Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (71)

Search Parameters:
Keywords = in-situ electrochemical oxidation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3716 KiB  
Article
The Role of Hypergenic and Technogenic Processes in Contamination the Ecosphere
by Valentina Zvereva and Konstantin Frolov
Minerals 2024, 14(10), 976; https://doi.org/10.3390/min14100976 - 27 Sep 2024
Viewed by 918
Abstract
Mining in the Russian Far East has been developing for more than 100 years, resulting in the formation of mining technogenic systems that negatively affect all components of the environment. The purpose of this paper is to develop and present an ecological and [...] Read more.
Mining in the Russian Far East has been developing for more than 100 years, resulting in the formation of mining technogenic systems that negatively affect all components of the environment. The purpose of this paper is to develop and present an ecological and geochemical model of supergene processes in tinsulfide and polymetallic ore mining systems. This paper presents, for the first time, the results of long-term field observations (more than 50 years): studies of numerous secondary minerals (more than 80) identified in mine workings and tailings, their natural associations, as well as the sequence, zonality, and stages of mineral formation as well as the characteristics of hydrochemical samples of river waters, contaminated by acid mine drainage (30 years of observations). Experimental modeling of sulfide oxidation was carried out under laboratory conditions (electrochemical method) and using Selektor software, which made it possible to study the process of acid mine drainage formation and to show the metal ions and ionic complexes composition, to establish Eh-pH parameters of crystallization for 52 secondary minerals, associations of primary and secondary minerals. The influence of water components on the formation of slurry and drainage in different time periods (dry, heavy rainfall, and snowmelt) is shown, and their mixing at the geochemical barrier “acid mine drainage—surface natural waters” is described. Experimental results are verified with numerous in-situ observations and mineralogical studies. The work allowed for the presentation of an environmental–geochemical model of ecosphere pollution, which describes not only the negative impact of sulfide-bearing systems of Russian Far East mining districts but locations all over the world. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Figure 1

16 pages, 2922 KiB  
Article
Anodic Oxidation of Tungsten under Illumination-Multi-Method Characterization and Modeling at the Molecular Level
by Martin Bojinov, Yoanna Penkova, Iva Betova and Vasil Karastoyanov
Molecules 2023, 28(21), 7387; https://doi.org/10.3390/molecules28217387 - 1 Nov 2023
Cited by 2 | Viewed by 1447
Abstract
Tungsten oxide has received considerable attention as photo-anode in photo-assisted water splitting due to its considerable advantages such as significant light absorption in the visible region, good catalytic properties, and stability in acidic and oxidative conditions. The present paper is a first step [...] Read more.
Tungsten oxide has received considerable attention as photo-anode in photo-assisted water splitting due to its considerable advantages such as significant light absorption in the visible region, good catalytic properties, and stability in acidic and oxidative conditions. The present paper is a first step in a detailed study of the mechanism of porous WO3 growth via anodic oxidation. In-situ electrochemical impedance spectroscopy (EIS) and intensity modulated photocurrent spectroscopy (IMPS) during oxidation of W illuminated with UV and visible light are employed to study the ionic and electronic processes in slightly acidic sulfate-fluoride electrolytes and a range of potentials 4–10 V. The respective responses are discussed in terms of the influence of fluoride addition on ionic and electronic process rates. A kinetic model is proposed and parameterized via regression of experimental data to the EIS and IMPS transfer functions. Full article
(This article belongs to the Section Photochemistry)
Show Figures

