Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,707)

Search Parameters:
Keywords = in situ research

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 11372 KB  
Article
OptiFusionStack: A Physio-Spatial Stacking Framework for Shallow Water Bathymetry Integrating QAA-Derived Priors and Neighborhood Context
by Wei Shen, Jinzhuang Liu, Xiaojuan Li, Dongqing Zhao, Zhongqiang Wu and Yibin Xu
Remote Sens. 2025, 17(22), 3712; https://doi.org/10.3390/rs17223712 - 14 Nov 2025
Abstract
Conventional pixel-wise satellite-derived bathymetry (SDB) models face dual challenges: physical ambiguity from variable water quality and spatial incoherence from ignoring geographic context. This study addresses these limitations by proposing and validating OptiFusionStack, a novel two-stage physio-spatial synergistic framework that operates without in situ [...] Read more.
Conventional pixel-wise satellite-derived bathymetry (SDB) models face dual challenges: physical ambiguity from variable water quality and spatial incoherence from ignoring geographic context. This study addresses these limitations by proposing and validating OptiFusionStack, a novel two-stage physio-spatial synergistic framework that operates without in situ optical data for model calibration. The framework first generates diverse, physics-informed predictions by integrating Quasi-Analytical Algorithm (QAA)-derived inherent optical properties (IOPs) with multiple base learners. Critically, it then constructs a multi-scale spatial context by computing neighborhood statistics over an experimentally optimized 9 × 9-pixel window. These physical priors and spatial features are then effectively fused by a StackingMLP meta-learner. Validation in optically diverse environments demonstrates that OptiFusionStack significantly surpasses the performance plateau of pixel-wise methods, elevating inversion accuracy (e.g., R2 elevated from 0.66 to >0.92 in optically complex inland waters). More importantly, the framework substantially reduces spatial artifacts, producing bathymetric maps with superior spatial coherence. A rigorous benchmark against several state-of-the-art, end-to-end deep learning models further confirms the superior performance of our proposed hierarchical fusion architecture in terms of accuracy. This research offers a robust and generalizable new approach for high-fidelity geospatial modeling, particularly under the common real-world constraint of having no in situ data for optical model calibration. Full article
Show Figures

Figure 1

16 pages, 2252 KB  
Article
Racial Differences in the Molecular Genetic Biomarkers of Diffuse Large B-Cell Lymphoma
by Marco D. Gomes, Kevin Sun, Ji Li, William Middlezong, Victoria Stinnett, Laura Morsberger, Ying S. Zou and Yi Huang
Biomedicines 2025, 13(11), 2782; https://doi.org/10.3390/biomedicines13112782 - 14 Nov 2025
Abstract
Background/Objectives: Diffuse large B-cell lymphoma (DLBCL) exhibits pronounced racial disparities in incidence and outcomes, yet the molecular basis remains poorly understood. Here, we examined racial differences in gene rearrangements (MYC, BCL2, BCL6), fusions (IGH::MYC, IGH [...] Read more.
Background/Objectives: Diffuse large B-cell lymphoma (DLBCL) exhibits pronounced racial disparities in incidence and outcomes, yet the molecular basis remains poorly understood. Here, we examined racial differences in gene rearrangements (MYC, BCL2, BCL6), fusions (IGH::MYC, IGH::BCL2), and their interactions among White, Black, Asian, and Other-race groups in patients with DLBCL to uncover genetic drivers of disparities. Methods: We analyzed 919 DLBCL cases (2006–2023) from Johns Hopkins Hospital using fluorescence in situ hybridization to detect gene abnormalities. We used logistic regression and proportional odds models, adjusted for age and sex, to evaluate racial differences in five gene abnormalities and 10 gene–gene interaction pairs. Pearson’s Chi-squared and Goodman–Kruskal’s gamma tests assessed prevalence and interaction severity across racial groups. Results: MYC rearrangements and the MYC*IGH::MYC interaction were marginally more frequent in the White group than in Black and Other groups (p = 0.092, p = 0.098, respectively). IGH::BCL2 fusions were more prevalent in the Asian group than in the White group (p = 0.095), and the BCL2*IGH::BCL2 interaction was significantly higher in the Asian group (p = 0.049) than in the White group. Although high-grade B-cell lymphoma (HGBCL) prevalence showed no significant racial differences (p = 0.16), the Asian group exhibited a higher proportion of aggressive HGBCL with concurrent IGH::MYC and IGH::BCL2 fusions compared with the White group (p = 0.076). Age significantly influenced all gene abnormalities and interactions (p < 0.001–0.052), except for MYC rearrangements and specific pairs. Sex and sex–race interactions showed no significant effects. Conclusions: This study highlights molecular contributions to the racial differences in DLBCL disease. Further research collecting ancestry-specific biomarkers, treatment regimens, and clinical variables and outcomes is needed to advance personalized treatment strategies. Full article
Show Figures

