Land-Based Tank Cultivation of Ulva spp. (Chlorophyta) from Charleston, South Carolina: A Pilot Aquaculture Study for Seasonal Biomass Production and Potential Anthropogenic Bioremediation
Abstract
1. Introduction
2. Materials and Methods
2.1. Assembly of Tumble Culture Setup for Land-Based Tanks
2.2. Macroalgal Selection
2.3. Biomass Determination
2.4. Aquaculture Tank Measurements, Station Data, and Collection Sites
2.5. Nutrient Spike of Ulva spp. Tank
2.6. Chemical and Biological Analyses
2.6.1. Carbon-Nitrogen (C/N) Isotopes
2.6.2. Essential Trace Element, Trace Metal, and Pesticide Screenings
2.6.3. Coliform and Vibrio spp. Bacteria CFUs
2.7. Taxonomic Identification
2.8. Statistical Analysis
3. Results and Discussion
3.1. Seasonal Biomass
3.2. Nutrient Supplementation
3.2.1. Carbon and Nitrogen Isotopes
3.2.2. Bacterial Proliferation
3.3. Tank-Cultivated vs. Wild In Situ Ulva spp.
3.3.1. Algal Tissue Analysis for Essential Trace Elements
3.3.2. Algal Tissue Analyses for Trace Metals and Pesticides
| Tank-Cultivated Ulva spp. (mg/kg) | Wild In Situ Ulva spp. (mg/kg) | EFSA Intake Limits (mg/kg/week) EU Maximum Levels (mg/kg/week) | WHO Intake Limits (mg/kg/week) | ||
|---|---|---|---|---|---|
| Essential Trace Elements | Nitrogen (N) | 22,870 | 29,680 | N/A | N/A |
| Phosphorus (P) | 1326 | 1323 | N/A | N/A | |
| Potassium (K) | 19,530 | 5520 | 250 (EFSA) | N/A | |
| Calcium (Ca) | 4841 | 8103 | 250 (EFSA) | N/A | |
| Magnesium (Mg) | 30,383 | 10,530 | 25 (EFSA) | N/A | |
| Sulfur (S) | 52,618 | 24,288 | N/A | N/A | |
| Trace Metals | Arsenic (As) | 4.47 | 4.52 | 0.50 (EU) | 0.015 |
| Cadmium (Cd) | 0.205 | 0.089 | 3.0 (EU) | 0.0058 | |
| Lead (Pb) | 1.35 | 1.14 | 3.0 (EU) | 0.025 | |
| Mercury (Hg) | 0.103 | 0.022 | 1.0 (EU) | 0.004 | |
| Pesticide | DEET | 0.048 | 0.040 | 0.01 (EU) | N/A |
3.4. Limitations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| HAB | harmful algae blooms |
| TAA | total amino acid |
| CFU | colony-forming unit |
| NPK | nitrogen/phosphorus/potassium |
| SCDNR | South Carolina Department of Natural Resources |
| USGS | United States Geological Survey |
| δ13C | Ratio of 13C:12C in a sample |
| δ15N | Ratio of 15N:14N in a sample |
| DOM | dissolved organic matter |
| CaCO3 | calcium carbonate |
| WW | wet weight |
| PVC | polyvinyl chloride |
| N | nitrogen |
| P | phosphorus |
| K | potassium |
| Ca | calcium |
| Mg | magnesium |
| S | sulfur |
| As | arsenic |
| Pb | lead |
| LOQ | limit of quantification |
| EU | European Union |
| WHO | World Health Organization |
| PTWI | Provisional Tolerable Weekly Intake |
| DEET | diethyltoluamide |
| AIR | atmospheric nitrogen |
| VPDB | Vienna Pee Dee Belemnite |
| ARB | antibiotic-resistant bacteria |
| SD | standard deviation |
References
- Lewitus, A.J.; Schmidt, L.B.; Mason, L.J.; Kempton, J.W.; Wilde, S.B.; Wolny, J.L.; Williams, B.J.; Hayes, K.C.; Hymel, S.N.; Keppler, C.J. Harmful algal blooms in South Carolina residential and golf course ponds. Popul. Environ. 2003, 24, 387–413. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, L.; Riddicka, B.A.; Li, R.; Able, J.R.; Boakye-Boaten, N.A.; Shahbazi, A. Sustainable production of algal biomass and biofuels using swine wastewater in North Carolina, US. Sustainability 2016, 8, 477. [Google Scholar] [CrossRef]
- Linnaeus, C. Species Plantarum, Exhibentes Plantas Rite Cognitas ad Genera Relatas, Cum Differentiis Specificis, Nominibus Trivialibus, Synonymis Selectis, Locis Natalibus, Secundum Systema Sexuale Digestas; De Trattnern: Vienna, Austria, 1764; Volume 4. [Google Scholar]
- AlgaeBase (Ulva Linnaeus, 1753, nom. et typ. cons.) [Internet]. National University of Ireland, Galway. 1753. Available online: https://www.algaebase.org/search/genus/detail/?genus_id=33 (accessed on 10 August 2025).