Graphical abstract

14 pages, 1657 KiB  
Article
MoS2@Au as Label for Sensitive Sandwich-Type Immunoassay of Neuron-Specific Enolase
by Yingying Wang, Huixin Wang, Yaliang Bai, Guanhui Zhao, Nuo Zhang, Yong Zhang, Yaoguang Wang and Hong Chi
Chemosensors 2023, 11(6), 349; https://doi.org/10.3390/chemosensors11060349 - 19 Jun 2023
Cited by 18 | Viewed by 2292
Abstract
Neuron-specific enolase (NSE) has gained extensive attention as a reliable target for detecting small cell carcinoma of lungs. In this paper, an electrochemical immunoassay method based on molybdenum disulfide (MoS2) is proposed to detect NSE sensitively. By an in-situ growth method, [...] Read more.
Neuron-specific enolase (NSE) has gained extensive attention as a reliable target for detecting small cell carcinoma of lungs. In this paper, an electrochemical immunoassay method based on molybdenum disulfide (MoS2) is proposed to detect NSE sensitively. By an in-situ growth method, MoS2 and Au nanoclusters (Au NCs) were composited to form a MoS2@Au nanozyme, and then the secondary antibodies were modified. Primary antibodies were immobilized on amino-reduced graphene oxides to capture NSE. The flower-like MoS2 nanozyme provided abundant sites to load Au NCs and catalyze the decomposition of H2O2, which were beneficial to amplify an amperometric response as well as build up sensitivity. Under optimum conditions, the detection range of this strategy was 0.1 pg·mL−1–10 ng·mL−1 and the limit of detection was 0.05 pg·mL−1. This sensing strategy achieved the prospect of sensitively detecting NSE. Moreover, the prepared electrochemical immunosensor provides a theoretical basis and technical support for the detection of other disease markers. Full article
Show Figures

Figure 1

15 pages, 25274 KiB  
Article
Designing 3D Ternary Hybrid Composites Composed of Graphene, Biochar and Manganese Dioxide as High-Performance Supercapacitor Electrodes
by Vahid Babaahmadi, S. E. M. Pourhosseini, Omid Norouzi and Hamid Reza Naderi
Nanomaterials 2023, 13(12), 1866; https://doi.org/10.3390/nano13121866 - 15 Jun 2023
Cited by 6 | Viewed by 2137
Abstract
Biochar derived from waste biomass has proven to be an encouraging novel electrode material in supercapacitors. In this work, luffa sponge-derived activated carbon with a special structure is produced through carbonization and KOH activation. The reduced graphene oxide (rGO) and manganese dioxide (MnO [...] Read more.
Biochar derived from waste biomass has proven to be an encouraging novel electrode material in supercapacitors. In this work, luffa sponge-derived activated carbon with a special structure is produced through carbonization and KOH activation. The reduced graphene oxide (rGO) and manganese dioxide (MnO2) are in-situ synthesized on luffa-activated carbon (LAC) to improve the supercapacitive behavior. The structure and morphology of LAC, LAC-rGO and LAC-rGO-MnO2 are characterized by the employment of X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), BET analysis, Raman spectroscopy and scanning electron microscopy (SEM). The electrochemical performance of electrodes is performed in two and three-electrode systems. In the asymmetrical two-electrode system, the LAC-rGO-MnO2//Co3O4-rGO device shows high specific capacitance (SC), high-rate capability and excellent cycle reversibly in a wide potential window of 0–1.8 V. The maximum specific capacitance (SC) of the asymmetric device is 586 F g−1 at a scan rate of 2 mV s−1. More importantly, the LAC-rGO-MnO2//Co3O4-rGO device exhibits a specific energy of 31.4 W h kg−1 at a specific power of 400 W kg−1. Overall, the synergistic effect between the ternary structures of microporous LAC, rGO sheets and MnO2 nanoparticles leads to the introduction of high-performance hierarchical supercapacitor electrodes. Full article
Show Figures

Figure 1

14 pages, 4387 KiB  
Article
TiO2-MXene/PEDOT:PSS Composite as a Novel Electrochemical Sensing Platform for Sensitive Detection of Baicalein
by Shuya Xue, Min Shi, Jinye Wang, Jiapeng Li, Guanwei Peng, Jingkun Xu, Yansha Gao, Xuemin Duan and Limin Lu
Molecules 2023, 28(7), 3262; https://doi.org/10.3390/molecules28073262 - 6 Apr 2023
Cited by 9 | Viewed by 3796
Abstract
In this work, TiO2-MXene/poly (3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) composite was utilized as an electrode material for the sensitive electrochemical detection of baicalein. The in-situ growth of TiO2 nanoparticles on the surface of MXene nanosheets can effectively prevent their aggregation, thus presenting [...] Read more.
In this work, TiO2-MXene/poly (3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) composite was utilized as an electrode material for the sensitive electrochemical detection of baicalein. The in-situ growth of TiO2 nanoparticles on the surface of MXene nanosheets can effectively prevent their aggregation, thus presenting a significantly large specific surface area and abundant active sites. However, the partial oxidation of MXene after calcination could reduce its conductivity. To address this issue, herein, PEDOT:PSS films were introduced to disperse the TiO2-MXene materials. The uniform and dense films of PEDOT:PSS not only improved the conductivity and dispersion of TiO2-MXene but also enhanced its stability and electrocatalytic activity. With the advantages of a composite material, TiO2-MXene/PEDOT:PSS as an electrode material demonstrated excellent electrochemical sensing ability for baicalein determination, with a wide linear response ranging from 0.007 to 10.0 μM and a lower limit of detection of 2.33 nM. Furthermore, the prepared sensor displayed good repeatability, reproducibility, stability and selectivity, and presented satisfactory results for the determination of baicalein in human urine sample analysis. Full article
(This article belongs to the Special Issue Application of Functional Materials in Analysis and Detection)
Show Figures