Figure 1

17 pages, 3235 KB  
Article
Mechanical Behavior and Damage Mechanisms of Saturated Coal-Rock Under Cyclic Freeze–Thaw Conditions with Different Cold Conditions
by Hao Yang, Lin Wu and Xiaoke Li
Processes 2025, 13(11), 3675; https://doi.org/10.3390/pr13113675 - 13 Nov 2025
Abstract
In situ physical coal fracturing is one of the key technologies for deep coal resource extraction, among which the liquid nitrogen cyclic freeze–thaw (LNCFT) technique demonstrates remarkable fracturing effects and promising application potential in physical coal breaking. To determine economically viable mining and [...] Read more.
In situ physical coal fracturing is one of the key technologies for deep coal resource extraction, among which the liquid nitrogen cyclic freeze–thaw (LNCFT) technique demonstrates remarkable fracturing effects and promising application potential in physical coal breaking. To determine economically viable mining and coalbed methane (CBM) extraction cycles, this study builds on previous research and conducts a series of experiments to investigate the effects of different cold condition temperatures and freeze–thaw cycles on the mesoscopic surface structure and macroscopic mechanical properties of deep, water-rich coal-rock samples. A statistical damage constitutive model for saturated coal-rock under coupled freeze–thaw and loading, incorporating a damage threshold, was established to more accurately describe the damage patterns and mechanisms. The results indicate that lower cold condition temperatures lead to greater mesoscopic crack propagation, lower uniaxial compressive strength, and significantly reduced freeze–thaw failure cycles. Under −45 °C, saturated coal-rock samples experienced macroscopic failure after only 23 freeze–thaw cycles, which is 9 and 15 cycles fewer than those under −30 °C and −15 °C, respectively. Furthermore, measurements of wave velocities in three directions before and after testing revealed that freeze–thaw cycles caused particularly pronounced damage in the direction perpendicular to the bedding planes. Additionally, the established coupled statistical damage constitutive model provides a more accurate and intuitive analysis of the entire process from damage to failure under different cold conditions, showing that as the temperature decreases and freeze–thaw cycles increase, the coal-rock’s brittleness diminishes while plastic deformation and ductile failure characteristics are enhanced. In summary, for coal and CBM extraction using the LNCFT technique, it is recommended to extract gas once after approximately 35 cycles of liquid nitrogen injection. This study provides a theoretical basis for the application of liquid nitrogen cyclic freeze–thaw technology in deep coal fracturing. Full article
Show Figures

Figure 1

18 pages, 5143 KB  
Article
Application of CMT-Twin DED-Arc Process on the Fabrication of Invar 36 by In Situ Alloying
by Amaia Iturrioz, Juan Carlos Pereira and Eneko Ukar
Materials 2025, 18(22), 5146; https://doi.org/10.3390/ma18225146 - 12 Nov 2025
Viewed by 78
Abstract
This research explored the technical feasibility of creating a controlled chemical composition for Fe-Ni alloys using a Directed Energy Deposition (DED) arc metal additive manufacturing (AM) process in its twin wire feed mode. This method employs two independently controlled arc power sources to [...] Read more.
This research explored the technical feasibility of creating a controlled chemical composition for Fe-Ni alloys using a Directed Energy Deposition (DED) arc metal additive manufacturing (AM) process in its twin wire feed mode. This method employs two independently controlled arc power sources to feed two different wires into a single torch, creating a unified melt pool protected by a single shielding gas nozzle. The research focused on producing Invar 36 (EN 1.3912), a low thermal expansion alloy, by melting and mixing steel and Ni-Fe wires using Cold Metal Transfer-Twin (CMT-Twin) technology. This method enables the fabrication of multi-material components featuring regions with distinct chemical compositions, including functional gradients, with the aim of leveraging the advantageous properties of each individual material. Furthermore, this new manufacturing route offers the possibility to avoid using some alloying elements, such as Nb, an element considered a critical raw material (CRM) in the European Union (EU). Microstructure and mechanical properties were analyzed and compared to commercial Invar 36 obtained by DED-Arc with single wire as well as the effect of the absence of Nb. Results showed that the in situ obtained alloy had 10–20% lower strength but exhibited 10–15% higher elongation compared to the commercial alloy, making it a promising alternative for advanced manufacturing by using this new manufacturing route. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

