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Abstract: The purification of molten salts from admixtures as well as the effective control of ad-
mixture concentration has attracted researchers’ interests. In the present paper, the possibility of
the electrochemical purification of PbCl2 from PbO and the effective control over the oxide ions
concentration in molten PbCl2 is studied at the temperature of 520 ◦C. The PbCl2 melt with the initial
addition of 0.5 wt% of PbO was used as a molten salt sample. The method of potentiostatic electrolysis
was used to remove the oxide additions from the melt; the linear and square-wave voltammetry
dependencies were recorded, and the melt samples were taken for analysis. Based both on the results
of the electrochemical measurements and the analysis of oxygen concentration in the electrolyte, we
built linear empirical dependencies of the anode peak current of the oxidation of oxygen-containing
electroactive anions on the PbO concentration in the studied melt. We demonstrated that the obtained
dependencies may be used for direct electrochemical nondestructive in-situ control over the concen-
tration of PbO dissolved in the PbCl2 melt containing up to 0.5 wt% of PbO. The deep electrochemical
purification of the chloride PbCl2 melt from molten oxide (up to 0.044 wt% PbO or to 0.007 wt% of
oxygen) was achieved by the potentiostatic electrolysis.

Keywords: halide melt; salts purity; PbCl2-PbO; electrochemical purification; electrochemical analy-
sis; oxide concentration; voltammetry

1. Introduction

Molten salts have been widely used for production of metals, alloys, and functional
materials for more than two hundred years [1–3]. Moreover, recently, molten salts have
been actively studied for application in nuclear (molten salt reactors) and non-nuclear
(thermal solar cells) low-power reactors [4–7]. The composition and purity of molten
salts have always been under tight inspection, especially if they were intended for the
production of nuclear reactor materials (liquid metal and liquid salt coolants: Pb, Na, LiF–
BeF2, LiF–NaF–KF, etc. [8,9]) or for spent nuclear fuel reprocessing (LiCl, LiCl–KCl, etc.)
within the frame of the closed nuclear fuel cycle [10–15]. Any excess of admixtures in
molten salts used for the above processes may result in [16–20]:

− Escalation of nuclear waste and additional complex processing procedures;
− Changes in the process parameters and possible disruption of the process control;
− Increased corrosion of the reactor materials and decrease in the reactor operation life;
− Contamination of the target products and decline in the process efficiency.

These factors are especially vital in the industrial implementation of the developed technologies.
The purification of molten salts from admixtures, as well as the effective control over

the admixture’s concentrations, are of interest from different points of view.
The purification of the molten salts can be achieved by a number of methods, including

vacuum drying [21], chlorination [18,22], electrolysis [23,24], zone recrystallization [25,26], etc.
However, both after the preparation of the media and during operations using real objects,
constant monitoring of the admixture’s concentration is required. Even a negligible change
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in the molten salt’s composition can cause changes in their physical-chemical properties
and in those of the target products [27–30].

Inductively coupled plasma–mass spectrometry (ICP-MS) and inductively coupled
plasma–optical emission spectrometry (ICP-OES) are the most accurate and precise methods
for determining minor element concentrations [31–34]. The advantages of these methods are
wide recognition, high accuracy and sensitivity (up to the nanomolar level), simultaneous
determination of the content of several elements (including isotopes (ICP MS)), long linear
calibration range, etc. However, since these methods use aqueous solutions of the samples,
they cannot be used to determine the content of moisture and a number of oxides (in
particular, Li2O in LiCl, PbO in PbCl2, etc.). Moreover, the equipment used for analysis is
expensive and requires increased cleanliness of the process media (which is often impossible
during the industrial operation). Such methods also require additional time to prepare
the sample and to perform other operations. Therefore, these methods of analysis are not
suitable for the real-time analysis of the samples.

For oxides with strongly acidic or basic properties, chemical titration methods and
pH measurements can be used [35], but they are also time-consuming and not suitable for
oxides that are not strongly acidic or basic (e.g., PbO).