Figure 1

17 pages, 4390 KiB  
Article
Long-Term Oxidation of Zirconium Alloy in Simulated Nuclear Reactor Primary Coolant—Experiments and Modeling
by Iva Betova, Martin Bojinov and Vasil Karastoyanov
Materials 2023, 16(7), 2577; https://doi.org/10.3390/ma16072577 - 24 Mar 2023
Cited by 3 | Viewed by 2802
Abstract
Oxidation of Zr-1%Nb fuel cladding alloy in simulated primary coolant of a pressurized water nuclear reactor is followed by in-situ electrochemical impedance spectroscopy. In-depth composition and thickness of the oxide are estimated by ex-situ analytical techniques. A kinetic model of the oxidation process [...] Read more.
Oxidation of Zr-1%Nb fuel cladding alloy in simulated primary coolant of a pressurized water nuclear reactor is followed by in-situ electrochemical impedance spectroscopy. In-depth composition and thickness of the oxide are estimated by ex-situ analytical techniques. A kinetic model of the oxidation process featuring interfacial reactions of metal oxidation and water reduction, as well as electron and ion transport through the oxide governed by diffusion-migration, is parameterized by quantitative comparison to impedance data. The effects of compressive stress on diffusion and ionic space charge on migration of ionic point defects are introduced to rationalize the dependence of transport parameters on thickness (or oxidation time). The influence of ex-situ and in-situ hydrogen charging on kinetic and transport parameters is also studied. Full article
(This article belongs to the Special Issue Corrosion and Mechanical Behavior of Metal Materials)
Show Figures

Figure 1

14 pages, 2124 KiB  
Article
Fabrication of a Disposable Amperometric Sensor for the Determination of Nitrite in Food
by Chao Liu, Daoming Chen, Chunnan Zhu, Xiaojun Liu, Yu Wang, Yuepeng Lu, Dongyun Zheng and Baorong Fu
Micromachines 2023, 14(3), 687; https://doi.org/10.3390/mi14030687 - 20 Mar 2023
Cited by 5 | Viewed by 2340
Abstract
Silver nanoparticles (AgNPs) were synthesized through an environmentally friendly method with tea extract as a reduction agent. By immobilizing them on the surface of a low-cost pencil graphite electrode (PGE) with the aid of a simple and well-controlled in-situ electropolymerization method, a novel [...] Read more.
Silver nanoparticles (AgNPs) were synthesized through an environmentally friendly method with tea extract as a reduction agent. By immobilizing them on the surface of a low-cost pencil graphite electrode (PGE) with the aid of a simple and well-controlled in-situ electropolymerization method, a novel nanosensing interface for nitrite was constructed. The film-modified PGE showed good electrocatalytic effects on the oxidation of nitrite and was characterized through scanning electron microscopy, X-ray photoelectron spectroscopy, and electrochemical techniques. Characterization results clearly show that the successful modification of AgNPs improved the surface area and conductivity of PGEs, which is beneficial to the high sensitivity and short response time of the nitrite sensor. Under the optimal detection conditions, the oxidation peak current of nitrite had a good linear relationship with its concentration in the range of 0.02–1160 μmol/L with a detection limit of 4 nmol/L and a response time of 2 s. Moreover, the sensor had high sensitivity, a wide linear range, a good anti-interference capability, and stability and reproducibility. Additionally, it can be used for the determination of nitrite in food. Full article
(This article belongs to the Special Issue Self-Assembly of Nanoparticles)
Show Figures