14 pages, 1164 KB  
Review
Gene Therapy for BCG-Unresponsive Non-Muscle Invasive Bladder Cancer: Current Evidence and Future Directions
by Philippe Pinton
Cancers 2025, 17(22), 3631; https://doi.org/10.3390/cancers17223631 - 12 Nov 2025
Viewed by 196
Abstract
Background: Bladder cancer is the ninth most prevalent cancer globally. Most cases are urothelial carcinoma, classified as non-muscle invasive bladder cancer (NMIBC) or muscle invasive bladder cancer (MIBC); approximately 70% are diagnosed as NMIBC. Current standard of care for high-risk NMIBC includes transurethral [...] Read more.
Background: Bladder cancer is the ninth most prevalent cancer globally. Most cases are urothelial carcinoma, classified as non-muscle invasive bladder cancer (NMIBC) or muscle invasive bladder cancer (MIBC); approximately 70% are diagnosed as NMIBC. Current standard of care for high-risk NMIBC includes transurethral tumour resection, followed by intravesical therapy with Bacillus Calmette-Guérin (BCG). However, significant unmet needs persist due to disease recurrence, BCG unresponsiveness, or progression to MIBC. Radical cystectomy is recommended after BCG unresponsiveness but may not be viable due to its invasiveness and morbidity. The paucity of treatment options for BCG-unresponsive NMIBC has driven research into alternatives such as gene therapy. The bladder’s anatomy allows direct vector–tumour contact, while urine and tissue samples allow for easy monitoring of therapeutic effects. Methods: This narrative review integrates findings from recent clinical and preclinical studies identified through comprehensive searches of peer-reviewed literature to provide an overview of the current landscape of gene therapy for BCG-unresponsive NMIBC. Results: Nadofaragene firadenovec, a recombinant adenovirus delivering interferon alpha-2b (IFNα2b), is the first FDA-approved gene therapy for BCG-unresponsive NMIBC with carcinoma in situ (CIS). A phase III nadofaragene firadenovec study (NCT02773849) demonstrated a 53% complete response (CR) rate at 3 months; and 43% of patients with CIS had bladder preservation at 60 months. Cretostimogene grenadenorepvec (CG0070), an oncolytic vector, demonstrated a 47% 6-month CR rate in a phase II study (NCT02365818). Detalimogene voraplasmid (EG-70), a nonviral gene therapy, demonstrated a 47% 6-month CR in a phase I/II study (NCT04752722). Future advances are likely to focus on patient selection, novel vectors, and combination strategies to improve treatment outcomes. Conclusions: Gene therapy represents a significant addition to the bladder cancer treatment landscape by offering bladder-sparing alternatives where conventional therapies are limited. Full article
(This article belongs to the Special Issue Advances in the Treatment of Urological Cancer)
Show Figures

