Nevertheless, developing an advanced therapeutic nanocarrier must provide the knowledge of possible risks from the material’s toxicity to support its future clinical research in humans. Herein, we studied pH-induced degradation of PVCL10-b-PDMS65-b-PVCL10 vesicles in-situ and their dually (pH- and temperature-) responsive release of the anticancer drug, doxorubicin, using NMR, DLS, TEM, and absorbance spectroscopy. The toxic potential of the polymersomes was evaluated in-vivo by intravenous injection (40 mg kg−1 single dose) of PVCL10-PDMS65-PVCL10 vesicles to mice. The sub-acute toxicity study (14 days) included gravimetric, histological, and hematological analyses and provided evidence for good biocompatibility and non-toxicity of the biomaterial. These results show the potential of these vesicles to be used in clinical research. Full article
Show Figures

Figure 1

10 pages, 3936 KiB  
Article
Cell-Membrane Biomimetic Indocyanine Green Liposomes for Phototheranostics of Echinococcosis
by Xinxin Xiong, Jun Li, Duyang Gao, Zonghai Sheng, Hairong Zheng and Wenya Liu
Biosensors 2022, 12(5), 311; https://doi.org/10.3390/bios12050311 - 9 May 2022
Cited by 11 | Viewed by 2851
Abstract
Echinococcosis is an important zoonotic infectious disease that seriously affects human health. Conventional diagnosis of echinococcosis relies on the application of large-scale imaging equipment, which is difficult to promote in remote areas. Meanwhile, surgery and chemotherapy for echinococcosis can cause serious trauma and [...] Read more.
Echinococcosis is an important zoonotic infectious disease that seriously affects human health. Conventional diagnosis of echinococcosis relies on the application of large-scale imaging equipment, which is difficult to promote in remote areas. Meanwhile, surgery and chemotherapy for echinococcosis can cause serious trauma and side effects. Thus, the development of simple and effective treatment strategies is of great significance for the diagnosis and treatment of echinococcosis. Herein, we designed a phototheranostic system utilizing neutrophil-membrane-camouflaged indocyanine green liposomes (Lipo-ICG) for active targeting the near-infrared fluorescence diagnosis and photothermal therapy of echinococcosis. The biomimetic Lipo-ICG exhibits a remarkable photo-to-heat converting performance and desirable active-targeting features by the inflammatory chemotaxis of the neutrophil membrane. In-vitro and in-vivo studies reveal that biomimetic Lipo-ICG with high biocompatibility can achieve in-vivo near-infrared fluorescence imaging and phototherapy of echinococcosis in mouse models. Our research is the first to apply bionanomaterials to the phototherapy of echinococcosis, which provides a new standard for the convenient and noninvasive detection and treatment of zoonotic diseases. Full article
(This article belongs to the Special Issue In Vivo Imaging and Sensing of Biomarkers)
Show Figures

Figure 1

18 pages, 7442 KiB  
Article
Synthesis and Characterization of Fatty Acid Grafted Chitosan Polymeric Micelles for Improved Gene Delivery of VGF to the Brain through Intranasal Route
by Richard Nii Lante Lamptey, Avinash Gothwal, Riddhi Trivedi, Sanjay Arora and Jagdish Singh
Biomedicines 2022, 10(2), 493; https://doi.org/10.3390/biomedicines10020493 - 19 Feb 2022
Cited by 27 | Viewed by 4052
Abstract
Multifunctional fatty acid grafted polymeric micelles are an effective and promising approach for drug and gene delivery to the brain. An alternative approach to bypass the blood–brain barrier is administration through intranasal route. Multifunctional fatty acid grafted polymeric micelles were prepared and characterized [...] Read more.
Multifunctional fatty acid grafted polymeric micelles are an effective and promising approach for drug and gene delivery to the brain. An alternative approach to bypass the blood–brain barrier is administration through intranasal route. Multifunctional fatty acid grafted polymeric micelles were prepared and characterized for pVGF delivery to the brain. In vitro pVGF expression was analyzed in bEnd.3 cells, primary astrocytes, and neurons. Comparative in-vivo pVGF expression was analyzed to evaluate the effective route of administration between intranasal and intravenous. Biocompatible, multifunctional polymeric micelles were prepared, having an average size of 200 nm, and cationic zeta potential. Modified polymers were found to be hemo- and cyto-compatible. When transfected with the different modified chitosan formulations, significantly (p < 0.05) higher VGF expression was observed in primary astrocytes and neurons using the mannose, Tat peptide, and oleic acid grafted chitosan polymer. Compared to intravenous administration, intranasal administration of pVGF in polyplex formulation led to significantly (p < 0.05) higher pVGF expression. Developed multifunctional polymeric micelles were an effective pVGF delivery platform to the brain. Mannose and Tat ligand tagging improved the pVGF delivery to the brain. Full article
(This article belongs to the Special Issue Lipid-Based Nanocarriers)
Show Figures