Graphical abstract

13 pages, 3868 KiB  
Article
Efficiency of Electrochemical Methods of Purification and Control over the Oxide Concentration in Halide Melts: PbCl2
by Andrey Nikolaev, Albert Mullabaev, Andrey Suzdaltsev and Yuriy P. Zaikov
Processes 2023, 11(2), 636; https://doi.org/10.3390/pr11020636 - 19 Feb 2023
Cited by 4 | Viewed by 2655
Abstract
The purification of molten salts from admixtures as well as the effective control of admixture concentration has attracted researchers’ interests. In the present paper, the possibility of the electrochemical purification of PbCl2 from PbO and the effective control over the oxide ions [...] Read more.
The purification of molten salts from admixtures as well as the effective control of admixture concentration has attracted researchers’ interests. In the present paper, the possibility of the electrochemical purification of PbCl2 from PbO and the effective control over the oxide ions concentration in molten PbCl2 is studied at the temperature of 520 °C. The PbCl2 melt with the initial addition of 0.5 wt% of PbO was used as a molten salt sample. The method of potentiostatic electrolysis was used to remove the oxide additions from the melt; the linear and square-wave voltammetry dependencies were recorded, and the melt samples were taken for analysis. Based both on the results of the electrochemical measurements and the analysis of oxygen concentration in the electrolyte, we built linear empirical dependencies of the anode peak current of the oxidation of oxygen-containing electroactive anions on the PbO concentration in the studied melt. We demonstrated that the obtained dependencies may be used for direct electrochemical nondestructive in-situ control over the concentration of PbO dissolved in the PbCl2 melt containing up to 0.5 wt% of PbO. The deep electrochemical purification of the chloride PbCl2 melt from molten oxide (up to 0.044 wt% PbO or to 0.007 wt% of oxygen) was achieved by the potentiostatic electrolysis. Full article
Show Figures

Figure 1

12 pages, 3714 KiB  
Article
Li7La3Zr2O12-co-LiNbO3 Surface Modification Improves the Interface Stability between Cathode and Sulfide Solid-State Electrolyte in All-Solid-State Batteries
by Shishuo Liang, Dong Yang, Jianhua Hu, Shusen Kang, Xue Zhang and Yanchen Fan
Membranes 2023, 13(2), 216; https://doi.org/10.3390/membranes13020216 - 9 Feb 2023
Cited by 4 | Viewed by 3272
Abstract
With the rapid development of energy storage and electric vehicles, thiophosphate-based all-solid-state batteries (ASSBs) are considered the most promising power source. In order to commercialize ASSBs, the interfacial problem between high-voltage cathode active materials and thiophosphate-based solid-state electrolytes needs to be solved in [...] Read more.
With the rapid development of energy storage and electric vehicles, thiophosphate-based all-solid-state batteries (ASSBs) are considered the most promising power source. In order to commercialize ASSBs, the interfacial problem between high-voltage cathode active materials and thiophosphate-based solid-state electrolytes needs to be solved in a simple, effective way. Surface coatings are considered the most promising approach to solving the interfacial problem because surface coatings could prevent direct physical contact between cathode active materials and thiophosphate-based solid-state electrolytes. In this work, Li7La3Zr2O12 (LLZO) and LiNbO3 (LNO) coatings for LiCoO2 (LCO) were fabricated by in-situ interfacial growth of two high-Li+ conductive oxide electrolytes on the LCO surface and tested for thiophosphate-based ASSBs. The coatings were obtained from a two-step traditional sol–gel coatings process, the inner coatings were LNO, and the surface coatings were LLZO. Electrochemical evaluations confirmed that the two-layer coatings are beneficial for ASSBs. ASSBs containing LLZO-co-LNO coatings LiCoO2 (LLZO&LNO@LCO) significantly improved long-term cycling performance and discharge capacity compared with those assembled from uncoated LCO. LLZO&LNO@LCO||Li6PS5Cl (LPSC)||Li-In delivered discharge capacities of 138.8 mAh/g, 101.8 mAh/g, 60.2 mAh/g, and 40.2 mAh/g at 0.05 C, 0.1 C, 0.2 C, and 0.5 C under room temperature, respectively, and better capacity retentions of 98% after 300 cycles at 0.05 C. The results highlighted promising low-cost and scalable cathode material coatings for ASSBs. Full article
Show Figures