Figure 1

24 pages, 4585 KB  
Article
Research on Energy-Efficient Retrofit Design and Thermal Load Characteristics of Public Buildings Based on Optimal Thermal Comfort
by Lu Chen, Zhipan Han, Yujie Wu, Zhongshan Zhang, Yu Liu, Xiaomeng Li, Hui Cao, Yongxu Chen and Kun Yang
Buildings 2025, 15(22), 4066; https://doi.org/10.3390/buildings15224066 - 12 Nov 2025
Viewed by 195
Abstract
The energy-saving performance of the building envelope, which plays a pivotal role in energy conservation and thermal insulation, has been the subject of extensive research. In the context of China’s high-quality green development, this study proposes a building energy-saving strategy based on optimal [...] Read more.
The energy-saving performance of the building envelope, which plays a pivotal role in energy conservation and thermal insulation, has been the subject of extensive research. In the context of China’s high-quality green development, this study proposes a building energy-saving strategy based on optimal thermal comfort. It analyzes the impact of factors such as regional dwell time and PMV types on energy-saving effects, summarizes the optimal comfort parameters under the highest energy efficiency rate, and sets relevant parameters in the DeST building energy simulation software to analyze a typical public building. The analysis examined the impact of changing the heat transfer coefficients of exterior walls and windows on the annual cumulative heating and cooling loads. It established the relationship between the thermal transmittance of building envelopes and energy consumption and assessed the carbon emissions during the building’s operation and maintenance phase. The results indicate that as building envelope thermal transmittance coefficient decreases, particularly that of external windows and walls, overall cumulative heating and cooling loads decline accordingly. Notably, the reduction in external windows’ thermal transmittance coefficient has the most significant impact on total building thermal load. Furthermore, as the envelope thermal transmittance coefficient decreases, seasonal heating and cooling demands decline simultaneously, with the most substantial effect on heating load reduction during winter. Total annual building carbon emissions also decrease with the reduction in envelope thermal transmittance coefficient, particularly external wall thermal transmittance coefficient. Based on the findings of this study, the building envelope of the public building was redesigned, taking into account construction costs, the owner’s requirements, and energy efficiency alongside the reduction in carbon emissions. Comparisons of the redesigned building’s envelope thermal performance, experimental testing, and in situ measurements confirmed that it fulfilled the engineering requirements. This study also demonstrates that DeST software provides reliable technological support for low-carbon building design, retrofitting, and operation. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

17 pages, 3868 KB  
Article
Prolonged Summer Daytime Dissolved Oxygen Recovery in a Eutrophic Lake: High-Frequency Monitoring Diel Evidence from Taihu Lake, China
by Dong Xie, Xiaojie Chen, Yi Qian and Yuqing Feng
Water 2025, 17(22), 3221; https://doi.org/10.3390/w17223221 - 11 Nov 2025
Viewed by 154
Abstract
In eutrophic shallow lakes, dissolved oxygen (DO) exhibits significant temporal variations, regulated by the combined effects of photosynthesis and water temperature (WT). High-frequency monitoring enables a detailed capture of DO diel cycles, providing a more comprehensive understanding of the dynamic changes within lake [...] Read more.
In eutrophic shallow lakes, dissolved oxygen (DO) exhibits significant temporal variations, regulated by the combined effects of photosynthesis and water temperature (WT). High-frequency monitoring enables a detailed capture of DO diel cycles, providing a more comprehensive understanding of the dynamic changes within lake ecosystems. This study involved high-frequency (10 min intervals) in situ monitoring of DO over a three-year period (2020–2022) in the littoral zone of Taihu Lake, China. Random forest regression analysis identified WT, photosynthetically active radiation (PAR), and relative humidity (RH) as the three most influential variables governing DO dynamics. The relative importance of these factors varied seasonally (0.117–0.392), with PAR dominating in summer (0.383), whereas WT had the highest importance in other seasons (0.312–0.392). Cusum analysis further revealed that the DO-WT relationship changed from a dome-shaped pattern in spring, autumn, and winter to a bowl-shaped pattern in summer, indicating that thermal stratification intensified oxygen gradients. In addition, the majority of DO recovery occurred in the late afternoon during summer, suggesting that severe oxygen consumption delayed the daytime accumulation of DO. Our findings emphasize the critical roles of photosynthesis, respiration, and abiotic factors in shaping DO dynamics. This research enhances our understanding of DO fluctuations in eutrophic shallow lakes and provides valuable insights for ecosystem management, supporting the development of effective strategies to prevent and mitigate hypoxia. Full article
Show Figures