- Neveux, N.; Bolton, J.J.; Bruhn, A.; Roberts, D.A.; Ras, M. The bioremediation potential of seaweeds: Recycling nitrogen, phosphorus, and other waste products. In Blue Biotechnology: Production and Use of Marine Molecules; Wiley: Weinheim, Germany, 2018; Volume 1, pp. 217–239. [Google Scholar]
- de Oliveira, V.P.; Martins, N.T.; Guedes, P.d.S.; Pollery, R.C.G.; Enrich-Prast, A. Bioremediation of nitrogenous compounds from oilfield wastewater by Ulva lactuca (Chlorophyta). Bioremediat. J. 2016, 20, 1–9. [Google Scholar] [CrossRef]
- Nielsen, M.M.; Bruhn, A.; Rasmussen, M.B.; Olesen, B.; Larsen, M.M.; Møller, H.B. Cultivation of Ulva lactuca with manure for simultaneous bioremediation and biomass production. J. Appl. Phycol. 2012, 24, 449–458. [Google Scholar] [CrossRef]
- Samarathunga, J.; Wijesekara, I.; Jayasinghe, M. Seaweed proteins as a novel protein alternative: Types, extractions, and functional food applications. Food Rev. Int. 2023, 39, 4236–4261. [Google Scholar] [CrossRef]
- Espinosa-Ramírez, J.; Mondragón-Portocarrero, A.C.; Rodríguez, J.A.; Lorenzo, J.M.; Santos, E.M. Algae as a potential source of protein meat alternatives. Front. Nutr. 2023, 10, 1254300. [Google Scholar] [CrossRef]
- Bews, E.; Booher, L.; Polizzi, T.; Long, C.; Kim, J.-H.; Edwards, M.S. Effects of salinity and nutrients on metabolism and growth of Ulva lactuca: Implications for bioremediation of coastal watersheds. Mar. Pollut. Bull. 2021, 166, 112199. [Google Scholar] [CrossRef]
- Geddie, A.W.; Hall, S.G. Development of a suitability assessment model for the cultivation of intertidal macroalgae in the United States. Sci. Total Environ. 2020, 699, 134327. [Google Scholar] [CrossRef]
- Moreira, A.; Cruz, S.; Marques, R.; Cartaxana, P. The underexplored potential of green macroalgae in aquaculture. Rev. Aquac. 2022, 14, 5–26. [Google Scholar] [CrossRef]
- Benjamin, M.M.; Hanna, G.S.; Hamann, M.T. Marine Algae’s Major Role in Carbon Sequestration and Petroleum Product Independence. Int. J. Oceanogr. Aquac. Res. 2021, 1. [Google Scholar] [CrossRef]
- Baharlooeian, M.; Benjamin, M.M.; Choudhary, S.; Hosseinian, A.; Hanna, G.S.; Hamann, M.T. Marine Metabolites for the Sustainable and Renewable Production of Key Platform Chemicals. Processes 2025, 13, 2685. [Google Scholar] [CrossRef]
- Pereira, L.; Cotas, J.; Gonçalves, A.M. Seaweed Proteins: A Step towards Sustainability? Nutrients 2024, 16, 1123. [Google Scholar] [CrossRef]
- Troell, M.; Henriksson, P.J.; Buschmann, A.; Chopin, T.; Quahe, S. Farming the ocean–seaweeds as a quick fix for the climate? Rev. Fish. Sci. Aquac. 2023, 31, 285–295. [Google Scholar] [CrossRef]
- Holzinger, A.; Herburger, K.; Kaplan, F.; Lewis, L.A. Desiccation tolerance in the chlorophyte green alga Ulva compressa: Does cell wall architecture contribute to ecological success? Planta 2015, 242, 477–492. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Zhang, X.; Gao, C.; Jiang, M.; Li, R.; Wang, Z.; Li, Y.; Fan, S.; Zhang, X. Effect of temperature, salinity and irradiance on growth and photosynthesis of Ulva prolifera. Acta Oceanol. Sin. 2016, 35, 114–121. [Google Scholar] [CrossRef]
- Rybak, A.S. Species of Ulva (Ulvophyceae, Chlorophyta) as indicators of salinity. Ecol. Indic. 2018, 85, 253–261. [Google Scholar] [CrossRef]
- Diamahesa, W.A.; Masumoto, T.; Jusadi, D.; Setiawati, M. Growth and protein content of Ulva prolifera maintained at different flow rates in integrated aquaculture system. J. Ilmu Dan. Teknol. Kelaut. Trop. 2017, 9, 429–441. [Google Scholar] [CrossRef]
- Msuya, F.E.; Kyewalyanga, M.S.; Salum, D. The performance of the seaweed Ulva reticulata as a biofilter in a low-tech, low-cost, gravity generated water flow regime in Zanzibar, Tanzania. Aquaculture 2006, 254, 284–292. [Google Scholar] [CrossRef]
- Al-Hafedh, Y.S.; Alam, A.; Buschmann, A.H. Bioremediation potential, growth and biomass yield of the green seaweed, Ulva lactuca in an integrated marine aquaculture system at the Red Sea coast of Saudi Arabia at different stocking densities and effluent flow rates. Rev. Aquacult. 2015, 7, 161–171. [Google Scholar] [CrossRef]
- Everris. Osmocote Classic 14-14-14 SKU# E90550. Available online: https://www.domyown.com/msds/Osmocote_14_14_14_label_opt.pdf?srsltid=AfmBOopI7C4GcOOo98aUI68MrYNxzIcbjUZPeSLHRlx0lTXpHrC22hLq (accessed on 10 August 2025).
- Strait, N.; Williams, T.M.; Sherwood, A.R.; Kosaki, R.K.; Giuseffi, L.; Smith, C.M.; Spalding, H.L. Nitrogen stable isotopes (δ 15N) and tissue nitrogen in shallow—water and mesophotic macroalgae differ between the Main Hawaiian Islands and the Northwestern Hawaiian Islands. Limnol. Oceanogr. 2022, 67, 1211–1226. [Google Scholar] [CrossRef]
- Gonzalez, D.J.; Gonzalez, R.A.; Froelich, B.A.; Oliver, J.D.; Noble, R.T.; McGlathery, K.J. Non-native macroalga may increase concentrations of Vibrio bacteria on intertidal mudflats. Mar. Ecol. Prog. Ser. 2014, 505, 29–36. [Google Scholar] [CrossRef]
- Dufour, A.P.; Strickland, E.R.; Cabelli, V.J. Membrane filter method for enumerating Escherichia coli. Appl. Environ. Microbiol. 1981, 41, 1152–1158. [Google Scholar] [CrossRef]
- Craig, W.; Schneider, R.B.S. Seaweeds of the Southeastern United States Cape Hatteras to Cape Canaveral; Duke University Press: Durham, NC, USA, 1991. [Google Scholar]
- Ulva Lactuca Linnaeus 1753 [Internet]. National University of Ireland. [Cited 2025]. 2010. Available online: https://www.algaebase.org/search/species/detail/?species_id=39 (accessed on 10 August 2025).