Figure 1

11 pages, 3928 KiB  
Article
In-Situ EC-AFM Study of Electrochemical P-Doping of Polymeric Nickel(II) Complexes with Schiff base Ligands
by Evgenia Smirnova, Alexander Ankudinov, Irina Chepurnaya, Alexander Timonov and Mikhail Karushev
Inorganics 2023, 11(1), 41; https://doi.org/10.3390/inorganics11010041 - 14 Jan 2023
Cited by 4 | Viewed by 2162
Abstract
Conductive electrochemically active metallopolymers are outstanding materials for energy storage and conversion, electrocatalysis, electroanalysis, and other applications. The hybrid inorganic–organic nature of these materials ensures their rich chemistry and offers wide opportunities for fine-tuning their functional properties. The electrochemical modulation of the nanomechanical [...] Read more.
Conductive electrochemically active metallopolymers are outstanding materials for energy storage and conversion, electrocatalysis, electroanalysis, and other applications. The hybrid inorganic–organic nature of these materials ensures their rich chemistry and offers wide opportunities for fine-tuning their functional properties. The electrochemical modulation of the nanomechanical properties of metallopolymers is rarely investigated, and the correlations between the structure, stiffness, and capacitive properties of these materials have not yet been reported. We use electrochemical atomic force microscopy (EC-AFM) to perform in-situ quantitative nanomechanical measurements of two Schiff base metallopolymers, poly[NiSalphen] and its derivative that contains two methoxy substituents in the bridging phenylene diimine unit poly[NiSalphen(CH3O)2], during their polarization in the electrolyte solution to the undoped and fully doped states. We also get insight into the electrochemical p-doping of these polymers using electrochemical quartz crystal microgravimetry (EQCM) coupled with cyclic voltammetry (CV). Combined findings for the structurally similar polymers with different interchain interactions led us to propose a correlation between Young’s modulus of the material, its maximum doping level, and ion and solvent fluxes in the polymer films upon electrochemical oxidation. Full article
(This article belongs to the Special Issue Synthesis, Structure and Properties of Schiff Base Metal Complexes)
Show Figures

Figure 1

13 pages, 2285 KiB  
Article
3D Printed Voltammetric Sensor Modified with an Fe(III)-Cluster for the Enzyme-Free Determination of Glucose in Sweat
by Eleni Koukouviti, Alexios K. Plessas, Anastasios Economou, Nikolaos Thomaidis, Giannis S. Papaefstathiou and Christos Kokkinos
Biosensors 2022, 12(12), 1156; https://doi.org/10.3390/bios12121156 - 11 Dec 2022
Cited by 7 | Viewed by 2886
Abstract
In this work, a 3D printed sensor modified with a water-stable complex of Fe(III) basic benzoate is presented for the voltammetric detection of glucose (GLU) in acidic epidermal skin conditions. The GLU sensor was produced by the drop-casting of Fe(III)-cluster ethanolic mixture on [...] Read more.
In this work, a 3D printed sensor modified with a water-stable complex of Fe(III) basic benzoate is presented for the voltammetric detection of glucose (GLU) in acidic epidermal skin conditions. The GLU sensor was produced by the drop-casting of Fe(III)-cluster ethanolic mixture on the surface of a 3D printed electrode fabricated by a carbon black loaded polylactic acid filament. The oxidation of GLU was electrocatalyzed by Fe(III), which was electrochemically generated in-situ by the Fe(III)-cluster precursor. The GLU determination was carried out by differential pulse voltammetry without the interference from common electroactive metabolites presented in sweat (such as urea, uric acid, and lactic acid), offering a limit of detection of 4.3 μmol L−1. The exceptional electrochemical performance of [Fe3O(PhCO2)6(H2O)3]∙PhCO2 combined with 3D printing technology forms an innovative and low-cost enzyme-free sensor suitable for noninvasive applications, opening the way for integrated 3D printed wearable biodevices. Full article
(This article belongs to the Special Issue Printed Electrochemical Biosensors)
Show Figures