Figure 1

28 pages, 3871 KB  
Review
A Review on Tribological Wear and Corrosion Resistance of Surface Coatings on Steel Substrates
by Xin Wang, Wenqi Zhao, Tingting Shi, Lijuan Cheng, Suwen Hu, Chunxia Zhou, Li Cui, Ning Li and Peter K. Liaw
Coatings 2025, 15(11), 1314; https://doi.org/10.3390/coatings15111314 - 11 Nov 2025
Viewed by 261
Abstract
Surface coatings have proven highly effective in addressing the critical challenges of friction, wear, and corrosion on steel substrates, which are responsible for over 80% of mechanical failures in industrial applications. Recent research highlights that advanced coatings—such as ceramic carbides/nitrides, high-entropy alloys, and [...] Read more.
Surface coatings have proven highly effective in addressing the critical challenges of friction, wear, and corrosion on steel substrates, which are responsible for over 80% of mechanical failures in industrial applications. Recent research highlights that advanced coatings—such as ceramic carbides/nitrides, high-entropy alloys, and metal-matrix composites—significantly enhance hardness, wear resistance, and environmental durability through mechanisms including protective oxide film formation, solid lubrication, and microstructural refinement. Moreover, these coatings exhibit robust performance under combined tribological-corrosive (tribocorrosion) conditions, where synergistic interactions often accelerate material degradation. Key developments include multilayer and composite architectures that balance hardness with toughness, self-lubricating coatings capable of in situ lubricant release, and active or self-healing systems for sustained corrosion inhibition. Despite these advances, challenges remain in predicting coating lifetime under multifield service conditions and optimizing interfacial adhesion to prevent delamination. Future efforts should prioritize multifunctional coating designs, improved tribocorrosion models, and the integration of sustainable materials and AI-driven process optimization. This review consolidates these insights to support the development of next-generation coatings for extending the service life of steel components across demanding sectors such as marine, aerospace, and energy systems. Full article
(This article belongs to the Special Issue Manufacturing and Surface Engineering, 5th Edition)
Show Figures

Figure 1

16 pages, 4944 KB  
Article
Acoustic Identity: Linking Signature Whistles and Visual Identification in a Threatened Dolphin Population
by Amber Crittenden, Kate Robb and Christine Erbe
Animals 2025, 15(22), 3259; https://doi.org/10.3390/ani15223259 - 10 Nov 2025
Viewed by 156
Abstract
Signature whistles (SW) are a significant element of the vocal repertoire of delphinid species. They encode self-identifying information and allow social cohesion between related and allied individuals through often complex, stereotyped whistle contours. SW recordings allow researchers to explore the presence of individual [...] Read more.
Signature whistles (SW) are a significant element of the vocal repertoire of delphinid species. They encode self-identifying information and allow social cohesion between related and allied individuals through often complex, stereotyped whistle contours. SW recordings allow researchers to explore the presence of individual animals, understand social dynamics, and estimate population size without visual observation. This represents the first study aiming to match distinct SW contours to individual Burrunan dolphins (Tursiops australis) in the Gippsland Lakes, Victoria, Australia. Simultaneous photographic identification and in situ hand-held hydrophone recordings collected in 2021–2024 contained 57 individual dolphins and 236 whistles, resulting in 22 unique SW contours being extracted following modified SIGnature IDentification (SIGID) criteria. Conditional probability analyses revealed that most SW contours were associated with clusters or pairs of dolphins, rather than individuals, reflecting the species’ fission–fusion social structure. Cluster analysis supported these associations, highlighting the difficulty in isolating SWs in a population where individuals are not observed in isolation. Additionally, social structure, philopatric behaviour, and the acoustic environment of transient individuals are suggested to influence signature whistle production and complexity. Although direct signature whistle-to-individual matching remains limited, the study demonstrates that population-level and subgroup-level monitoring by passive acoustic methods is achievable. This approach provides a critical acoustic tool for conservation management of the small, threatened Gippsland Lakes Burrunan dolphin population and offers a foundation for future study of individuals through passive acoustic monitoring. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