Electrochemical methods are promising both for removing and controlling the content
of admixtures in molten salts. The disadvantages of such methods are a relatively lower
sensitivity (in comparison with ICP methods) and the complexity of results interpretation
in systems containing several different admixtures.

On the other hand, the advantages of the electrochemical methods for the substances
analysis include:

− Portable equipment;
− Relatively cheap consumable electrode materials;
− Possibility of direct measurement both in laboratory and industrial reactors;
− Rapid in-situ multiple analysis;
− Theoretical background of the methods;
− The electrochemical sensor placed directly in the reactor allows for eliminating its

depressurization during the analysis.

For example, at present, electrochemical sensors for determining the content of ele-
ments in background electrolytes in the range of up to 10 wt% [36–47] are widely studied,
while the data on the determination of low oxygen concentrations (hundreds of ppm) are
limited [46–48]. Basically, these methods were mainly used to determine the concentration
of oxide ions in the fluoride melts intended for electrolytic aluminium production (NaF–
AlF3–Al2O3, KF–AlF3–Al2O3) or coolants in molten salt reactors (LiF–BeF2, LiF–NaF–KF).
Far less attention has been devoted to the determination of admixtures in chloride melts.

In the present work, the possibility of deep electrochemical purification of a halide
melt (PbCl2) and the sensitivity of electrochemical control over the oxide content in it are
studied. The electrochemical method was chosen because it seems to be the only method
of the in-situ control of the molten salt composition at the moment. The PbCl2 melt was
chosen for testing and determining the accuracy of the technique due to the fact that there
are comprehensive data on its physicochemical properties, as well as on the mechanisms of
the electrode processes within it [49–53]. Moreover, to date, PbCl2 has been considered as
one of the most promising chlorinating agents in pyrochemical stages of spent nuclear fuel
processing [9,54–57].

2. Materials and Methods

Process flow. To achieve the goals of the work, the experiment was carried out according
to the following scheme. PbO (0.5 wt%) was added to a PbCl2 melt preliminarily purified
from oxide admixtures, and the increasing concentration of dissolved electroactive oxygen
ions in the melt was controlled by the electrochemical measurements. The dissolution of
the PbO sample in the melt was determined according to the stabilization of the current
on the recorded voltammograms. After that, the obtained PbCl2–PbO melt was gradually
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purified from oxygen ions using potentiostatic electrolysis. The electrolysis was periodically
interrupted to perform electrochemical measurements in the melt. At the moment of the
current interruption, the samples of the melt were taken for an analysis of the oxygen
content by independent methods. The duration of electrolysis was estimated according to
the Faraday law, taking into account the 100% anode current efficiency. At the end of the
experiment, the results of electrochemical measurements and the results of the independent
analysis of the oxide content of the melt were compared.

Melt preparation. The melt was prepared using commercial PbCl2 (>99.8 wt%, JSC
Vekton, Russia), which was not preliminarily subjected to any additional purification.
Commercial PbO oxide (>99.8 wt%, JSC Vekton, Saint Petersburg, Russia) in the amount of
0.5 wt% was added to molten PbCl2 during measurements.

Experimental setup. The measurements were carried out in a quartz retort with a
purified argon atmosphere (see Figure 1). The retort was tightly closed with a fluoroplastic
(PTFE) lid, with fittings for electrodes, thermocouples, and gas filling/removal system. The
retort was connected to a vacuum pump and to a system of gas supply and purification.
A glass-like carbon crucible with a PbCl2 initial salt was placed on the bottom of the
retort. The retort was located in a resistance furnace with SiC heaters, vacuumed for 4 h,
and heated to the operating temperature under the argon flow. The quality of the salt
preparation and the atmosphere in the quartz retort were monitored by the ionization of
a thermal vacuum meter and gas sensors (Meradat, Perm, Russia). The temperature of
the melt was set, measured, and maintained within ±1 ◦C by means of a Pt–Pt(10 wt%Rh)
thermocouple and a thermocouple module USB-TC01 (National Instruments, Austin, TX,
USA). All measurements were performed at the temperature of 520 ◦C, as the salt melting
point was 501 ◦C [50,51]).
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Figure 1. Photograph of the experimental cell.