Figure 1

14 pages, 3636 KiB  
Article
Design of Cuboidal FeNi2S4-rGO-MWCNTs Composite for Lithium-Ion Battery Anode Showing Excellent Half and Full Cell Performances
by Atin Pramanik, Shreyasi Chattopadhyay, Goutam De and Sourindra Mahanty
Batteries 2022, 8(12), 261; https://doi.org/10.3390/batteries8120261 - 29 Nov 2022
Cited by 11 | Viewed by 3054
Abstract
Ternary metal sulfides are projected as advanced lithium-ion battery (LIB) anodes due to their superior electronic conductivity and specific capacity compared to their respective oxide counterparts. Herein, a porous composite of cuboidal FeNi2S4 (FNS) with 2D reduced graphene oxide (rGO) [...] Read more.
Ternary metal sulfides are projected as advanced lithium-ion battery (LIB) anodes due to their superior electronic conductivity and specific capacity compared to their respective oxide counterparts. Herein, a porous composite of cuboidal FeNi2S4 (FNS) with 2D reduced graphene oxide (rGO) and 1D multi-walled carbon nanotubes (MWCNTs) (composite name: FNS@GC) synthesised by an in-situ single-step hydrothermal process. The 1D/2D combined thin carbon coatings on the FeNi2S4 prevent aggregation during battery performance by increasing conductivity and resisting the volume changes at lithiation/de-lithiation processes. Consequently, the FNS@GC composite exhibits a commending electrochemical performance with a charge capacity of 797 mAh g−1 and a first cycle coulombic efficiency of ~67% with reversible capacity restoration property and excellent long-term cycling stability. Furthermore, FNS@GC//LiFePO4 full cell reveals its practical applicability as a LIB anode with a reversible capacity of 77 mAh g−1 at 50 mA g−1 current density. Full article
(This article belongs to the Special Issue Li-Ion Battery Materials: Latest Advances and Prospects)
Show Figures

Figure 1

14 pages, 4323 KiB  
Article
Facile Synthesis and Electrochemical Characterization of Polyaniline@TiO2-CuO Ternary Composite as Electrodes for Supercapacitor Applications
by Nadia Boutaleb, Fatima Zohra Dahou, Halima Djelad, Lilia Sabantina, Imane Moulefera and Abdelghani Benyoucef
Polymers 2022, 14(21), 4562; https://doi.org/10.3390/polym14214562 - 27 Oct 2022
Cited by 27 | Viewed by 3110
Abstract
This research reports the facile, controlled, low-cost fabrication, and evaluation of properties of polyaniline matrix deposited on titanium dioxide and copper(II) oxide ternary-composite (PANI@TiO2–CuO)-based electrode material for supercapacitor application. The process involves the preparation of CuO in the presence of TiO [...] Read more.
This research reports the facile, controlled, low-cost fabrication, and evaluation of properties of polyaniline matrix deposited on titanium dioxide and copper(II) oxide ternary-composite (PANI@TiO2–CuO)-based electrode material for supercapacitor application. The process involves the preparation of CuO in the presence of TiO2 to form TiO2–CuO by a facile method, followed by in-situ oxidative polymerization of aniline monomer. The structural and physical properties were evaluated based on the results of FTIR spectroscopy, X-ray diffraction (XRD) analysis, X-ray photoelectron spectroscopy (XPS), transmission electron (TEM) and scanning electron (SEM) microscopy, thermogravimetric analysis (TGA), and BET surface areas analysis. The results indicated that TiO2–CuO was dispersed uniformly in the PANI matrix. Owing to such dispersion of TiO2–CuO, the PANI@TiO2–CuO material exhibits dramatic improvements on thermal stability in comparison with the pure PANI. The cyclic voltammetry (CV) confirms the reversibility of PANI redox transitions for this optimized electrode material. Moreover, the results reveal that the specific capacitance of PANI@TiO2–CuO reaches 87.5% retention after 1500 cycles under 1.0 A g−1, with a better charge storage performance as compared to pure PANI and PANI@TiO2 electrodes. The preparation of PANI@TiO2–CuO with enhanced electrochemical properties provides a feasible route for promoting its applications in supercapacitors. Full article
(This article belongs to the Special Issue Sustainable Polymeric Composites: Fabrication and Application)
Show Figures