- Guidone, M.; Thornber, C.; Wysor, B.; O’Kelly, C.J. Molecular and morphological diversity of Narragansett Bay (RI, USA) Ulva (Ulvales, Chlorophyta) populations. J. Phycol. 2013, 49, 979–995. [Google Scholar] [CrossRef] [PubMed]
- Kuba, G.M.; Carpio-Aguilar, B.; Eklund, J.; Freshwater, D.W. A demonstration of DNA Barcoding-based identification of blade-form Ulva (Ulvophyceae, Chlorophyta) species from three site in the San Juan islands, Washington, USA. Diversity 2022, 14, 899. [Google Scholar] [CrossRef]
- Gadberry, B.C.J.; Maynard, D.; Boratyn, D.C. Intensive land-based production of red and green macroalgae for human consumption in the Pacific Northwest: An evaluation of seasonal growth, yield, nutritional composition, and contaminant levels. Algae 2018, 33, 109–125. [Google Scholar] [CrossRef]
- Brinkhuis, P. Seasonal variations in salt-march macroalgae photosynthesis. II. Fucus vesiculosus and Ulva lactuca. Mar. Biol. 1977, 44, 177–186. [Google Scholar] [CrossRef]
- Pang, S.; Lüning, K. Tank cultivation of the red alga Palmaria palmata: Effects of intermittent light on growth rate, yield and growth kinetics. J. Appl. Phycol. 2004, 16, 93–99. [Google Scholar] [CrossRef]
- Jansen, H.M.; Bernard, M.S.; Nederlof, M.A.; van der Meer, I.M.; van der Werf, A. Seasonal variation in productivity, chemical composition and nutrient uptake of Ulva spp. (Chlorophyta) strains. J. Appl. Phycol. 2022, 34, 1649–1660. [Google Scholar] [CrossRef]
- Zertuche-González, J.A.; Sandoval-Gil, J.M.; Rangel-Mendoza, L.K.; Gálvez-Palazuelos, A.I.; Guzmán-Calderón, J.M.; Yarish, C. Seasonal and interannual production of sea lettuce (Ulva sp.) in outdoor cultures based on commercial size ponds. J. World Aquac. Soc. 2021, 52, 1047–1058. [Google Scholar] [CrossRef]
- Fick, A.V. On liquid diffusion. Lond. Edinb. Dubl. Phil. Mag. 1855, 10, 30–39. [Google Scholar] [CrossRef]
- Trientini, F.; Fisher, P.R. Hydroponic fertilizer supply for basil using controlled-release fertilizer. HortScience 2020, 55, 1683–1691. [Google Scholar] [CrossRef]
- Adams, C.; Frantz, J.; Bugbee, B. Macro-and micronutrient-release characteristics of three polymer-coated fertilizers: Theory and measurements. J. Plant Nutri. Soil. Sci. 2013, 176, 76–88. [Google Scholar] [CrossRef]
- Sheppard, E.J.; Hurd, C.L.; Britton, D.D.; Reed, D.C.; Bach, L.T. Seaweed biogeochemistry: Global assessment of C:N and C:P ratios and implications for ocean afforestation. J. Phycol. 2023, 59, 879–892. [Google Scholar] [CrossRef]
- Thornber, C.S.; DiMilla, P.; Nixon, S.W.; McKinney, R.A. Natural and anthropogenic nitrogen uptake by bloom-forming macroalgae. Mar. Pollut. Bull. 2008, 56, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Amato, D.W.; Smith, C.M.; Duarte, T.K. Submarine groundwater discharge differentially modifies photosynthesis, growth, and morphology for two contrasting species of Gracilaria (Rhodophyta). Hydrology 2018, 5, 65. [Google Scholar] [CrossRef]