During the experiment the melt was sampled through an argon outlet by means of
quartz tubes, in order to analyze the oxygen content in the melt. After sampling, the tubes
were plugged with stoppers made of vacuum rubber and stored in an argon glove box.

Electrochemical measurements. Cyclic voltammetry (CV) and square-wave voltammetry
(SWV) procedures using a PGSTAT AutoLab 320N and the NOVA 1.12 software (The
MetrOhm, Schiedam, The Netherlands) were applied as electrochemical methods of anal-
ysis. These methods imply the polarization of the working electrode and recording the
voltammetry dependence, where the value of the current density peak of the studied pro-
cess is determined by the concentration of the electroactive oxide anions in the melt. The
main difference in these methods is that during CV measurements, the working electrode
is polarized linearly, whereas during the SWV ones, the electrode potential shifts under the
pulsed regime [41,58]. An immersed cylindrical rod made of glass-like carbon (SU-2000,
surface 0.9 cm2, screened with boron nitride) was used as the working electrode (WE); a
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rod made of spectrally pure graphite served as the counter electrode (CE); and lead at the
bottom of the glass-like carbon crucible served as the reference electrode (RE).

Analysis of oxide concentration in the melt. Along with the electrochemical measurements,
the content of dissolved oxide in the melt was determined by independent methods. We
have previously mentioned that neither spectral (ICP-OES, ICP-MS) methods nor chemical
titration may be used to analyze the concentration of PbO in PbCl2. That is why the methods
of carbothermal analysis and nuclear microanalysis were chosen. We have successfully
used them before [37,59]. The carbothermal analysis (O analysis) implies the carbothermal
reduction of oxide from the PbCl2–PbO samples up to metallic lead, and the determination
of the amount of evolved CO during the process. The parameters of the carbothermal
reduction were calibrated during the preliminary analysis, with the reference PbCl2–PbO
samples containing a known amount of PbO. An OH 836 analyzer (LECO Corp., St. Joseph,
MI, USA) was used.

The nuclear microanalysis (NMA) includes the registration of the amount of nuclear
reactions between the elementary particles (d,p0) and the studied PbCl2–PbO samples. We
used a 2 MV van de Graaf generator (Institute of Metal Physics UB RAS, Russia) with an
accuracy of 2 rel% [60,61].

3. Results

Electrochemical analysis.
Figures 2 and 3 illustrate the current-voltage dependences obtained by cyclic voltam-

metry and square-wave voltammetry on a glass-like carbon WE in the initial PbCl2 melt at
the temperature of 520 ◦C. Due to the fact that the initial salts nearly always contain oxide
admixtures, the oxidation of oxygen-containing anions is observed on the CV dependences
at potentials more positive than 0.6 V, relative to the potentials of the lead RE. In this case,
two peaks (waves)—OI and OII—are formed, which can be associated with a stepwise
electrochemical oxidation of oxygen-containing anions via reactions [62,63]:

OI: O2− + xC = CxO(ads) + 2e− (1)

OII: O2− + CxO(ads) = CO2(gas) + 2e− (2)
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Figure 2. CVs in the initial PbCl2 melt without the external addition of PbO at a potential sweep rate
from 0.1 to 2 V s−1 and a temperature of 520 ◦C.
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Figure 3. SWV in the initial PbCl2 melt without the external addition of PbO at a potential reverse
frequency of 25 Hz, potential sweep rate of 0.1 V s−1 and a temperature of 520 ◦C.

The summarized reaction during electrolysis has the following form:

PbO + 0.5C = Pb + CO2(gas) (3)

The voltage of the decomposition for this reaction at the temperature of 520 ◦C is about
0.6 V [64].