Figure 1

29 pages, 62760 KiB  
Article
Thiolated Chitosan Microneedle Patch of Levosulpiride from Fabrication, Characterization to Bioavailability Enhancement Approach
by Rukhshanda Habib, Abul Kalam Azad, Muhammad Akhlaq, Fakhria A. Al-Joufi, Gul Shahnaz, Hanan R. H. Mohamed, Muhammad Naeem, Abdulraheem S. A. Almalki, Junaid Asghar, Aamir Jalil and Mohamed M. Abdel-Daim
Polymers 2022, 14(3), 415; https://doi.org/10.3390/polym14030415 - 20 Jan 2022
Cited by 29 | Viewed by 6226 | Correction
Abstract
In this study, a first attempt has been made to deliver levosulpiride transdermally through a thiolated chitosan microneedle patch (TC-MNP). Levosulpiride is slowly and weakly absorbed from the gastrointestinal tract with an oral bioavailability of less than 25% and short half-life of about [...] Read more.
In this study, a first attempt has been made to deliver levosulpiride transdermally through a thiolated chitosan microneedle patch (TC-MNP). Levosulpiride is slowly and weakly absorbed from the gastrointestinal tract with an oral bioavailability of less than 25% and short half-life of about 6 h. In order to enhance its bioavailability, levosulpiride-loaded thiolated chitosan microneedle patches (LS-TC-MNPs) were fabricated. Firstly, thiolated chitosan was synthesized and characterized by nuclear magnetic resonance (1HNMR) spectroscopy, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, differential scanning calorimetry (DSC), and X-ray diffraction (XRD). Thiolated chitosan has been used in different drug delivery systems; herein, thiolated chitosan has been used for the transdermal delivery of LS. LS-TC-MNPs were fabricated from different concentrations of thiolated chitosan solution. Furthermore, the levosulpiride-loaded thiolated chitosan microneedle patch (LS-TC-MNP) was characterized by FTIR spectroscopic analysis, scanning electron microscopy (SEM) study, penetration ability, tensile strength, moisture content, patch thickness, and elongation test. LS-TC-MNP fabricated with 3% thiolated chitosan solution was found to have the best tensile strength, moisture content, patch thickness, elongation, drug-loading efficiency, and drug content. Thiolated chitosan is biodegradable, nontoxic and has good absorption and swelling in the skin. LS-TC-MNP-3 consists of 100 needles in 10 rows each with 10 needles. The length of each microneedle was 575 μm; they were pyramidal in shape, with sharp pointed ends and a base diameter of 200 µm. The microneedle patch (LS-TC-MNP-3) resulted in-vitro drug release of 65% up to 48 h, ex vivo permeation of 63.6%, with good skin biocompatibility and enhanced in-vivo pharmacokinetics (AUC = 986 µg/mL·h, Cmax = 24.5 µg/mL) as compared to oral LS dispersion (AUC = 3.2 µg/mL·h, Cmax = 0.5 µg/mL). Based on the above results, LS-TC-MNP-3 seems to be a promising strategy for enhancing the bioavailability of levosulpiride. Full article
(This article belongs to the Special Issue Bio-Based Polymers for Biomedical Applications)
Show Figures

Figure 1

24 pages, 9170 KiB  
Article
A Complex Evaluation of the In-Vivo Biocompatibility and Degradation of an Extruded ZnMgSr Absorbable Alloy Implanted into Rabbit Bones for 360 Days
by Karel Klíma, Dan Ulmann, Martin Bartoš, Michal Španko, Jaroslava Dušková, Radka Vrbová, Jan Pinc, Jiří Kubásek, Marek Vlk, Tereza Ulmannová, René Foltán, Eitan Brizman, Milan Drahoš, Michal Beňo, Vladimír Machoň and Jaroslav Čapek
Int. J. Mol. Sci. 2021, 22(24), 13444; https://doi.org/10.3390/ijms222413444 - 14 Dec 2021
Cited by 10 | Viewed by 3684
Abstract
The increasing incidence of trauma in medicine brings with it new demands on the materials used for the surgical treatment of bone fractures. Titanium, its alloys, and steel are used worldwide in the treatment of skeletal injuries. These metallic materials, although inert, are [...] Read more.
The increasing incidence of trauma in medicine brings with it new demands on the materials used for the surgical treatment of bone fractures. Titanium, its alloys, and steel are used worldwide in the treatment of skeletal injuries. These metallic materials, although inert, are often removed after the injured bone has healed. The second-stage procedure—the removal of the plates and screws—can overwhelm patients and overload healthcare systems. The development of suitable absorbable metallic materials would help us to overcome these issues. In this experimental study, we analyzed an extruded Zn-0.8Mg-0.2Sr (wt.%) alloy on a rabbit model. From this alloy we developed screws which were implanted into the rabbit tibia. After 120, 240, and 360 days, we tested the toxicity at the site of implantation and also within the vital organs: the liver, kidneys, and brain. The results were compared with a control group, implanted with a Ti-based screw and sacrificed after 360 days. The samples were analyzed using X-ray, micro-CT, and a scanning electron microscope. Chemical analysis revealed only small concentrations of zinc, strontium, and magnesium in the liver, kidneys, and brain. Histologically, the alloy was verified to possess very good biocompatibility after 360 days, without any signs of toxicity at the site of implantation. We did not observe raised levels of Sr, Zn, or Mg in any of the vital organs when compared with the Ti group at 360 days. The material was found to slowly degrade in vivo, forming solid corrosion products on its surface. Full article
(This article belongs to the Collection Feature Papers in Molecular Toxicology)
Show Figures