34 pages, 8993 KB  
Article
Outlook on the Decarbonization of Non-Electrified Passenger Railway Connections in Poland
by Mateusz Jüngst and Wojciech Sawczuk
Energies 2025, 18(22), 5900; https://doi.org/10.3390/en18225900 - 10 Nov 2025
Viewed by 211
Abstract
The decarbonization of regional passenger rail transport is one of the key challenges for the sustainable transformation of the transport sector in Poland. While railway transportation remains one of the least carbon-intensive modes of transport, significant emission disparities persist between electrified and non-electrified [...] Read more.
The decarbonization of regional passenger rail transport is one of the key challenges for the sustainable transformation of the transport sector in Poland. While railway transportation remains one of the least carbon-intensive modes of transport, significant emission disparities persist between electrified and non-electrified lines, where diesel traction is still prevalent. This article presents a comparative analysis of various propulsion technologies—diesel, hybrid, battery-electric and hydrogen fuel-cell—taking into account both local (TTW) and total (WTW) greenhouse gas emissions. The study incorporates Poland’s current energy mix and proposes a methodological framework to assess emissions at the line level. It highlights the risks of focusing exclusively on in situ zero-emission technologies and calls for a more flexible, efficiency-based approach to fleet modernization. The analysis demonstrates that hybrid and optimized combustion-based systems can provide substantial emission reductions in the short term, especially in rural and transitional regions. The paper also critically discusses transport funding policies, pointing to discrepancies between incentives for private electric mobility and the lack of support for public transport solutions that could effectively counter mobility exclusion. The presented methodology and conclusions provide a basis for further research on transport decarbonization strategies tailored to national and regional contexts. Full article
(This article belongs to the Special Issue State-of-the-Art Energy Saving in the Transport Industries)
Show Figures

Figure 1

20 pages, 3525 KB  
Article
Automated Assessment of Green Infrastructure Using E-nose, Integrated Visible-Thermal Cameras and Computer Vision Algorithms
by Areej Shahid, Sigfredo Fuentes, Claudia Gonzalez Viejo, Bryce Widdicombe and Ranjith R. Unnithan
Sensors 2025, 25(22), 6812; https://doi.org/10.3390/s25226812 - 7 Nov 2025
Viewed by 349
Abstract
The parameterization of vegetation indices (VIs) is crucial for sustainable irrigation and horticulture management, specifically for urban green infrastructure (GI) management. However, the constraints of roadside traffic, motor and industrially related pollution, and potential public vandalism compromise the efficacy of conventional in situ [...] Read more.
The parameterization of vegetation indices (VIs) is crucial for sustainable irrigation and horticulture management, specifically for urban green infrastructure (GI) management. However, the constraints of roadside traffic, motor and industrially related pollution, and potential public vandalism compromise the efficacy of conventional in situ monitoring systems. The shortcomings of prevalent satellites, UAVs, and manual/automated sensor measurements and monitoring systems have already been reviewed. This research proposes a novel urban GI monitoring system based on an integration of gas exchange and various VIs obtained from computer vision algorithms applied to data acquired from three novel sources: (1) Integrated gas sensor data using nine different volatile organic compounds using an electronic nose (E-nose), designed on a PCB for stable performance under variable environmental conditions; (2) Plant growth parameters including effective leaf area index (LAIe), infrared index (Ig), canopy temperature depression (CTD) and tree water stress index (TWSI); (3) Meteorological data for all measurement campaigns based on wind velocity, air temperature, rainfall, air pressure, and air humidity conditions. To account for spatial and temporal data acquisition variability, the integrated cameras and the E-nose were mounted on a vehicle roof to acquire information from 172 Elm trees planted across the Royal Parade, Melbourne. Results showed strong correlations among air contaminants, ambient conditions, and plant growth status, which can be modelled and optimized for better smart irrigation and environmental monitoring based on real-time data. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