At potentials more positive than 1.20 V, a sharp increase in the anode current is
observed (wave Cl), which is associated with the oxidation of chlorine anions:

Cl: 2Cl− = Cl2(gas) + 2e− (4)

This is close to the calculated value of the lead chloride decomposition voltage at
the research temperature, which is 1.26 V [64]. In this case reaction, (3) continues if the
corresponding oxygen-containing electroactive ions are present in the near anode layer.
However, the summarized PbCl2 decomposition reaction prevails [62–64]:

PbCl2 = Pb + Cl2(gas) (5)

Similar patterns of the studied process on the glass-like carbon WE may be observed in
the analysis of the SWV dependence obtained by the method of square-wave voltammetry
(Figure 3). In this case, more distinct peaks of the oxidation of oxygen-containing anions
are formed on SWV as opposed to CV.

The dependences presented in Figures 2 and 3 verify that the proposed electrochemical
method of analysis can be used to determine oxygen-containing anions in the melt. To
analyze the effect of the concentration of dissolved oxygen-containing anions in the melt
on their oxidation currents, CV and SWV were obtained in the PbCl2 melt containing
0.5 wt% of PbO. For measurements, a potential sweep rate of 0.1 V s−1 (25 Hz with a
reverse amplitude of 20 mV in a case of SWV) was chosen.

To choose the parameters of the following measurements and to determine the nature
of the limiting stage of the studied electrochemical process, the voltammetry dependences
were recorded at different potential sweep rates (Figure 2). It is seen that the potentials of
OI and OII remain almost unchanged, and the current peaks grow as the potential sweep
rate increases. This elucidates that processes (1) and (2) are reversible, and the diffusion of
the oxygen-containing ions from the melt volume to the WE surface is the limiting factor.
In this case, the value of the current peak in a certain interval will be linearly dependent
on the PbO concentration in the melt [37,40]. Figure 2 illustrates that any potential sweep
rates may be used for the further electrochemical measurements.
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At the end of the electrochemical measurements, the initial melt was sampled and PbO
amounting to 0.5 wt.% was loaded into the melt. After complete oxide dissolution, the mea-
surements were repeated. In addition, the completeness of the PbO dissolution was verified
by the absence of the current peak growth on the recorded voltammetry dependences.

The results are illustrated in Figures 4 and 5. The obtained CV and SWV dependencies
demonstrate that the oxidation currents of oxygen-containing anions, when 0.5 wt% of
PbO was added to the melt, increased from 0.013 to 0.082 and from 0.003 to 0.014 A,
respectively, under otherwise equal conditions. Therefore, the chosen method makes it
possible to estimate the content of dissolved oxygen-containing anions in the melt not only
qualitatively, but also quantitatively.
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Figure 4. CV in the PbCl2 melt containing 0.5 wt% of PbO at a potential sweep rate of 0.1 V s−1 and a
temperature of 520 ◦C.
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Figure 5. SWV in the PbCl2 melt containing 0.5 wt% of PbO at a potential reverse frequency of 25 Hz,
amplitude of 20 mV, potential sweep rate of 0.1 V s−1 and a temperature of 520 ◦C.

For this purpose, by analogy with works [36–41], an empirical dependence of the
oxidation peak current of oxygen-containing anions on their concentration in the melt,
determined by an independent method of analysis, may be obtained. In this work, such
dependence is plotted for the PbO concentrations in PbCl2 up to 0.5 wt% (see below), since
the sensitivity of the selected electrochemical method for determining oxygen is considered
in the article.

Electrochemical purification of the PbCl2 melt. The purification of the PbCl2–PbO melt
from oxygen (oxygen-containing anions) was carried out by the potentiostatic electrolysis
of the melt at a potential of 1.0 V. The electrolysis was periodically interrupted to record
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current-voltage dependences and to sample the melt for oxide content analysis. This was
done in order to build an empirical dependence of the anode O2− oxidation peak current
on the PbO content in the melt.