- Barr, N.G.; Dudley, B.D.; Rogers, K.M.; Cornelisen, C.D. Broad-scale patterns of tissue-δ15N and tissue-N indices in frondose Ulva spp.; developing a national baseline indicator of nitrogen-loading for coastal New Zealand. Mar. Pollut. Bull. 2013, 67, 203–216. [Google Scholar] [CrossRef]
- Fujita, R.M. The role of nitrogen status in regulating transient ammonium uptake and nitrogen storage by macroalgae. J. Exp. Mar. Biol. Ecol. 1985, 92, 283–301. [Google Scholar] [CrossRef]
- Teichberg, M.; Fox, S.E.; Aguila, C.; Olsen, Y.S.; Valiela, I. Macroalgal responses to experimental nutrient enrichment in shallow coastal waters: Growth, internal nutrient pools, and isotopic signatures. Mar. Ecol. Prog. Ser. 2008, 368, 117–126. [Google Scholar] [CrossRef]
- Shahar, B.; Shpigel, M.; Barkan, R.; Masasa, M.; Neori, A.; Chernov, H.; Salomon, E.; Kiflawi, M.; Guttman, L. Changes in metabolism, growth and nutrient uptake of Ulva fasciata (Chlorophyta) in response to nitrogen source. Algal Res. 2020, 46, 101781. [Google Scholar] [CrossRef]
- Pang, S.J.; Xiao, T.; Bao, Y. Dynamic changes of total bacteria and Vibrio in an integrated seaweed–abalone culture system. Aquaculture 2006, 252, 289–297. [Google Scholar] [CrossRef]
- Liang, J.; Liu, J.; Zhan, Y.; Zhou, S.; Xue, C.-X.; Sun, C.; Lin, Y.; Luo, C.; Wang, X.; Zhang, X.-H. Succession of marine bacteria in response to Ulva prolifera-derived dissolved organic matter. Environ. Int. 2021, 155, 106687. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Wang, X. Release and microbial degradation of dissolved organic matter (DOM) from the macroalgae Ulva prolifera. Mar. Pollut. Bull. 2017, 125, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Froelich, B.A.; Daines, D.A. In hot water: Effects of climate change on Vibrio–human interactions. Environ. Microbiol. 2020, 22, 4101–4111. [Google Scholar] [CrossRef] [PubMed]
- Hazards, E.P.O.B.; Koutsoumanis, K.; Allende, A.; Alvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; De Cesare, A.; Herman, L.; Hilbert, F. Public health aspects of Vibrio spp. related to the consumption of seafood in the EU. EFSA J. 2024, 22, e8896. [Google Scholar] [CrossRef]
- DePaola, A.; Nordstrom, J.L.; Bowers, J.C.; Wells, J.G.; Cook, D.W. Seasonal abundance of total and pathogenic Vibrio parahaemolyticus in Alabama oysters. Appl. Environ. Microbiol. 2003, 69, 1521–1526. [Google Scholar] [CrossRef]
- Prum, P.; Harris, L.; Gardner, J. Widespread warming of Earth’s estuaries. Limnol. Oceanogr. 2024, 9, 268–275. [Google Scholar] [CrossRef]
- Climate Trends. Chapter 4. In South Carolina State Climate Assessment South Carolina Office of Resilience, Columbia, SC 2023. Available online: https://scor.sc.gov/sites/scor/files/Documents/Chapter%204%20Climate%20Trends.pdf (accessed on 10 August 2025).