Figure 1

11 pages, 5018 KiB  
Article
Magnetite Nanoparticles In-Situ Grown and Clustered on Reduced Graphene Oxide for Supercapacitor Electrodes
by Yue Jiang, Jinxun Han, Xiaoqin Wei, Hanzhuo Zhang, Zhihui Zhang and Luquan Ren
Materials 2022, 15(15), 5371; https://doi.org/10.3390/ma15155371 - 4 Aug 2022
Cited by 12 | Viewed by 2229
Abstract
Fe3O4 nanoparticles with average sizes of 3–8 nm were in-situ grown and self-assembled as homogeneous clusters on reduced graphene oxide (RGO) via coprecipitation with some additives, where RGO sheets were expanded from restacking and an increased surface area was obtained. [...] Read more.
Fe3O4 nanoparticles with average sizes of 3–8 nm were in-situ grown and self-assembled as homogeneous clusters on reduced graphene oxide (RGO) via coprecipitation with some additives, where RGO sheets were expanded from restacking and an increased surface area was obtained. The crystallization, purity and growth evolution of as-prepared Fe3O4/RGO nanocomposites were examined and discussed. Supercapacitor performance was investigated in a series of electrochemical tests and compared with pure Fe3O4. In 1 M KOH electrolyte, a high specific capacitance of 317.4 F g−1 at current density of 0.5 A g−1 was achieved, with the cycling stability remaining at 86.9% after 5500 cycles. The improved electrochemical properties of Fe3O4/RGO nanocomposites can be attributed to high electron transport, increased interfaces and positive synergistic effects between Fe3O4 and RGO. Full article
Show Figures

Figure 1

11 pages, 1397 KiB  
Article
Ti2C-TiO2 MXene Nanocomposite-Based High-Efficiency Non-Enzymatic Glucose Sensing Platform for Diabetes Monitoring
by Vinod Kumar, Sudheesh K. Shukla, Meenakshi Choudhary, Jalaj Gupta, Priyanka Chaudhary, Saurabh Srivastava, Mukesh Kumar, Manoj Kumar, Devojit Kumar Sarma, Bal Chandra Yadav and Vinod Verma
Sensors 2022, 22(15), 5589; https://doi.org/10.3390/s22155589 - 26 Jul 2022
Cited by 28 | Viewed by 4637
Abstract
Diabetes is a major health challenge, and it is linked to a number of serious health issues, including cardiovascular disease (heart attack and stroke), diabetic nephropathy (kidney damage or failure), and birth defects. The detection of glucose has a direct and significant clinical [...] Read more.
Diabetes is a major health challenge, and it is linked to a number of serious health issues, including cardiovascular disease (heart attack and stroke), diabetic nephropathy (kidney damage or failure), and birth defects. The detection of glucose has a direct and significant clinical importance in the management of diabetes. Herein, we demonstrate the application of in-situ synthesized Ti2C-TiO2 MXene nanocomposite for high throughput non-enzymatic electrochemical sensing of glucose. The nanocomposite was synthesized by controlled oxidation of Ti2C-MXene nanosheets using H2O2 at room temperature. The oxidation results in the opening up of Ti2C-MXene nanosheets and the formation of TiO2 nanocrystals on their surfaces as revealed in microscopic and spectroscopic analysis. Nanocomposite exhibited considerably high electrochemical response than parent Ti2C MXene, and hence utilized as a novel electrode material for enzyme-free sensitive and specific detection of glucose. Developed nanocomposite-based non-enzymatic glucose sensor (NEGS) displays a wide linearity range (0.1 µM-200 µM, R2 = 0.992), high sensitivity of 75.32 μA mM−1 cm−2, a low limit of detection (0.12 μM) and a rapid response time (~3s). NEGS has further shown a high level of repeatability and selectivity for glucose in serum spiked samples. The unveiled excellent sensing performance of NEGS is credited to synergistically improved electrochemical response of Ti2C MXene and TiO2 nanoparticles. All of these attributes highlight the potential of MXene nanocomposite as a next-generation NEGS for on the spot mass screening of diabetic patients. Full article
(This article belongs to the Special Issue Biosensors and Electrochemical Sensors)
Show Figures

Figure 1

Back to TopTop