Figure 6 presents the change in the electrolysis current over time and the amount of
electricity passed, and Table 1 shows the content of oxygen and PbO in the melt samples
during the electrolysis. During electrolysis at the selected anode potential, the current
decreased from 0.440 to a constant value of about 0.016–0.018 A. The PbO content in the
melt was 0.058 wt%. The absence of a further decrease in current may be explained by:

− Dissolution of oxygen formed at the anode in the melt;
− Oxidation of oxygen-containing anions with relatively strong bonds [65] only at

potentials more positive than 1.0 V;
− Side reduction of oxygen dissolved in the melt at the cathode.
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Figure 6. Change in current and amount of electricity passed during the electrolysis of the PbCl2
melt containing 0.5 wt% of PbO at cathode potentials of 1.0 (a) and 1.2 (b) V.

Table 1. Results of oxygen analysis in the PbCl2-PbO melt.

№ Set Amount of PbO,
wt% (Expected)

Electrochemical Analysis Concentration of PbO, wt%,
according to the Analytical Data

Concentration
of O, wt%

* Ip/mA ** δIp/mA O Analysis NMA O Analysis

- 0 (PbCl2 salt) - - 0.067 ± 0.012 - 0.011 ± 0.001

- 0 (PbCl2 melted in air) - - 0.096 ± 0.011 - 0.015 ± 0.001

1 0 (PbCl2 melted in Ar) 13.1 ± 0.4 3.3 ± 0.2 0.076 ± 0.014 0.14 ± 0.02 0.012 ± 0.002

2 0.5 81.4 ± 0.4 13.9 ± 0.1 0.349 ± 0.022 0.18 ± 0.03 0.056 ± 0.003

3 0.25 40.0 ± 0.5 10.7 ± 0.1 0.225 ± 0.019 0.11 ± 0.02 0.036 ± 0.003

4 0.14 31.7 ± 0.3 9.0 ± 0.1 0.191 ± 0.014 0.10 ± 0.02 0.030 ± 0.002

5 0.08 25.6 ± 0.4 7.5 ± 0.2 0.138 ± 0.015 0.11 ± 0.01 0.022 ± 0.002

6 0.001 21.4 ± 0.2 5.7 ± 0.1 0.087 ± 0.013 0.08 ± 0.01 0.014 ± 0.002

7 0 11.2 ± 0.2 2.2 ± 0.1 0.058 ± 0.012 0.07 ± 0.02 0.009 ± 0.001

8 0 5.8 ± 0.3 1.8 ± 0.1 0.044 ± 0.012 0.06 ± 0.02 0.007 ± 0.001

* from CVs, obtained at a potential scan rate of 0.1 V s−1; ** from SWVs, obtained at a potential reverse frequency
of 25 Hz (scan rate of 0.125 V s−1).

In this regard, the electrolysis was continued at an electrode potential of 1.2 V (close to
the potential of chlorine discharge). As a result, the residual oxidation current of oxygen-
containing anions was 0.013 A; in addition, according to the carbothermal analysis, about
0.044 wt% of PbO remained in the melt. A total of 4200 C of electricity was passed.

Figures 7 and 8 present the current-voltage dependences recorded during the electrol-
ysis of the PbCl2–PbO melt. There are clear peaks, which show that magnitude decreases
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during the electrolysis as a result of a decrease in the PbO content in the melt. Conse-
quently, the recorded peak values of the anode current up to the potential of the oxidation
of chlorine ions are explained by the diffusion difficulties in the delivery of electroactive
oxygen-containing anions to the anode. In this case, certain current peaks can be described
by a linear PbO concentration dependence, crossing the origin, as seen in Figure 9.
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Figure 7. CVs in the PbCl2 melt with a different expected PbO content at a potential sweep rate of
0.1 V s−1 and a temperature of 520 ◦C.
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Figure 8. SWVs in the PbCl2 melt with a different expected PbO content at a potential sweep rate of
0.1 V s−1 and a temperature of 520 ◦C.