Figure 1

17 pages, 3132 KiB  
Article
Me-Doped Ti–Me Intermetallic Thin Films Used for Dry Biopotential Electrodes: A Comparative Case Study
by Cláudia Lopes, Patrique Fiedler, Marco Sampaio Rodrigues, Joel Borges, Maurizio Bertollo, Eduardo Alves, Nuno Pessoa Barradas, Silvia Comani, Jens Haueisen and Filipe Vaz
Sensors 2021, 21(23), 8143; https://doi.org/10.3390/s21238143 - 6 Dec 2021
Cited by 7 | Viewed by 4588
Abstract
In a new era for digital health, dry electrodes for biopotential measurement enable the monitoring of essential vital functions outside of specialized healthcare centers. In this paper, a new type of nanostructured titanium-based thin film is proposed, revealing improved biopotential sensing performance and [...] Read more.
In a new era for digital health, dry electrodes for biopotential measurement enable the monitoring of essential vital functions outside of specialized healthcare centers. In this paper, a new type of nanostructured titanium-based thin film is proposed, revealing improved biopotential sensing performance and overcoming several of the limitations of conventional gel-based electrodes such as reusability, durability, biocompatibility, and comfort. The thin films were deposited on stainless steel (SS) discs and polyurethane (PU) substrates to be used as dry electrodes, for non-invasive monitoring of body surface biopotentials. Four different Ti–Me (Me = Al, Cu, Ag, or Au) metallic binary systems were prepared by magnetron sputtering. The morphology of the resulting Ti–Me systems was found to be dependent on the chemical composition of the films, specifically on the type and amount of Me. The existence of crystalline intermetallic phases or glassy amorphous structures also revealed a strong influence on the morphological features developed by the different systems. The electrodes were tested in an in-vivo study on 20 volunteers during sports activity, allowing study of the application-specific characteristics of the dry electrodes, based on Ti–Me intermetallic thin films, and evaluation of the impact of the electrode–skin impedance on biopotential sensing. The electrode–skin impedance results support the reusability and the high degree of reliability of the Ti–Me dry electrodes. The Ti–Al films revealed the least performance as biopotential electrodes, while the Ti–Au system provided excellent results very close to the Ag/AgCl reference electrodes. Full article
(This article belongs to the Special Issue EEG Sensors for Biomedical Applications)
Show Figures

Figure 1

9 pages, 1421 KiB  
Article
Biocompatibility Testing of Liquid Metal as an Interconnection Material for Flexible Implant Technology
by Katharina Foremny, Steven Nagels, Michaela Kreienmeyer, Theodor Doll and Wim Deferme
Nanomaterials 2021, 11(12), 3251; https://doi.org/10.3390/nano11123251 - 30 Nov 2021
Cited by 21 | Viewed by 3273
Abstract
Galinstan, a liquid metal at room temperature, is a promising material for use in flexible electronics. Since it has been successfully integrated in devices for external use, e.g., as stretchable electronic skin in tactile sensation, the possibility of using galinstan for flexible implant [...] Read more.
Galinstan, a liquid metal at room temperature, is a promising material for use in flexible electronics. Since it has been successfully integrated in devices for external use, e.g., as stretchable electronic skin in tactile sensation, the possibility of using galinstan for flexible implant technology comes to mind. Usage of liquid metals in a flexible implant would reduce the risk of broken conductive pathways in the implants and therefore reduce the possibility of implant failure. However, the biocompatibility of the liquid metal under study, i.e., galinstan, has not been proven in state-of-the-art literature. Therefore, in this paper, a material combination of galinstan and silicone rubber is under investigation regarding the success of sterilization methods and to establish biocompatibility testing for an in vivo application. First cell biocompatibility tests (WST-1 assays) and cell toxicity tests (LDH assays) show promising results regarding biocompatibility. This work paves the way towards the successful integration of stretchable devices using liquid metals embedded in a silicone rubber encapsulant for flexible surface electro-cortical grid arrays and other flexible implants. Full article
Show Figures

Figure 1

Back to TopTop