24 pages, 12006 KB  
Article
Interdisciplinary Approaches to the Knowledge of Ancient Monuments: Integrating Archaeological, Archaeometric, and Historical Data to Reconstruct the Building History of the Benedictine Monastery of Catania
by Roberta Occhipinti, Maura Fugazzotto, Cristina Maria Belfiore, Lucrezia Longhitano, Gian Michele Gerogiannis, Paolo Mazzoleni, Pietro Maria Militello and Germana Barone
Heritage 2025, 8(11), 467; https://doi.org/10.3390/heritage8110467 - 6 Nov 2025
Viewed by 189
Abstract
The Monastery of San Nicolò l’Arena in Catania, a UNESCO World Heritage site, embodies a complex architectural and historical stratigraphy, reflecting successive construction phases, functional changes, and the impact of catastrophic events, including the 1669 lava flow and the 1693 earthquake. As part [...] Read more.
The Monastery of San Nicolò l’Arena in Catania, a UNESCO World Heritage site, embodies a complex architectural and historical stratigraphy, reflecting successive construction phases, functional changes, and the impact of catastrophic events, including the 1669 lava flow and the 1693 earthquake. As part of the CHANGES project, this study combines historical–archaeological research with non-invasive in situ scientific analyses to investigate the materials and the conservation state of the monumental complex. Stratigraphic analysis identified multiple masonry and plaster units, allowing the reconstruction of five main construction phases and related functional changes. Portable X-ray Fluorescence (pXRF), Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFT), and handheld optical microscopy provided rapid insights into the chemical and mineralogical composition of plasters and mortars, highlighting lime-based binders with variable aggregate, including volcanic clasts, sand, and cocciopesto. In situ diagnostic analyses allowed us to distinguish pre- and post-earthquake materials, while historical data contextualized construction phases and functional transformations. The integration of archaeological and scientific approaches proved to be complementary: historical evidence guides the selection of analytical targets, while diagnostic results enrich and validate the interpretation of the building’s evolution. This interdisciplinary methodology establishes a robust framework for the understanding and valorization of complex cultural heritage sites. Full article
(This article belongs to the Special Issue History, Conservation and Restoration of Cultural Heritage)
Show Figures

Figure 1

20 pages, 4756 KB  
Review
Graphene-Skinned Materials: Direct Integration Strategies, Structural Insights, and Multifunctional Applications
by Yulin Han, Xinya Lu, Ningning Su, Yingjie Zhao and Qingyan Pan
Nanomaterials 2025, 15(21), 1679; https://doi.org/10.3390/nano15211679 - 5 Nov 2025
Viewed by 385
Abstract
Graphene, owing to its unique atomic structure, exhibits a set of outstanding physical and chemical properties, including ultrahigh carrier mobility, excellent thermal conductivity, superior mechanical strength, and high optical transparency. However, the atomic-thickness nature of graphene limits its ability to form self-supporting structures, [...] Read more.
Graphene, owing to its unique atomic structure, exhibits a set of outstanding physical and chemical properties, including ultrahigh carrier mobility, excellent thermal conductivity, superior mechanical strength, and high optical transparency. However, the atomic-thickness nature of graphene limits its ability to form self-supporting structures, making substrate integration a prerequisite for practical applications. Graphene-skinned materials, constructed by in situ deposition of continuous graphene films on conventional substrates, have recently emerged as a promising solution. This strategy effectively integrates graphene with conventional engineering materials, harnessing its superior properties while avoiding the structural defects and contamination typical of transfer processes. Consequently, graphene-skinned materials have rapidly become a rapidly developing area of research in materials science. This review systematically summarizes recent advances in graphene-skinned materials. Particular attention is given to coating methods and chemical vapor deposition (CVD) routes, followed by a discussion of commonly employed characterization tools for evaluating graphene quality and interface integrity. Applications in electromagnetic shielding, thermal management, sensors, and multifunctional composites are critically examined. Finally, future perspectives are needed regarding the key challenges and opportunities for engineering and industrial-scale deployment of graphene-skinned materials. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Graphical abstract