To build the empirical dependences of the peak values of the oxidation current of
oxygen-containing anions on the glass-like carbon WE on the content of dissolved PbO
in the PbCl2 melt, we used carbothermal analysis (O analysis) and nuclear microanalysis
(NMA). The obtained results, as well as the data on the electrochemical analysis, are
summarized in Table 1. The empirical dependences in Figure 9 were built while taking into
account the data from the carbothermal analysis.
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Figure 9. Dependences of the peak values of the anode current of the current-voltage dependences
on the PbO concentration in the PbCl2–PbO melt.

It should be noted that when determining the concentration of dissolved oxide in
halide melts, the results of carbothermal analysis and nuclear microanalysis can be overes-
timated, because undissolved oxide (carbothermal analysis) [37] and the presence of light
elements in the samples (nuclear microanalysis) are considered [60].

Figures 7–9 elucidate the fact that, in contrast to CVs, SWVs have clear peaks in the
oxidation of oxygen-containing anions, even when there is a decrease in the PbO content
in the melt below 0.044 wt% (or 0.007 wt% in terms of oxygen). This indicates the high
sensitivity of the SWV method in determining the content of dissolved oxide in the melt.

To analyze the sensitivity of the methods used with respect to the dissolved oxide in
the melt, the measurements were carried out at a PbO concentration of 0.058 wt% in the melt
by varying the rate of the anodic polarization of the working electrode. Figures 10 and 11
show a series of current-voltage dependences obtained at different sweep rates (CVs) or
potential reverse frequencies (SWVs). It can be seen that an increase in the rate of anode
polarization leads to an increase in anode currents, while determining the peak value of the
anode current becomes difficult (especially from the CVs). Therefore, to analyze the content
of dissolved oxide in the melts by means of cyclic voltammetry, the measurements must be
carried out at the potential sweep rates of 0.1 V s−1 and lower. On the other hand, the SWV
method is more sensitive to the oxide content in the melt in a wider range of polarization
rates (potential reverse frequencies).
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Figure 10. CVs in the PbCl2–0.044 wt% PbO melt at a potential sweep rate from 0.1 to 2 V s−1 and a
temperature of 520 ◦C.
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Figure 11. SWV in the PbCl2–0.044 wt% PbO melt at a potential reverse frequency ranging from 25 to
200 Hz, amplitude 20 mV, and a temperature of 520 ◦C.

The presented results indicate the fundamental possibility of using electrochemical
methods for the purification and analysis of the dissolved PbO content in the PbCl2 melt.
Similar regularities could be observed in other halide melts, while the electrode materials
for measurements should be selected while taking into account the characteristics of a
particular melt.

Further work will be devoted to the practical application of the obtained results and to
the development of a technique for the detailed analysis and control of oxide concentration
in other halide melts.

4. Conclusions

The possibility of purifying and controlling the content of dissolved oxide in molten
lead chloride containing PbO (0.5 wt%) was experimentally studied using electrochemical
methods of analysis. For this purpose, current-voltage dependences characterizing the
peak currents of the anode oxidation of oxygen-containing electroactive anions in the PbCl2
melt, with different contents of dissolved PbO, were obtained by cyclic voltammetry and
square-wave voltammetry on a glass-like carbon electrode. In parallel, the independent
methods of carbothermal reduction and nuclear microanalysis were used to determine the
actual content of dissolved oxide in the melt under study. On the basis of the acquired data,
we obtained the linear empirical dependences of the peak values of the oxygen-containing
anion oxidation current on glass-like carbon electrodes, depending on the known content of
PbO in the PbCl2 melt. The obtained dependences can be used for the direct electrochemical
nondestructive in-situ control of the dissolved oxide content in the PbCl2 melt with a PbO
content of up to 0.5 wt% and higher.

It is verified that the deep electrochemical purification of the chloride PbCl2 melt
from dissolved oxide PbO (up to 0.044 wt% PbO or 0.007 wt% oxygen) can be achieved by
potentiostatic electrolysis.

The obtained results may be used to control the PbO concentration in PbCl2 melts, as
well as to purify and control other halide melts.
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