- Igbinosa, E.O. Detection and Antimicrobial Resistance of Vibrio Isolates in Aquaculture Environments: Implications for Public Health. Microb. Drug Resist. 2016, 22, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Vezzulli, L.; Pezzati, E.; Brettar, I.; Höfle, M.; Pruzzo, C. Effects of global warming on Vibrio ecology. Microbiol. Spectr. 2015, 3, 10–1128. [Google Scholar] [CrossRef]
- Amarasiri, M.; Sano, D.; Suzuki, S. Understanding human health risks caused by antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in water environments: Current knowledge and questions to be answered. Crit. Rev. Environ. Sci. Technol. 2020, 50, 2016–2059. [Google Scholar] [CrossRef]
- Emery, B.; Fullerton, H.; Bossak, B. Resistance on the rise: Assessment of antibiotic-resistant indicator organisms in Shem Creek, Charleston, South Carolina. Dialogues Health 2022, 1, 100063. [Google Scholar] [CrossRef]
- Rickard, L.N.; Houston, C.L.; McGreavy, B.; Johnson, B.B.; Gurney, G. Fish prisons and bluehouses: Perceived risks and benefits of land-based aquaculture in four US communities. Environ. Commun. 2023, 17, 930–946. [Google Scholar] [CrossRef]
- Castine, S.A.; McKinnon, A.D.; Paul, N.A.; Trott, L.A.; de Nys, R. Wastewater treatment for land-based aquaculture: Improvements and value-adding alternatives in model systems from Australia. Aquacu. Environ. Interact. 2013, 4, 285–300. [Google Scholar] [CrossRef]
- Drylie, T.P.; Needham, H.R.; Lohrer, A.M.; Hartland, A.; Pilditch, C.A. Calcium carbonate alters the functional response of coastal sediments to eutrophication-induced acidification. Sci. Rep. 2019, 9, 12012. [Google Scholar] [CrossRef]
- Ma, Z.; Lin, L.; Wu, M.; Yu, H.; Shang, T.; Zhang, T.; Zhao, M. Total and inorganic arsenic contents in seaweeds: Absorption, accumulation, transformation and toxicity. Aquaculture 2018, 497, 49–55. [Google Scholar] [CrossRef]
- Taylor, V.F.; Jackson, B.P. Concentrations and speciation of arsenic in New England seaweed species harvested for food and agriculture. Chemosphere 2016, 163, 6–13. [Google Scholar] [CrossRef]
- Safety Evaluation of Certain Contaminants in Food: Food and Agriculture Organization of the United Nations (FAO). 2011. Available online: https://iris.who.int/bitstream/handle/10665/43406/9241660554_eng.pdf (accessed on 10 August 2025).
- Cabral-Oliveira, J.; Coelho, H.; Pratas, J.; Mendes, S.; Pardal, M.A. Arsenic accumulation in intertidal macroalgae exposed to sewage discharges. J. Appl. Phycol. 2016, 28, 3697–3703. [Google Scholar] [CrossRef]
- Overview on Tolerable Upper Intake Levels as Derived by the Scientific Committee on Food (SCF) and the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Available online: https://www.efsa.europa.eu/sites/default/files/2024-05/ul-summary-report.pdf (accessed on 10 August 2025).