19 pages, 2213 KB  
Article
Land-Based Tank Cultivation of Ulva spp. (Chlorophyta) from Charleston, South Carolina: A Pilot Aquaculture Study for Seasonal Biomass Production and Potential Anthropogenic Bioremediation
by Menny M. Benjamin, Christopher J. Carbon, Heather L. Spalding, Aaron Watson, George S. Hanna and Laura M. Kasman
Aquac. J. 2025, 5(4), 23; https://doi.org/10.3390/aquacj5040023 - 4 Nov 2025
Viewed by 259
Abstract
The lack of an established seaweed aquaculture industry in the Atlantic Southeast reflects the persistent challenges in identifying macroalgal species that can consistently produce year-round under regional environmental conditions. As a result, in this study, locally abundant Charlestonian Ulva spp. were selected as [...] Read more.
The lack of an established seaweed aquaculture industry in the Atlantic Southeast reflects the persistent challenges in identifying macroalgal species that can consistently produce year-round under regional environmental conditions. As a result, in this study, locally abundant Charlestonian Ulva spp. were selected as sustainable algal candidates for a pilot investigation, due to their resilience to abiotic (e.g., seasonal changes in temperature and nutrients) and biotic (e.g., predation and epiphytes) factors, thus allowing for practical land-based aquaculture. Ulva spp. were analyzed for their seasonal biomass and potential bioremediation applications using the existing land-based aquaculture infrastructure of the SCDNR in Charleston, South Carolina. The biomass of tank-cultivated Ulva spp. was monitored on a biweekly basis for 16 months and was found to be highest (31.8 kg) in the spring, increasing by 22% in just two weeks as water temperatures rose. A synthetic nutrient fertilizer was incorporated into aquaculture at the latter stages of this study to observe the effects on algal biomass while simulating an anthropogenic event. Interestingly, inorganic supplementation did not induce growth but was absorbed by the algal tissue, significantly lowering the δ15N to <7‰. Additionally, Vibrio spp. bacteria proliferated following the inorganic nutrient spike, while coliform populations decreased. Biochemical composition analyses comparing tank-cultivated and wild in situ Ulva spp. revealed variations in essential trace element (e.g., potassium: tank—19,530; wild—5520 mg/kg) concentrations, yet shared similar trace metal (e.g., arsenic: tank—4.47; wild—4.52 mg/kg) and pesticide (e.g., DEET: tank—0.048; wild—0.040 mg/kg) concentrations. This is the first reported macroalgal aquaculture research in South Carolina and serves as a pilot study for future research or commercialization in the Lowcountry and the greater southeastern coastal communities of the United States. Full article
Show Figures

Figure 1

22 pages, 57638 KB  
Article
Comparison of a Semiempirical Algorithm and an Artificial Neural Network for Soil Moisture Retrieval Using CYGNSS Reflectometry Data
by Hamed Izadgoshasb, Emanuele Santi, Flavio Cordari, Leila Guerriero, Leonardo Chiavini, Veronica Ambrogioni and Nazzareno Pierdicca
Remote Sens. 2025, 17(21), 3636; https://doi.org/10.3390/rs17213636 - 3 Nov 2025
Viewed by 375
Abstract
This research, carried out within the framework of the European Space Agency’s second Scout mission (HydroGNSS), seeks to utilize CYGNSS Level 1B products over land for soil moisture estimation. The approach involves a novel physically based algorithm, which inverts a semiempirical forward model [...] Read more.
This research, carried out within the framework of the European Space Agency’s second Scout mission (HydroGNSS), seeks to utilize CYGNSS Level 1B products over land for soil moisture estimation. The approach involves a novel physically based algorithm, which inverts a semiempirical forward model of surface reflectivity proposed in the literature. An Artificial Neural Network (ANN) algorithm has also been developed. Both methods are implemented in the frame of the HydroGNSS mission to make the most of the reliability of an approach rooted in a physical background and the power of a data-driven approach that may suffer from limited training data, especially right after launch. The study aims to compare the results and performance of these two methods. Additionally, it intends to evaluate the impact of auxiliary data. The static auxiliary data include topography, Above Ground Biomass (AGB), land cover, and surface roughness. Dynamic auxiliary data include Vegetation Water Content (VWC) and Vegetation Optical Depth (VOD) from Soil Moisture Active Passive (SMAP), as well as Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) from Moderate Resolution Imaging Spectroradiometer (MODIS), on enhancing the accuracy of retrievals. The algorithms were trained and validated using target soil moisture values derived from SMAP L3 global daily products and in situ measurements from the International Soil Moisture Network (ISMN). In general, the ANN approach outperformed the semiempirical model with RMSE = 0.047 m3 m−3 and R = 0.91. We also introduced a global stratification framework by intersecting land cover classes with climate regimes. Results show that the ANN consistently outperforms the semiempirical model in most strata, achieving around RMSE = 0.04 m3 m−3 and correlations above 0.8. The semiempirical model, however, remained more stable in data-scarce conditions, highlighting complementary strengths for HydroGNSS. Full article
Show Figures

Figure 1

Back to TopTop