- Commission Regulation (EU) 2023/915 of 25 April 2023 on Maximum Levels for Certain Contaminants in Food and Repealing Regulation (EC) No 1881/2006. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX%3A32023R0915 (accessed on 10 August 2025).
- Cadmium—Evaluations of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). 2021. Available online: https://apps.who.int/food-additives-contaminants-jecfa-database/Home/Chemical/1376? (accessed on 10 August 2025).
- Lead—Evaluations of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). 2011. Available online: https://apps.who.int/food-additives-contaminants-jecfa-database/Home/Chemical/3511? (accessed on 10 August 2025).
- Mercury—Evaluations of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). 2011. Available online: https://apps.who.int/food-additives-contaminants-jecfa-database/Home/Chemical/1806 (accessed on 10 August 2025).
- Fullerton, H.; Vulava, V.M.; Dunn, E.; Caspino, H.; Webb, J.; Gamble, C. The Presence of Antibiotic-Resistant E. coli and Coliforms in Urban Floodwaters of Charleston, SC. In Proceedings of the AGU Fall Meeting Abstracts, Washington, DC, USA, 9–13 December 2024. [Google Scholar]
- Squiggins, K.T.; Fullerton, H.; Vulava, V.M. The presence of ampicillin-resistant coliforms in urban floodwaters of a coastal city in the southeastern United States. Front. Water 2024, 6, 1359196. [Google Scholar] [CrossRef]




| Sample | μg N | % N | δ15N (‰ vs. AIR) | μg C | % C | C:N | δ13C (‰ vs. VPDB) |
|---|---|---|---|---|---|---|---|
| Pre-Spike | 76.1 (±3.16) | 3 (±0.19) | 7.6 (±0.06) | 749.9 (±12.81) | 30 (±1.91) | 9.9 (±0.23) | −16.6 (±0.23) |
| Post-Spike | 89.1 (±1.00) | 4 (±0.05) | 4.9 (±0.21) | 761.0 (±1.78) | 31 (±0.46) | 8.6 (±0.06) | −17.0 (±0.17) |
| Sample | Tank-Cultivated Ulva spp. (CFU/100 mL) | Tank Water (CFU/100 mL) |
|---|---|---|
| Vibrio spp. Bacteria | ||
| Pre-Spike | 4984 (* ±4119) | 451 (* ±159) |
| Post-Spike | 17,080 (* ±7815) | 12,887 (* ±5289) |
| Coliform Bacteria | ||
| Pre-Spike | 3986 (* ±761) | 7224 (* ±4471) |
| Post-Spike | 1916 (* ±843) | 2518 (* ±2840) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benjamin, M.M.; Carbon, C.J.; Spalding, H.L.; Watson, A.; Hanna, G.S.; Kasman, L.M. Land-Based Tank Cultivation of Ulva spp. (Chlorophyta) from Charleston, South Carolina: A Pilot Aquaculture Study for Seasonal Biomass Production and Potential Anthropogenic Bioremediation. Aquac. J. 2025, 5, 23. https://doi.org/10.3390/aquacj5040023
Benjamin MM, Carbon CJ, Spalding HL, Watson A, Hanna GS, Kasman LM. Land-Based Tank Cultivation of Ulva spp. (Chlorophyta) from Charleston, South Carolina: A Pilot Aquaculture Study for Seasonal Biomass Production and Potential Anthropogenic Bioremediation. Aquaculture Journal. 2025; 5(4):23. https://doi.org/10.3390/aquacj5040023
Chicago/Turabian StyleBenjamin, Menny M., Christopher J. Carbon, Heather L. Spalding, Aaron Watson, George S. Hanna, and Laura M. Kasman. 2025. "Land-Based Tank Cultivation of Ulva spp. (Chlorophyta) from Charleston, South Carolina: A Pilot Aquaculture Study for Seasonal Biomass Production and Potential Anthropogenic Bioremediation" Aquaculture Journal 5, no. 4: 23. https://doi.org/10.3390/aquacj5040023
APA StyleBenjamin, M. M., Carbon, C. J., Spalding, H. L., Watson, A., Hanna, G. S., & Kasman, L. M. (2025). Land-Based Tank Cultivation of Ulva spp. (Chlorophyta) from Charleston, South Carolina: A Pilot Aquaculture Study for Seasonal Biomass Production and Potential Anthropogenic Bioremediation. Aquaculture Journal, 5(4), 23. https://doi.org/10.3390/aquacj5040023

